replicant-frameworks_native/opengl/libagl/copybit.cpp
2009-10-29 16:45:41 -07:00

601 lines
21 KiB
C++

/*
**
** Copyright 2009, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <stdlib.h>
#include <stdio.h>
#include "context.h"
#include "fp.h"
#include "state.h"
#include "matrix.h"
#include "vertex.h"
#include "light.h"
#include "primitives.h"
#include "texture.h"
#include "BufferObjectManager.h"
#include "TextureObjectManager.h"
#include <hardware/gralloc.h>
#include <hardware/copybit.h>
#include <private/ui/android_natives_priv.h>
#include <ui/GraphicBuffer.h>
#include <ui/Region.h>
#include <ui/Rect.h>
#define DEBUG_COPYBIT true
// ----------------------------------------------------------------------------
namespace android {
static void textureToCopyBitImage(
const GGLSurface* surface, int32_t opFormat,
buffer_handle_t buffer, copybit_image_t* img)
{
img->w = surface->stride;
img->h = surface->height;
img->format = opFormat;
img->base = surface->data;
img->handle = (native_handle_t *)buffer;
}
struct clipRectRegion : public copybit_region_t {
clipRectRegion(ogles_context_t* c)
{
scissor_t const* scissor = &c->rasterizer.state.scissor;
r.l = scissor->left;
r.t = scissor->top;
r.r = scissor->right;
r.b = scissor->bottom;
next = iterate;
}
private:
static int iterate(copybit_region_t const * self, copybit_rect_t* rect) {
*rect = static_cast<clipRectRegion const*>(self)->r;
const_cast<copybit_region_t *>(self)->next = iterate_done;
return 1;
}
static int iterate_done(copybit_region_t const *, copybit_rect_t*) {
return 0;
}
public:
copybit_rect_t r;
};
static bool supportedCopybitsFormat(int format) {
switch (format) {
case COPYBIT_FORMAT_RGBA_8888:
case COPYBIT_FORMAT_RGBX_8888:
case COPYBIT_FORMAT_RGB_888:
case COPYBIT_FORMAT_RGB_565:
case COPYBIT_FORMAT_BGRA_8888:
case COPYBIT_FORMAT_RGBA_5551:
case COPYBIT_FORMAT_RGBA_4444:
case COPYBIT_FORMAT_YCbCr_422_SP:
case COPYBIT_FORMAT_YCbCr_420_SP:
return true;
default:
return false;
}
}
static bool hasAlpha(int format) {
switch (format) {
case COPYBIT_FORMAT_RGBA_8888:
case COPYBIT_FORMAT_BGRA_8888:
case COPYBIT_FORMAT_RGBA_5551:
case COPYBIT_FORMAT_RGBA_4444:
return true;
default:
return false;
}
}
static inline int fixedToByte(GGLfixed val) {
return (val - (val >> 8)) >> 8;
}
/**
* Performs a quick check of the rendering state. If this function returns
* false we cannot use the copybit driver.
*/
static bool checkContext(ogles_context_t* c) {
// By convention copybitQuickCheckContext() has already returned true.
// avoid checking the same information again.
if (c->copybits.blitEngine == NULL) {
LOGD_IF(DEBUG_COPYBIT, "no copybit hal");
return false;
}
if (c->rasterizer.state.enables
& (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_FOG)) {
LOGD_IF(DEBUG_COPYBIT, "depth test and/or fog");
return false;
}
// Note: The drawSurfaceBuffer is only set for destination
// surfaces types that are supported by the hardware and
// do not have an alpha channel. So we don't have to re-check that here.
static const int tmu = 0;
texture_unit_t& u(c->textures.tmu[tmu]);
EGLTextureObject* textureObject = u.texture;
if (!supportedCopybitsFormat(textureObject->surface.format)) {
LOGD_IF(DEBUG_COPYBIT, "texture format not supported");
return false;
}
return true;
}
static bool copybit(GLint x, GLint y,
GLint w, GLint h,
EGLTextureObject* textureObject,
const GLint* crop_rect,
int transform,
ogles_context_t* c)
{
status_t err = NO_ERROR;
// We assume checkContext has already been called and has already
// returned true.
const GGLSurface& cbSurface = c->rasterizer.state.buffers.color.s;
y = cbSurface.height - (y + h);
const GLint Ucr = crop_rect[0];
const GLint Vcr = crop_rect[1];
const GLint Wcr = crop_rect[2];
const GLint Hcr = crop_rect[3];
GLint screen_w = w;
GLint screen_h = h;
int32_t dsdx = Wcr << 16; // dsdx = ((Wcr/screen_w)/Wt)*Wt
int32_t dtdy = Hcr << 16; // dtdy = -((Hcr/screen_h)/Ht)*Ht
if (transform & COPYBIT_TRANSFORM_ROT_90) {
swap(screen_w, screen_h);
}
if (dsdx!=screen_w || dtdy!=screen_h) {
// in most cases the divide is not needed
dsdx /= screen_w;
dtdy /= screen_h;
}
dtdy = -dtdy; // see equation of dtdy above
// copybit doesn't say anything about filtering, so we can't
// discriminate. On msm7k, copybit will always filter.
