replicant-frameworks_native/include/ui/InputDispatcher.h
Jeff Brown a665ca805c Input dispatcher ANR handling enhancements.
This change is essentially a rewrite of the main input dispatcher loop
with the target identification folded in.  Since the input dispatcher now
has all of the window state, it can make better decisions about
when to ANR.

Added a .5 second deadline for processing app switch keys.  This behavior
predates Gingerbread but had not previously been ported.

Fixed some timing inaccuracies in the ANR accounting that could cause
applications to ANR sooner than they should have.

Added a mechanism for tracking key and motion events that have been
dispatched to a window so that appropriate cancelation events can be
synthesized when recovering from ANR.  This change helps to keep
applications in sync so they don't end up with stuck buttons upon
recovery from ANRs.

Added more comments to describe the tricky parts of PollLoop.

Change-Id: I13dffca27acb436fc383980db536abc4d8b9e6f1
2010-09-12 16:52:03 -07:00

1061 lines
41 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _UI_INPUT_DISPATCHER_H
#define _UI_INPUT_DISPATCHER_H
#include <ui/Input.h>
#include <ui/InputTransport.h>
#include <utils/KeyedVector.h>
#include <utils/Vector.h>
#include <utils/threads.h>
#include <utils/Timers.h>
#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/PollLoop.h>
#include <utils/Pool.h>
#include <stddef.h>
#include <unistd.h>
#include <limits.h>
namespace android {
/*
* Constants used to report the outcome of input event injection.
*/
enum {
/* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
INPUT_EVENT_INJECTION_PENDING = -1,
/* Injection succeeded. */
INPUT_EVENT_INJECTION_SUCCEEDED = 0,
/* Injection failed because the injector did not have permission to inject
* into the application with input focus. */
INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,
/* Injection failed because there were no available input targets. */
INPUT_EVENT_INJECTION_FAILED = 2,
/* Injection failed due to a timeout. */
INPUT_EVENT_INJECTION_TIMED_OUT = 3
};
/*
* Constants used to determine the input event injection synchronization mode.
*/
enum {
/* Injection is asynchronous and is assumed always to be successful. */
INPUT_EVENT_INJECTION_SYNC_NONE = 0,
/* Waits for previous events to be dispatched so that the input dispatcher can determine
* whether input event injection willbe permitted based on the current input focus.
* Does not wait for the input event to finish processing. */
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,
/* Waits for the input event to be completely processed. */
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
};
/*
* An input target specifies how an input event is to be dispatched to a particular window
* including the window's input channel, control flags, a timeout, and an X / Y offset to
* be added to input event coordinates to compensate for the absolute position of the
* window area.
*/
struct InputTarget {
enum {
/* This flag indicates that subsequent event delivery should be held until the
* current event is delivered to this target or a timeout occurs. */
FLAG_SYNC = 0x01,
/* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
* of the area of this target and so should instead be delivered as an
* AMOTION_EVENT_ACTION_OUTSIDE to this target. */
FLAG_OUTSIDE = 0x02,
/* This flag indicates that a KeyEvent or MotionEvent is being canceled.
* In the case of a key event, it should be delivered with flag
* AKEY_EVENT_FLAG_CANCELED set.
* In the case of a motion event, it should be delivered with action
* AMOTION_EVENT_ACTION_CANCEL instead. */
FLAG_CANCEL = 0x04,
/* This flag indicates that the target of a MotionEvent is partly or wholly
* obscured by another visible window above it. The motion event should be
* delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
FLAG_WINDOW_IS_OBSCURED = 0x08,
};
// The input channel to be targeted.
sp<InputChannel> inputChannel;
// Flags for the input target.
int32_t flags;
// The timeout for event delivery to this target in nanoseconds, or -1 to wait indefinitely.
nsecs_t timeout;
// The time already spent waiting for this target in nanoseconds, or 0 if none.
nsecs_t timeSpentWaitingForApplication;
// The x and y offset to add to a MotionEvent as it is delivered.
// (ignored for KeyEvents)
float xOffset, yOffset;
};
/*
* An input window describes the bounds of a window that can receive input.
