replicant-frameworks_native/opengl/libagl/copybit.cpp

378 lines
11 KiB
C++

/*
**
** Copyright 2009, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <stdlib.h>
#include <stdio.h>
#include "context.h"
#include "fp.h"
#include "state.h"
#include "matrix.h"
#include "vertex.h"
#include "light.h"
#include "primitives.h"
#include "texture.h"
#include "BufferObjectManager.h"
#include "TextureObjectManager.h"
#include <hardware/gralloc.h>
#include <hardware/copybit.h>
#include <private/ui/android_natives_priv.h>
#include "gralloc_priv.h"
// ----------------------------------------------------------------------------
namespace android {
static void textureToCopyBitImage(
const GGLSurface* surface, buffer_handle_t buffer, copybit_image_t* img)
{
// we know private_handle_t is good here
private_handle_t* hnd = (private_handle_t*)buffer;
img->w = surface->stride;
img->h = surface->height;
img->format = surface->format;
img->offset = hnd->offset;
img->base = surface->data;
img->fd = hnd->fd;
}
struct clipRectRegion : public copybit_region_t {
clipRectRegion(ogles_context_t* c) {
next = iterate;
int x = c->viewport.scissor.x;
int y = c->viewport.scissor.y;
r.l = x;
r.t = y;
r.r = x + c->viewport.scissor.w;
r.b = y + c->viewport.scissor.h;
firstTime = true;
}
private:
static int iterate(copybit_region_t const * self, copybit_rect_t* rect) {
clipRectRegion* myself = (clipRectRegion*) self;
if (myself->firstTime) {
myself->firstTime = false;
*rect = myself->r;
return 1;
}
return 0;
}
mutable copybit_rect_t r;
mutable bool firstTime;
};
static bool supportedCopybitsFormat(int format) {
switch (format) {
case COPYBIT_FORMAT_RGBA_8888:
case COPYBIT_FORMAT_RGB_565:
case COPYBIT_FORMAT_BGRA_8888:
case COPYBIT_FORMAT_RGBA_5551:
case COPYBIT_FORMAT_RGBA_4444:
case COPYBIT_FORMAT_YCbCr_422_SP:
case COPYBIT_FORMAT_YCbCr_420_SP:
return true;
default:
return false;
}
}
static bool hasAlpha(int format) {
switch (format) {
case COPYBIT_FORMAT_RGBA_8888:
case COPYBIT_FORMAT_BGRA_8888:
case COPYBIT_FORMAT_RGBA_5551:
case COPYBIT_FORMAT_RGBA_4444:
return true;
default:
return false;
}
}
static inline int fixedToByte(GGLfixed val) {
return (val - (val >> 8)) >> 8;
}
/**
* Performs a quick check of the rendering state. If this function returns
* false we cannot use the copybit driver.
*/
static bool checkContext(ogles_context_t* c) {
// By convention copybitQuickCheckContext() has already returned true.
// avoid checking the same information again.
if (c->copybits.blitEngine == NULL
|| (c->rasterizer.state.enables
& (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_FOG)) != 0) {
return false;
}
// Note: The drawSurfaceBuffer is only set for destination
// surfaces types that are supported by the hardware and
// do not have an alpha channel. So we don't have to re-check that here.
static const int tmu = 0;
texture_unit_t& u(c->textures.tmu[tmu]);
EGLTextureObject* textureObject = u.texture;
if (!supportedCopybitsFormat(textureObject->surface.format)) {
return false;
}
return true;
}
static bool copybit(GLint x, GLint y,
GLint w, GLint h,
EGLTextureObject* textureObject,
const GLint* crop_rect,
int transform,
ogles_context_t* c)
{
// We assume checkContext has already been called and has already
// returned true.
const GGLSurface& cbSurface = c->rasterizer.state.buffers.color.s;
y = cbSurface.height - (y + h);
const GLint Ucr = crop_rect[0];
const GLint Vcr = crop_rect[1];
const GLint Wcr = crop_rect[2];
const GLint Hcr = crop_rect[3];
int32_t dsdx = (Wcr << 16) / w; // dsdx = ((Wcr/w)/Wt)*Wt
int32_t dtdy = ((-Hcr) << 16) / h; // dtdy = -((Hcr/h)/Ht)*Ht
if (dsdx < c->copybits.minScale || dsdx > c->copybits.maxScale
|| dtdy < c->copybits.minScale || dtdy > c->copybits.maxScale) {
// The requested scale is out of the range the hardware
// can support.