// the code below handles min/mag filters, we keep it as a reference.
#ifdef MIN_MAG_FILTER
int32_t texelArea = gglMulx(dtdy, dsdx);
if (texelArea < FIXED_ONE && textureObject->mag_filter != GL_LINEAR) {
// Non-linear filtering on a texture enlargement.
LOGD_IF(DEBUG_COPYBIT, "mag filter is not GL_LINEAR");
return false;
}
if (texelArea > FIXED_ONE && textureObject->min_filter != GL_LINEAR) {
// Non-linear filtering on an texture shrink.
LOGD_IF(DEBUG_COPYBIT, "min filter is not GL_LINEAR");
return false;
}
#endif
const uint32_t enables = c->rasterizer.state.enables;
int planeAlpha = 255;
bool alphaPlaneWorkaround = false;
static const int tmu = 0;
texture_t& tev(c->rasterizer.state.texture[tmu]);
int32_t opFormat = textureObject->surface.format;
const bool srcTextureHasAlpha = hasAlpha(opFormat);
if (!srcTextureHasAlpha) {
planeAlpha = fixedToByte(c->currentColorClamped.a);
}
const bool cbHasAlpha = hasAlpha(cbSurface.format);
bool blending = false;
if ((enables & GGL_ENABLE_BLENDING)
&& !(c->rasterizer.state.blend.src == GL_ONE
&& c->rasterizer.state.blend.dst == GL_ZERO)) {
// Blending is OK if it is
// the exact kind of blending that the copybits hardware supports.
// Note: The hardware only supports
// GL_SRC_ALPHA / GL_ONE_MINUS_SRC_ALPHA,
// But the surface flinger uses GL_ONE / GL_ONE_MINUS_SRC_ALPHA.
// We substitute GL_SRC_ALPHA / GL_ONE_MINUS_SRC_ALPHA in that case,
// because the performance is worth it, even if the results are
// not correct.
if (!((c->rasterizer.state.blend.src == GL_SRC_ALPHA
|| c->rasterizer.state.blend.src == GL_ONE)
&& c->rasterizer.state.blend.dst == GL_ONE_MINUS_SRC_ALPHA
&& c->rasterizer.state.blend.alpha_separate == 0)) {
// Incompatible blend mode.
LOGD_IF(DEBUG_COPYBIT, "incompatible blend mode");
return false;
}
blending = true;
} else {
if (cbHasAlpha) {
// NOTE: the result will be slightly wrong in this case because
// the destination alpha channel will be set to 1.0 instead of
// the iterated alpha value. *shrug*.
}
// disable plane blending and src blending for supported formats
planeAlpha = 255;
if (opFormat == COPYBIT_FORMAT_RGBA_8888) {
opFormat = COPYBIT_FORMAT_RGBX_8888;
} else {
if (srcTextureHasAlpha) {
LOGD_IF(DEBUG_COPYBIT, "texture format requires blending");
return false;
}
}
}
switch (tev.env) {
case GGL_REPLACE:
break;
case GGL_MODULATE:
// only cases allowed is:
// RGB source, color={1,1,1,a} -> can be done with GL_REPLACE
// RGBA source, color={1,1,1,1} -> can be done with GL_REPLACE
if (blending) {
if (c->currentColorClamped.r == c->currentColorClamped.a &&
c->currentColorClamped.g == c->currentColorClamped.a &&
c->currentColorClamped.b == c->currentColorClamped.a) {
// TODO: RGBA source, color={1,1,1,a} / regular-blending
// is equivalent
alphaPlaneWorkaround = true;
break;
}
}
LOGD_IF(DEBUG_COPYBIT, "GGL_MODULATE");
return false;
default:
// Incompatible texture environment.
LOGD_IF(DEBUG_COPYBIT, "incompatible texture environment");
return false;
}
copybit_device_t* copybit = c->copybits.blitEngine;
copybit_image_t src;
buffer_handle_t source_hnd = textureObject->buffer->handle;
textureToCopyBitImage(&textureObject->surface, opFormat, source_hnd, &src);
copybit_rect_t srect = { Ucr, Vcr + Hcr, Ucr + Wcr, Vcr };
/*
* Below we perform extra passes needed to emulate things the h/w
* cannot do.