*/
struct InputWindow {
// Window flags from WindowManager.LayoutParams
enum {
FLAG_ALLOW_LOCK_WHILE_SCREEN_ON = 0x00000001,
FLAG_DIM_BEHIND = 0x00000002,
FLAG_BLUR_BEHIND = 0x00000004,
FLAG_NOT_FOCUSABLE = 0x00000008,
FLAG_NOT_TOUCHABLE = 0x00000010,
FLAG_NOT_TOUCH_MODAL = 0x00000020,
FLAG_TOUCHABLE_WHEN_WAKING = 0x00000040,
FLAG_KEEP_SCREEN_ON = 0x00000080,
FLAG_LAYOUT_IN_SCREEN = 0x00000100,
FLAG_LAYOUT_NO_LIMITS = 0x00000200,
FLAG_FULLSCREEN = 0x00000400,
FLAG_FORCE_NOT_FULLSCREEN = 0x00000800,
FLAG_DITHER = 0x00001000,
FLAG_SECURE = 0x00002000,
FLAG_SCALED = 0x00004000,
FLAG_IGNORE_CHEEK_PRESSES = 0x00008000,
FLAG_LAYOUT_INSET_DECOR = 0x00010000,
FLAG_ALT_FOCUSABLE_IM = 0x00020000,
FLAG_WATCH_OUTSIDE_TOUCH = 0x00040000,
FLAG_SHOW_WHEN_LOCKED = 0x00080000,
FLAG_SHOW_WALLPAPER = 0x00100000,
FLAG_TURN_SCREEN_ON = 0x00200000,
FLAG_DISMISS_KEYGUARD = 0x00400000,
FLAG_IMMERSIVE = 0x00800000,
FLAG_KEEP_SURFACE_WHILE_ANIMATING = 0x10000000,
FLAG_COMPATIBLE_WINDOW = 0x20000000,
FLAG_SYSTEM_ERROR = 0x40000000,
};
// Window types from WindowManager.LayoutParams
enum {
FIRST_APPLICATION_WINDOW = 1,
TYPE_BASE_APPLICATION = 1,
TYPE_APPLICATION = 2,
TYPE_APPLICATION_STARTING = 3,
LAST_APPLICATION_WINDOW = 99,
FIRST_SUB_WINDOW = 1000,
TYPE_APPLICATION_PANEL = FIRST_SUB_WINDOW,
TYPE_APPLICATION_MEDIA = FIRST_SUB_WINDOW+1,
TYPE_APPLICATION_SUB_PANEL = FIRST_SUB_WINDOW+2,
TYPE_APPLICATION_ATTACHED_DIALOG = FIRST_SUB_WINDOW+3,
TYPE_APPLICATION_MEDIA_OVERLAY = FIRST_SUB_WINDOW+4,
LAST_SUB_WINDOW = 1999,
FIRST_SYSTEM_WINDOW = 2000,
TYPE_STATUS_BAR = FIRST_SYSTEM_WINDOW,
TYPE_SEARCH_BAR = FIRST_SYSTEM_WINDOW+1,
TYPE_PHONE = FIRST_SYSTEM_WINDOW+2,
TYPE_SYSTEM_ALERT = FIRST_SYSTEM_WINDOW+3,
TYPE_KEYGUARD = FIRST_SYSTEM_WINDOW+4,
TYPE_TOAST = FIRST_SYSTEM_WINDOW+5,
TYPE_SYSTEM_OVERLAY = FIRST_SYSTEM_WINDOW+6,
TYPE_PRIORITY_PHONE = FIRST_SYSTEM_WINDOW+7,
TYPE_SYSTEM_DIALOG = FIRST_SYSTEM_WINDOW+8,
TYPE_KEYGUARD_DIALOG = FIRST_SYSTEM_WINDOW+9,
TYPE_SYSTEM_ERROR = FIRST_SYSTEM_WINDOW+10,
TYPE_INPUT_METHOD = FIRST_SYSTEM_WINDOW+11,
TYPE_INPUT_METHOD_DIALOG= FIRST_SYSTEM_WINDOW+12,
TYPE_WALLPAPER = FIRST_SYSTEM_WINDOW+13,
TYPE_STATUS_BAR_PANEL = FIRST_SYSTEM_WINDOW+14,
LAST_SYSTEM_WINDOW = 2999,
};
sp<InputChannel> inputChannel;
int32_t layoutParamsFlags;
int32_t layoutParamsType;
nsecs_t dispatchingTimeout;
int32_t frameLeft;
int32_t frameTop;
int32_t frameRight;
int32_t frameBottom;
int32_t visibleFrameLeft;
int32_t visibleFrameTop;
int32_t visibleFrameRight;
int32_t visibleFrameBottom;
int32_t touchableAreaLeft;
int32_t touchableAreaTop;
int32_t touchableAreaRight;
int32_t touchableAreaBottom;
bool visible;
bool hasFocus;
bool hasWallpaper;
bool paused;
int32_t ownerPid;
int32_t ownerUid;
bool visibleFrameIntersects(const InputWindow* other) const;
bool touchableAreaContainsPoint(int32_t x, int32_t y) const;
};
/*
* A private handle type used by the input manager to track the window.
*/
class InputApplicationHandle : public RefBase {
protected:
InputApplicationHandle() { }
virtual ~InputApplicationHandle() { }
};
/*
* An input application describes properties of an application that can receive input.
*/
struct InputApplication {
String8 name;
nsecs_t dispatchingTimeout;
sp<InputApplicationHandle> handle;
};
/*
* Input dispatcher policy interface.
*
* The input reader policy is used by the input reader to interact with the Window Manager
* and other system components.
*
* The actual implementation is partially supported by callbacks into the DVM
* via JNI. This interface is also mocked in the unit tests.
*/
class InputDispatcherPolicyInterface : public virtual RefBase {
protected:
InputDispatcherPolicyInterface() { }
virtual ~InputDispatcherPolicyInterface() { }
public:
/* Notifies the system that a configuration change has occurred. */
virtual void notifyConfigurationChanged(nsecs_t when) = 0;
/* Notifies the system that an application is not responding.
* Returns a new timeout to continue waiting, or 0 to abort dispatch. */
virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle) = 0;
/* Notifies the system that an input channel is unrecoverably broken. */
virtual void notifyInputChannelBroken(const sp<InputChannel>& inputChannel) = 0;
/* Notifies the system that an input channel is not responding.
* Returns a new timeout to continue waiting, or 0 to abort dispatch. */
virtual nsecs_t notifyInputChannelANR(const sp<InputChannel>& inputChannel) = 0;
/* Notifies the system that an input channel recovered from ANR. */
virtual void notifyInputChannelRecoveredFromANR(const sp<InputChannel>& inputChannel) = 0;
/* Gets the key repeat initial timeout or -1 if automatic key repeating is disabled. */
virtual nsecs_t getKeyRepeatTimeout() = 0;
/* Gets the key repeat inter-key delay. */
virtual nsecs_t getKeyRepeatDelay() = 0;
/* Gets the maximum suggested event delivery rate per second.
* This value is used to throttle motion event movement actions on a per-device
* basis. It is not intended to be a hard limit.
*/
virtual int32_t getMaxEventsPerSecond() = 0;
/* Allows the policy a chance to intercept a key before dispatching. */
virtual bool interceptKeyBeforeDispatching(const sp<InputChannel>& inputChannel,
const KeyEvent* keyEvent, uint32_t policyFlags) = 0;
/* Poke user activity for an event dispatched to a window. */
virtual void pokeUserActivity(nsecs_t eventTime, int32_t windowType, int32_t eventType) = 0;
/* Checks whether a given application pid/uid has permission to inject input events
* into other applications.
*
* This method is special in that its implementation promises to be non-reentrant and
* is safe to call while holding other locks. (Most other methods make no such guarantees!)
*/
virtual bool checkInjectEventsPermissionNonReentrant(
int32_t injectorPid, int32_t injectorUid) = 0;
};
/* Notifies the system about input events generated by the input reader.
* The dispatcher is expected to be mostly asynchronous. */
class InputDispatcherInterface : public virtual RefBase {
protected:
InputDispatcherInterface() { }
virtual ~InputDispatcherInterface() { }
public:
/* Dumps the state of the input dispatcher.
*
* This method may be called on any thread (usually by the input manager). */
virtual void dump(String8& dump) = 0;
/* Runs a single iteration of the dispatch loop.
* Nominally processes one queued event, a timeout, or a response from an input consumer.
*
* This method should only be called on the input dispatcher thread.
*/
virtual void dispatchOnce() = 0;
/* Notifies the dispatcher about new events.
*
* These methods should only be called on the input reader thread.
*/
virtual void notifyConfigurationChanged(nsecs_t eventTime) = 0;
virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
int32_t scanCode, int32_t metaState, nsecs_t downTime) = 0;
virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags,
int32_t metaState, int32_t edgeFlags,
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
float xPrecision, float yPrecision, nsecs_t downTime) = 0;
/* Injects an input event and optionally waits for sync.
* The synchronization mode determines whether the method blocks while waiting for
* input injection to proceed.