*/
const GLfixed minScaleInv = gglDivQ(0x10000, c->copybits.minScale, 16);
const GLfixed maxScaleInv = gglDivQ(0x10000, c->copybits.maxScale, 16);
sp<GraphicBuffer> tempBitmap;
if (dsdx < maxScaleInv || dsdx > minScaleInv ||
dtdy < maxScaleInv || dtdy > minScaleInv)
{
// The requested scale is out of the range the hardware
// can support.
LOGD_IF(DEBUG_COPYBIT,
"scale out of range dsdx=%08x (Wcr=%d / w=%d), "
"dtdy=%08x (Hcr=%d / h=%d), Ucr=%d, Vcr=%d",
dsdx, Wcr, w, dtdy, Hcr, h, Ucr, Vcr);
int32_t xscale=0x10000, yscale=0x10000;
if (dsdx > minScaleInv) xscale = c->copybits.minScale;
else if (dsdx < maxScaleInv) xscale = c->copybits.maxScale;
if (dtdy > minScaleInv) yscale = c->copybits.minScale;
else if (dtdy < maxScaleInv) yscale = c->copybits.maxScale;
dsdx = gglMulx(dsdx, xscale);
dtdy = gglMulx(dtdy, yscale);
/* we handle only one step of resizing below. Handling an arbitrary
* number is relatively easy (replace "if" above by "while"), but requires
* two intermediate buffers and so far we never had the need.
*/
if (dsdx < maxScaleInv || dsdx > minScaleInv ||
dtdy < maxScaleInv || dtdy > minScaleInv) {
LOGD_IF(DEBUG_COPYBIT,
"scale out of range dsdx=%08x (Wcr=%d / w=%d), "
"dtdy=%08x (Hcr=%d / h=%d), Ucr=%d, Vcr=%d",
dsdx, Wcr, w, dtdy, Hcr, h, Ucr, Vcr);
return false;
}
const int tmp_w = gglMulx(srect.r - srect.l, xscale, 16);
const int tmp_h = gglMulx(srect.b - srect.t, yscale, 16);
LOGD_IF(DEBUG_COPYBIT,
"xscale=%08x, yscale=%08x, dsdx=%08x, dtdy=%08x, tmp_w=%d, tmp_h=%d",
xscale, yscale, dsdx, dtdy, tmp_w, tmp_h);
tempBitmap = new GraphicBuffer(
tmp_w, tmp_h, src.format,
GraphicBuffer::USAGE_HW_2D);
err = tempBitmap->initCheck();
if (err == NO_ERROR) {
copybit_image_t tmp_dst;
copybit_rect_t tmp_rect;
tmp_dst.w = tmp_w;
tmp_dst.h = tmp_h;
tmp_dst.format = tempBitmap->format;
tmp_dst.handle = (native_handle_t*)tempBitmap->getNativeBuffer()->handle;
tmp_rect.l = 0;
tmp_rect.t = 0;
tmp_rect.r = tmp_dst.w;
tmp_rect.b = tmp_dst.h;
region_iterator tmp_it(Region(Rect(tmp_rect.r, tmp_rect.b)));
copybit->set_parameter(copybit, COPYBIT_TRANSFORM, 0);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, 0xFF);
copybit->set_parameter(copybit, COPYBIT_DITHER, COPYBIT_DISABLE);
err = copybit->stretch(copybit,
&tmp_dst, &src, &tmp_rect, &srect, &tmp_it);
src = tmp_dst;
srect = tmp_rect;
}
}
copybit_image_t dst;
buffer_handle_t target_hnd = c->copybits.drawSurfaceBuffer;
textureToCopyBitImage(&cbSurface, cbSurface.format, target_hnd, &dst);
copybit_rect_t drect = {x, y, x+w, y+h};
/* and now the alpha-plane hack. This handles the "Fade" case of a
* texture with an alpha channel.