* Returns one of the INPUT_EVENT_INJECTION_XXX constants.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual int32_t injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) = 0;
/* Sets the list of input windows.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setInputWindows(const Vector<InputWindow>& inputWindows) = 0;
/* Sets the focused application.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setFocusedApplication(const InputApplication* inputApplication) = 0;
/* Sets the input dispatching mode.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;
/* Preempts input dispatch in progress by making pending synchronous
* dispatches asynchronous instead. This method is generally called during a focus
* transition from one application to the next so as to enable the new application
* to start receiving input as soon as possible without having to wait for the
* old application to finish up.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void preemptInputDispatch() = 0;
/* Registers or unregister input channels that may be used as targets for input events.
* If monitor is true, the channel will receive a copy of all input events.
*
* These methods may be called on any thread (usually by the input manager).
*/
virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) = 0;
virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
};
/* Dispatches events to input targets. Some functions of the input dispatcher, such as
* identifying input targets, are controlled by a separate policy object.
*
* IMPORTANT INVARIANT:
* Because the policy can potentially block or cause re-entrance into the input dispatcher,
* the input dispatcher never calls into the policy while holding its internal locks.
* The implementation is also carefully designed to recover from scenarios such as an
* input channel becoming unregistered while identifying input targets or processing timeouts.
*
* Methods marked 'Locked' must be called with the lock acquired.
*
* Methods marked 'LockedInterruptible' must be called with the lock acquired but
* may during the course of their execution release the lock, call into the policy, and
* then reacquire the lock. The caller is responsible for recovering gracefully.
*
* A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
*/
class InputDispatcher : public InputDispatcherInterface {
protected:
virtual ~InputDispatcher();
public:
explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);
virtual void dump(String8& dump);
virtual void dispatchOnce();
virtual void notifyConfigurationChanged(nsecs_t eventTime);
virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
int32_t scanCode, int32_t metaState, nsecs_t downTime);
virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags,
int32_t metaState, int32_t edgeFlags,
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
float xPrecision, float yPrecision, nsecs_t downTime);
virtual int32_t injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis);
virtual void setInputWindows(const Vector<InputWindow>& inputWindows);
virtual void setFocusedApplication(const InputApplication* inputApplication);
virtual void setInputDispatchMode(bool enabled, bool frozen);
virtual void preemptInputDispatch();
virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor);
virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);
private:
template <typename T>
struct Link {
T* next;
T* prev;
};
struct EventEntry : Link<EventEntry> {
enum {
TYPE_SENTINEL,
TYPE_CONFIGURATION_CHANGED,
TYPE_KEY,
TYPE_MOTION
};
int32_t refCount;
int32_t type;
nsecs_t eventTime;
int32_t injectionResult; // initially INPUT_EVENT_INJECTION_PENDING
bool injectionIsAsync; // set to true if injection is not waiting for the result
int32_t injectorPid; // -1 if not injected
int32_t injectorUid; // -1 if not injected
bool dispatchInProgress; // initially false, set to true while dispatching
int32_t pendingSyncDispatches; // the number of synchronous dispatches in progress
inline bool isInjected() { return injectorPid >= 0; }
void recycle();
};
struct ConfigurationChangedEntry : EventEntry {
};
struct KeyEntry : EventEntry {
int32_t deviceId;
int32_t source;
uint32_t policyFlags;
int32_t action;
int32_t flags;
int32_t keyCode;
int32_t scanCode;
int32_t metaState;
int32_t repeatCount;
nsecs_t downTime;
bool syntheticRepeat; // set to true for synthetic key repeats
enum InterceptKeyResult {
INTERCEPT_KEY_RESULT_UNKNOWN,
INTERCEPT_KEY_RESULT_SKIP,
INTERCEPT_KEY_RESULT_CONTINUE,
};
InterceptKeyResult interceptKeyResult; // set based on the interception result
void recycle();
};
struct MotionSample {
MotionSample* next;
nsecs_t eventTime;
PointerCoords pointerCoords[MAX_POINTERS];
};
struct MotionEntry : EventEntry {
int32_t deviceId;
int32_t source;
uint32_t policyFlags;
int32_t action;
int32_t flags;
int32_t metaState;
int32_t edgeFlags;
float xPrecision;
float yPrecision;
nsecs_t downTime;
uint32_t pointerCount;
int32_t pointerIds[MAX_POINTERS];
// Linked list of motion samples associated with this motion event.
MotionSample firstSample;
MotionSample* lastSample;
uint32_t countSamples() const;
};
// Tracks the progress of dispatching a particular event to a particular connection.
struct DispatchEntry : Link<DispatchEntry> {
EventEntry* eventEntry; // the event to dispatch
int32_t targetFlags;
float xOffset;
float yOffset;
nsecs_t timeout;
// True if dispatch has started.
bool inProgress;
// For motion events:
// Pointer to the first motion sample to dispatch in this cycle.
// Usually NULL to indicate that the list of motion samples begins at
// MotionEntry::firstSample. Otherwise, some samples were dispatched in a previous
// cycle and this pointer indicates the location of the first remainining sample
// to dispatch during the current cycle.
MotionSample* headMotionSample;
// Pointer to a motion sample to dispatch in the next cycle if the dispatcher was
// unable to send all motion samples during this cycle. On the next cycle,
// headMotionSample will be initialized to tailMotionSample and tailMotionSample
// will be set to NULL.
MotionSample* tailMotionSample;
inline bool isSyncTarget() const {
return targetFlags & InputTarget::FLAG_SYNC;
}
inline void preemptSyncTarget() {
targetFlags &= ~ InputTarget::FLAG_SYNC;
}
};
// A command entry captures state and behavior for an action to be performed in the
// dispatch loop after the initial processing has taken place. It is essentially
// a kind of continuation used to postpone sensitive policy interactions to a point
// in the dispatch loop where it is safe to release the lock (generally after finishing
// the critical parts of the dispatch cycle).
//
// The special thing about commands is that they can voluntarily release and reacquire
// the dispatcher lock at will. Initially when the command starts running, the
// dispatcher lock is held. However, if the command needs to call into the policy to
// do some work, it can release the lock, do the work, then reacquire the lock again
// before returning.
//
// This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
// never calls into the policy while holding its lock.
//
// Commands are implicitly 'LockedInterruptible'.
struct CommandEntry;
typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);
class Connection;
struct CommandEntry : Link<CommandEntry> {
CommandEntry();
~CommandEntry();
Command command;
// parameters for the command (usage varies by command)
sp<Connection> connection;
nsecs_t eventTime;
KeyEntry* keyEntry;
sp<InputChannel> inputChannel;
sp<InputApplicationHandle> inputApplicationHandle;
int32_t windowType;
int32_t userActivityEventType;
};
// Generic queue implementation.
template <typename T>
struct Queue {
T headSentinel;
T tailSentinel;
inline Queue() {
headSentinel.prev = NULL;
headSentinel.next = & tailSentinel;
tailSentinel.prev = & headSentinel;
tailSentinel.next = NULL;
}
inline bool isEmpty() const {
return headSentinel.next == & tailSentinel;
}
inline void enqueueAtTail(T* entry) {
T* last = tailSentinel.prev;
last->next = entry;
entry->prev = last;
entry->next = & tailSentinel;
tailSentinel.prev = entry;
}
inline void enqueueAtHead(T* entry) {
T* first = headSentinel.next;
headSentinel.next = entry;
entry->prev = & headSentinel;
entry->next = first;
first->prev = entry;
}
inline void dequeue(T* entry) {
entry->prev->next = entry->next;
entry->next->prev = entry->prev;
}
inline T* dequeueAtHead() {
T* first = headSentinel.next;
dequeue(first);
return first;
}
};
/* Allocates queue entries and performs reference counting as needed. */
class Allocator {
public:
Allocator();
ConfigurationChangedEntry* obtainConfigurationChangedEntry(nsecs_t eventTime);
KeyEntry* obtainKeyEntry(nsecs_t eventTime,
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action,
int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
int32_t repeatCount, nsecs_t downTime);
MotionEntry* obtainMotionEntry(nsecs_t eventTime,
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action,
int32_t flags, int32_t metaState, int32_t edgeFlags,
float xPrecision, float yPrecision,
nsecs_t downTime, uint32_t pointerCount,
const int32_t* pointerIds, const PointerCoords* pointerCoords);
DispatchEntry* obtainDispatchEntry(EventEntry* eventEntry,
int32_t targetFlags, float xOffset, float yOffset, nsecs_t timeout);
CommandEntry* obtainCommandEntry(Command command);
void releaseEventEntry(EventEntry* entry);
void releaseConfigurationChangedEntry(ConfigurationChangedEntry* entry);
void releaseKeyEntry(KeyEntry* entry);
void releaseMotionEntry(MotionEntry* entry);
void releaseDispatchEntry(DispatchEntry* entry);
void releaseCommandEntry(CommandEntry* entry);
void appendMotionSample(MotionEntry* motionEntry,
nsecs_t eventTime, const PointerCoords* pointerCoords);
private:
Pool<ConfigurationChangedEntry> mConfigurationChangeEntryPool;
Pool<KeyEntry> mKeyEntryPool;
Pool<MotionEntry> mMotionEntryPool;
Pool<MotionSample> mMotionSamplePool;
Pool<DispatchEntry> mDispatchEntryPool;
Pool<CommandEntry> mCommandEntryPool;
void initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime);
};
/* Tracks dispatched key and motion event state so that cancelation events can be
* synthesized when events are dropped. */
class InputState {
public:
// Specifies whether a given event will violate input state consistency.
enum Consistency {
// The event is consistent with the current input state.