*/
if (alphaPlaneWorkaround) {
sp<GraphicBuffer> tempCb = new GraphicBuffer(
w, h, COPYBIT_FORMAT_RGB_565,
GraphicBuffer::USAGE_HW_2D);
err = tempCb->initCheck();
copybit_image_t tmpCbImg;
copybit_rect_t tmpCbRect;
tmpCbImg.w = w;
tmpCbImg.h = h;
tmpCbImg.format = tempCb->format;
tmpCbImg.handle = (native_handle_t*)tempCb->getNativeBuffer()->handle;
tmpCbRect.l = 0;
tmpCbRect.t = 0;
tmpCbRect.r = w;
tmpCbRect.b = h;
if (!err) {
// first make a copy of the destination buffer
region_iterator tmp_it(Region(Rect(w, h)));
copybit->set_parameter(copybit, COPYBIT_TRANSFORM, 0);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, 0xFF);
copybit->set_parameter(copybit, COPYBIT_DITHER, COPYBIT_DISABLE);
err = copybit->stretch(copybit,
&tmpCbImg, &dst, &tmpCbRect, &drect, &tmp_it);
}
if (!err) {
// then proceed as usual, but without the alpha plane
copybit->set_parameter(copybit, COPYBIT_TRANSFORM, transform);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, 0xFF);
copybit->set_parameter(copybit, COPYBIT_DITHER,
(enables & GGL_ENABLE_DITHER) ?
COPYBIT_ENABLE : COPYBIT_DISABLE);
clipRectRegion it(c);
err = copybit->stretch(copybit, &dst, &src, &drect, &srect, &it);
}
if (!err) {
// finally copy back the destination on top with 1-alphaplane
int invPlaneAlpha = 0xFF - fixedToByte(c->currentColorClamped.a);
clipRectRegion it(c);
copybit->set_parameter(copybit, COPYBIT_TRANSFORM, 0);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, invPlaneAlpha);
copybit->set_parameter(copybit, COPYBIT_DITHER, COPYBIT_ENABLE);
err = copybit->stretch(copybit,
&dst, &tmpCbImg, &drect, &tmpCbRect, &it);
}
} else {
copybit->set_parameter(copybit, COPYBIT_TRANSFORM, transform);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, planeAlpha);
copybit->set_parameter(copybit, COPYBIT_DITHER,
(enables & GGL_ENABLE_DITHER) ?
COPYBIT_ENABLE : COPYBIT_DISABLE);
clipRectRegion it(c);
LOGD("dst={%d, %d, %d, %p, %p}, "
"src={%d, %d, %d, %p, %p}, "
"drect={%d,%d,%d,%d}, "
"srect={%d,%d,%d,%d}, "
"it={%d,%d,%d,%d}, " ,
dst.w, dst.h, dst.format, dst.base, dst.handle,
src.w, src.h, src.format, src.base, src.handle,
drect.l, drect.t, drect.r, drect.b,
srect.l, srect.t, srect.r, srect.b,
it.r.l, it.r.t, it.r.r, it.r.b
);
err = copybit->stretch(copybit, &dst, &src, &drect, &srect, &it);
}
if (err != NO_ERROR) {
c->textures.tmu[0].texture->try_copybit = false;
}
return err == NO_ERROR ? true : false;
}
/*
* Try to draw a triangle fan with copybit, return false if we fail.
*/
bool drawTriangleFanWithCopybit_impl(ogles_context_t* c, GLint first, GLsizei count)
{
if (!checkContext(c)) {
return false;
}
// FIXME: we should handle culling here
c->arrays.compileElements(c, c->vc.vBuffer, 0, 4);
// we detect if we're dealing with a rectangle, by comparing the
// rectangles {v0,v2} and {v1,v3} which should be identical.
// NOTE: we should check that the rectangle is window aligned, however
// if we do that, the optimization won't be taken in a lot of cases.
// Since this code is intended to be used with SurfaceFlinger only,
// so it's okay...