CONSISTENT,
// The event is inconsistent with the current input state but applications
// will tolerate it. eg. Down followed by another down.
TOLERABLE,
// The event is inconsistent with the current input state and will probably
// cause applications to crash. eg. Up without prior down, move with
// unexpected number of pointers.
BROKEN
};
InputState();
~InputState();
// Returns true if there is no state to be canceled.
bool isNeutral() const;
// Returns true if the input state believes it is out of sync.
bool isOutOfSync() const;
// Sets the input state to be out of sync if it is not neutral.
void setOutOfSync();
// Resets the input state out of sync flag.
void resetOutOfSync();
// Records tracking information for an event that has just been published.
// Returns whether the event is consistent with the current input state.
Consistency trackEvent(const EventEntry* entry);
// Records tracking information for a key event that has just been published.
// Returns whether the event is consistent with the current input state.
Consistency trackKey(const KeyEntry* entry);
// Records tracking information for a motion event that has just been published.
// Returns whether the event is consistent with the current input state.
Consistency trackMotion(const MotionEntry* entry);
// Synthesizes cancelation events for the current state.
void synthesizeCancelationEvents(Allocator* allocator,
Vector<EventEntry*>& outEvents) const;
// Clears the current state.
void clear();
private:
bool mIsOutOfSync;
struct KeyMemento {
int32_t deviceId;
int32_t source;
int32_t keyCode;
int32_t scanCode;
nsecs_t downTime;
};
struct MotionMemento {
int32_t deviceId;
int32_t source;
float xPrecision;
float yPrecision;
nsecs_t downTime;
uint32_t pointerCount;
int32_t pointerIds[MAX_POINTERS];
PointerCoords pointerCoords[MAX_POINTERS];
void setPointers(const MotionEntry* entry);
};
Vector<KeyMemento> mKeyMementos;
Vector<MotionMemento> mMotionMementos;
};
/* Manages the dispatch state associated with a single input channel. */
class Connection : public RefBase {
protected:
virtual ~Connection();
public:
enum Status {
// Everything is peachy.
STATUS_NORMAL,
// An unrecoverable communication error has occurred.
STATUS_BROKEN,
// The client is not responding.
STATUS_NOT_RESPONDING,
// The input channel has been unregistered.
STATUS_ZOMBIE
};
Status status;
sp<InputChannel> inputChannel;
InputPublisher inputPublisher;
InputState inputState;
Queue<DispatchEntry> outboundQueue;
nsecs_t nextTimeoutTime; // next timeout time (LONG_LONG_MAX if none)
nsecs_t lastEventTime; // the time when the event was originally captured
nsecs_t lastDispatchTime; // the time when the last event was dispatched
nsecs_t lastANRTime; // the time when the last ANR was recorded
explicit Connection(const sp<InputChannel>& inputChannel);
inline const char* getInputChannelName() const { return inputChannel->getName().string(); }
const char* getStatusLabel() const;
// Finds a DispatchEntry in the outbound queue associated with the specified event.
// Returns NULL if not found.
DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const;
// Determine whether this connection has a pending synchronous dispatch target.
// Since there can only ever be at most one such target at a time, if there is one,
// it must be at the tail because nothing else can be enqueued after it.
inline bool hasPendingSyncTarget() const {
return ! outboundQueue.isEmpty() && outboundQueue.tailSentinel.prev->isSyncTarget();
}
// Assuming there is a pending sync target, make it async.
inline void preemptSyncTarget() {
outboundQueue.tailSentinel.prev->preemptSyncTarget();
}
// Gets the time since the current event was originally obtained from the input driver.
inline double getEventLatencyMillis(nsecs_t currentTime) const {
return (currentTime - lastEventTime) / 1000000.0;
}
// Gets the time since the current event entered the outbound dispatch queue.
inline double getDispatchLatencyMillis(nsecs_t currentTime) const {
return (currentTime - lastDispatchTime) / 1000000.0;
}
// Gets the time since the current event ANR was declared, if applicable.
inline double getANRLatencyMillis(nsecs_t currentTime) const {
return (currentTime - lastANRTime) / 1000000.0;
}
status_t initialize();
void setNextTimeoutTime(nsecs_t currentTime, nsecs_t timeout);
void resetTimeout(nsecs_t currentTime);
};
sp<InputDispatcherPolicyInterface> mPolicy;
Mutex mLock;
Allocator mAllocator;
sp<PollLoop> mPollLoop;
EventEntry* mPendingEvent;
Queue<EventEntry> mInboundQueue;
Queue<CommandEntry> mCommandQueue;
Vector<EventEntry*> mTempCancelationEvents;
void dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, nsecs_t keyRepeatDelay,
nsecs_t* nextWakeupTime);
// Enqueues an inbound event. Returns true if mPollLoop->wake() should be called.
bool enqueueInboundEventLocked(EventEntry* entry);
// App switch latency optimization.
nsecs_t mAppSwitchDueTime;
static bool isAppSwitchKey(int32_t keyCode);
bool isAppSwitchPendingLocked();
bool detectPendingAppSwitchLocked(KeyEntry* inboundKeyEntry);
void resetPendingAppSwitchLocked(bool handled);
// All registered connections mapped by receive pipe file descriptor.
KeyedVector<int, sp<Connection> > mConnectionsByReceiveFd;
ssize_t getConnectionIndex(const sp<InputChannel>& inputChannel);
// Active connections are connections that have a non-empty outbound queue.
// We don't use a ref-counted pointer here because we explicitly abort connections
// during unregistration which causes the connection's outbound queue to be cleared
// and the connection itself to be deactivated.
Vector<Connection*> mActiveConnections;
// List of connections that have timed out. Only used by dispatchOnce()
// We don't use a ref-counted pointer here because it is not possible for a connection
// to be unregistered while processing timed out connections since we hold the lock for
// the duration.
Vector<Connection*> mTimedOutConnections;
// Input channels that will receive a copy of all input events.
Vector<sp<InputChannel> > mMonitoringChannels;
// Preallocated key event object used for policy inquiries.
KeyEvent mReusableKeyEvent;
// Event injection and synchronization.
Condition mInjectionResultAvailableCondition;
EventEntry* createEntryFromInjectedInputEventLocked(const InputEvent* event);
void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);
Condition mInjectionSyncFinishedCondition;
void decrementPendingSyncDispatchesLocked(EventEntry* entry);
// Throttling state.
struct ThrottleState {
nsecs_t minTimeBetweenEvents;
nsecs_t lastEventTime;
int32_t lastDeviceId;
uint32_t lastSource;
uint32_t originalSampleCount; // only collected during debugging
} mThrottleState;
// Key repeat tracking.
struct KeyRepeatState {
KeyEntry* lastKeyEntry; // or null if no repeat
nsecs_t nextRepeatTime;
} mKeyRepeatState;
void resetKeyRepeatLocked();
KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime, nsecs_t keyRepeatTimeout);
// Deferred command processing.
bool runCommandsLockedInterruptible();
CommandEntry* postCommandLocked(Command command);
// Inbound event processing.
void drainInboundQueueLocked();
void releasePendingEventLocked(bool wasDropped);
void releaseInboundEventLocked(EventEntry* entry, bool wasDropped);
bool isEventFromReliableSourceLocked(EventEntry* entry);
// Dispatch state.
bool mDispatchEnabled;
bool mDispatchFrozen;
Vector<InputWindow> mWindows;
Vector<InputWindow*> mWallpaperWindows;
// Focus tracking for keys, trackball, etc.
InputWindow* mFocusedWindow;
// Focus tracking for touch.
bool mTouchDown;
InputWindow* mTouchedWindow; // primary target for current down
bool mTouchedWindowIsObscured; // true if other windows may obscure the target
Vector<InputWindow*> mTouchedWallpaperWindows; // wallpaper targets
struct OutsideTarget {
InputWindow* window;
bool obscured;
};
Vector<OutsideTarget> mTempTouchedOutsideTargets; // temporary outside touch targets
Vector<sp<InputChannel> > mTempTouchedWallpaperChannels; // temporary wallpaper targets
// Focused application.