const vec4_t& v0 = c->vc.vBuffer[0].window;
const vec4_t& v1 = c->vc.vBuffer[1].window;
const vec4_t& v2 = c->vc.vBuffer[2].window;
const vec4_t& v3 = c->vc.vBuffer[3].window;
int l = min(v0.x, v2.x);
int b = min(v0.y, v2.y);
int r = max(v0.x, v2.x);
int t = max(v0.y, v2.y);
if ((l != min(v1.x, v3.x)) || (b != min(v1.y, v3.y)) ||
(r != max(v1.x, v3.x)) || (t != max(v1.y, v3.y))) {
LOGD_IF(DEBUG_COPYBIT, "geometry not a rectangle");
return false;
}
// fetch and transform texture coordinates
// NOTE: maybe it would be better to have a "compileElementsAll" method
// that would ensure all vertex data are fetched and transformed
const transform_t& tr = c->transforms.texture[0].transform;
for (size_t i=0 ; i<4 ; i++) {
const GLubyte* tp = c->arrays.texture[0].element(i);
vertex_t* const v = &c->vc.vBuffer[i];
c->arrays.texture[0].fetch(c, v->texture[0].v, tp);
// FIXME: we should bail if q!=1
c->arrays.tex_transform[0](&tr, &v->texture[0], &v->texture[0]);
}
const vec4_t& t0 = c->vc.vBuffer[0].texture[0];
const vec4_t& t1 = c->vc.vBuffer[1].texture[0];
const vec4_t& t2 = c->vc.vBuffer[2].texture[0];
const vec4_t& t3 = c->vc.vBuffer[3].texture[0];
int txl = min(t0.x, t2.x);
int txb = min(t0.y, t2.y);
int txr = max(t0.x, t2.x);
int txt = max(t0.y, t2.y);
if ((txl != min(t1.x, t3.x)) || (txb != min(t1.y, t3.y)) ||
(txr != max(t1.x, t3.x)) || (txt != max(t1.y, t3.y))) {
LOGD_IF(DEBUG_COPYBIT, "texcoord not a rectangle");
return false;
}
if ((txl != 0) || (txb != 0) ||
(txr != FIXED_ONE) || (txt != FIXED_ONE)) {
// we could probably handle this case, if we wanted to
LOGD_IF(DEBUG_COPYBIT, "texture is cropped: %08x,%08x,%08x,%08x",
txl, txb, txr, txt);
return false;
}
// at this point, we know we are dealing with a rectangle, so we
// only need to consider 3 vertices for computing the jacobians
const int dx01 = v1.x - v0.x;
const int dx02 = v2.x - v0.x;
const int dy01 = v1.y - v0.y;
const int dy02 = v2.y - v0.y;
const int ds01 = t1.S - t0.S;
const int ds02 = t2.S - t0.S;
const int dt01 = t1.T - t0.T;
const int dt02 = t2.T - t0.T;
const int area = dx01*dy02 - dy01*dx02;
int dsdx, dsdy, dtdx, dtdy;
if (area >= 0) {
dsdx = ds01*dy02 - ds02*dy01;
dtdx = dt01*dy02 - dt02*dy01;
dsdy = ds02*dx01 - ds01*dx02;
dtdy = dt02*dx01 - dt01*dx02;
} else {
dsdx = ds02*dy01 - ds01*dy02;
dtdx = dt02*dy01 - dt01*dy02;
dsdy = ds01*dx02 - ds02*dx01;
dtdy = dt01*dx02 - dt02*dx01;
}
// here we rely on the fact that we know the transform is
// a rigid-body transform AND that it can only rotate in 90 degrees
// increments
int transform = 0;
if (dsdx == 0) {
// 90 deg rotation case
// [ 0 dtdx ]
// [ dsdx 0 ]
transform |= COPYBIT_TRANSFORM_ROT_90;
// FIXME: not sure if FLIP_H and FLIP_V shouldn't be inverted
if (dtdx > 0)
transform |= COPYBIT_TRANSFORM_FLIP_H;
if (dsdy < 0)
transform |= COPYBIT_TRANSFORM_FLIP_V;
} else {
// [ dsdx 0 ]
// [ 0 dtdy ]
if (dsdx < 0)
transform |= COPYBIT_TRANSFORM_FLIP_H;
if (dtdy < 0)
transform |= COPYBIT_TRANSFORM_FLIP_V;
}
//LOGD("l=%d, b=%d, w=%d, h=%d, tr=%d", x, y, w, h, transform);
//LOGD("A=%f\tB=%f\nC=%f\tD=%f",
// dsdx/65536.0, dtdx/65536.0, dsdy/65536.0, dtdy/65536.0);
int x = l >> 4;
int y = b >> 4;
int w = (r-l) >> 4;
int h = (t-b) >> 4;
texture_unit_t& u(c->textures.tmu[0]);
EGLTextureObject* textureObject = u.texture;
GLint tWidth = textureObject->surface.width;
GLint tHeight = textureObject->surface.height;
GLint crop_rect[4] = {0, tHeight, tWidth, -tHeight};
const GGLSurface& cbSurface = c->rasterizer.state.buffers.color.s;
y = cbSurface.height - (y + h);
return copybit(x, y, w, h, textureObject, crop_rect, transform, c);
}
/*
* Try to drawTexiOESWithCopybit, return false if we fail.
*/
bool drawTexiOESWithCopybit_impl(GLint x, GLint y, GLint z,
GLint w, GLint h, ogles_context_t* c)
{
// quickly process empty rects
if ((w|h) <= 0) {
return true;
}
if (!checkContext(c)) {
return false;
}
texture_unit_t& u(c->textures.tmu[0]);
EGLTextureObject* textureObject = u.texture;
return copybit(x, y, w, h, textureObject, textureObject->crop_rect, 0, c);
}
} // namespace android