InputApplication* mFocusedApplication;
InputApplication mFocusedApplicationStorage; // preallocated storage for mFocusedApplication
void releaseFocusedApplicationLocked();
// Dispatch inbound events.
bool dispatchConfigurationChangedLocked(
nsecs_t currentTime, ConfigurationChangedEntry* entry);
bool dispatchKeyLocked(
nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
nsecs_t* nextWakeupTime);
bool dispatchMotionLocked(
nsecs_t currentTime, MotionEntry* entry,
nsecs_t* nextWakeupTime);
void dispatchEventToCurrentInputTargetsLocked(
nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample);
void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);
// The input targets that were most recently identified for dispatch.
// If there is a synchronous event dispatch in progress, the current input targets will
// remain unchanged until the dispatch has completed or been aborted.
bool mCurrentInputTargetsValid; // false while targets are being recomputed
Vector<InputTarget> mCurrentInputTargets;
int32_t mCurrentInputWindowType;
sp<InputChannel> mCurrentInputChannel;
enum InputTargetWaitCause {
INPUT_TARGET_WAIT_CAUSE_NONE,
INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
};
InputTargetWaitCause mInputTargetWaitCause;
nsecs_t mInputTargetWaitStartTime;
nsecs_t mInputTargetWaitTimeoutTime;
bool mInputTargetWaitTimeoutExpired;
// Finding targets for input events.
void startFindingTargetsLocked();
void finishFindingTargetsLocked(const InputWindow* window);
int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
const InputApplication* application, const InputWindow* window,
nsecs_t* nextWakeupTime);
void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout);
nsecs_t getTimeSpentWaitingForApplicationWhileFindingTargetsLocked(nsecs_t currentTime);
void resetANRTimeoutsLocked();
int32_t findFocusedWindowLocked(nsecs_t currentTime, const EventEntry* entry,
nsecs_t* nextWakeupTime, InputWindow** outWindow);
int32_t findTouchedWindowLocked(nsecs_t currentTime, const MotionEntry* entry,
nsecs_t* nextWakeupTime, InputWindow** outWindow);
void addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
nsecs_t timeSpentWaitingForApplication);
void addMonitoringTargetsLocked();
void pokeUserActivityLocked(nsecs_t eventTime, int32_t windowType, int32_t eventType);
bool checkInjectionPermission(const InputWindow* window,
int32_t injectorPid, int32_t injectorUid);
bool isWindowObscuredLocked(const InputWindow* window);
void releaseTouchedWindowLocked();
// Manage the dispatch cycle for a single connection.
// These methods are deliberately not Interruptible because doing all of the work
// with the mutex held makes it easier to ensure that connection invariants are maintained.
// If needed, the methods post commands to run later once the critical bits are done.
void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
EventEntry* eventEntry, const InputTarget* inputTarget,
bool resumeWithAppendedMotionSample);
void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
nsecs_t timeSpentWaitingForApplication);
void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
void startNextDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
void timeoutDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
void resumeAfterTimeoutDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, nsecs_t newTimeout);
void abortDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
bool broken);
void drainOutboundQueueLocked(Connection* connection, DispatchEntry* firstDispatchEntryToDrain);
static bool handleReceiveCallback(int receiveFd, int events, void* data);
// Preempting input dispatch.
bool preemptInputDispatchInnerLocked();
// Dump state.
void dumpDispatchStateLocked(String8& dump);
void logDispatchStateLocked();
// Add or remove a connection to the mActiveConnections vector.
void activateConnectionLocked(Connection* connection);
void deactivateConnectionLocked(Connection* connection);
// Interesting events that we might like to log or tell the framework about.
void onDispatchCycleStartedLocked(
nsecs_t currentTime, const sp<Connection>& connection);
void onDispatchCycleFinishedLocked(
nsecs_t currentTime, const sp<Connection>& connection, bool recoveredFromANR);
void onDispatchCycleANRLocked(
nsecs_t currentTime, const sp<Connection>& connection);
void onDispatchCycleBrokenLocked(
nsecs_t currentTime, const sp<Connection>& connection);
// Outbound policy interactions.
void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
void doNotifyInputChannelANRLockedInterruptible(CommandEntry* commandEntry);
void doNotifyInputChannelRecoveredFromANRLockedInterruptible(CommandEntry* commandEntry);
void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
void doTargetsNotReadyTimeoutLockedInterruptible(CommandEntry* commandEntry);
};
/* Enqueues and dispatches input events, endlessly. */
class InputDispatcherThread : public Thread {
public:
explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
~InputDispatcherThread();
private:
virtual bool threadLoop();
sp<InputDispatcherInterface> mDispatcher;
};
} // namespace android
#endif // _UI_INPUT_DISPATCHER_H