return false;
}
int32_t texelArea = gglMulx(dtdy, dsdx);
if (texelArea < FIXED_ONE && textureObject->mag_filter != GL_LINEAR) {
// Non-linear filtering on a texture enlargement.
return false;
}
if (texelArea > FIXED_ONE && textureObject->min_filter != GL_LINEAR) {
// Non-linear filtering on an texture shrink.
return false;
}
const uint32_t enables = c->rasterizer.state.enables;
int planeAlpha = 255;
static const int tmu = 0;
texture_t& tev(c->rasterizer.state.texture[tmu]);
bool srcTextureHasAlpha = hasAlpha(textureObject->surface.format);
switch (tev.env) {
case GGL_REPLACE:
if (!srcTextureHasAlpha) {
planeAlpha = fixedToByte(c->currentColorClamped.a);
}
break;
case GGL_MODULATE:
if (! (c->currentColorClamped.r == FIXED_ONE
&& c->currentColorClamped.g == FIXED_ONE
&& c->currentColorClamped.b == FIXED_ONE)) {
return false;
}
planeAlpha = fixedToByte(c->currentColorClamped.a);
break;
default:
// Incompatible texture environment.
return false;
}
bool blending = false;
if ((enables & GGL_ENABLE_BLENDING)
&& !(c->rasterizer.state.blend.src == GL_ONE
&& c->rasterizer.state.blend.dst == GL_ZERO)) {
// Blending is OK if it is
// the exact kind of blending that the copybits hardware supports.
// Note: The hardware only supports
// GL_SRC_ALPHA / GL_ONE_MINUS_SRC_ALPHA,
// But the surface flinger uses GL_ONE / GL_ONE_MINUS_SRC_ALPHA.
// We substitute GL_SRC_ALPHA / GL_ONE_MINUS_SRC_ALPHA in that case,
// because the performance is worth it, even if the results are
// not correct.
if (!((c->rasterizer.state.blend.src == GL_SRC_ALPHA
|| c->rasterizer.state.blend.src == GL_ONE)
&& c->rasterizer.state.blend.dst == GL_ONE_MINUS_SRC_ALPHA
&& c->rasterizer.state.blend.alpha_separate == 0)) {
// Incompatible blend mode.
return false;
}
blending = true;
} else {
// No blending is OK if we are not using alpha.
if (srcTextureHasAlpha || planeAlpha != 255) {
// Incompatible alpha
return false;
}
}
if (srcTextureHasAlpha && planeAlpha != 255) {
// Can't do two types of alpha at once.
return false;
}
// LOGW("calling copybits");
copybit_device_t* copybit = c->copybits.blitEngine;
copybit_image_t dst;
buffer_handle_t target_hnd = c->copybits.drawSurfaceBuffer;
textureToCopyBitImage(&cbSurface, target_hnd, &dst);
copybit_rect_t drect = {x, y, x+w, y+h};
// we know private_handle_t is good here
copybit_image_t src;
buffer_handle_t source_hnd = textureObject->buffer->handle;
textureToCopyBitImage(&textureObject->surface, source_hnd, &src);
copybit_rect_t srect = { Ucr, Vcr + Hcr, Ucr + Wcr, Vcr };
copybit->set_parameter(copybit, COPYBIT_TRANSFORM, transform);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, planeAlpha);
copybit->set_parameter(copybit, COPYBIT_DITHER,
(enables & GGL_ENABLE_DITHER) ? COPYBIT_ENABLE : COPYBIT_DISABLE);
clipRectRegion it(c);
copybit->stretch(copybit, &dst, &src, &drect, &srect, &it);
return true;
}
/*
* Try to draw a triangle fan with copybit, return false if we fail.
*/
bool drawTrangleFanWithCopybit_impl(ogles_context_t* c, GLint first, GLsizei count) {
if (! checkContext(c)) {
return false;
}
c->arrays.compileElements(c, c->vc.vBuffer, 0, 4);
// Is the result a screen aligned rectangle?
int sx[4];
int sy[4];
for (int i = 0; i < 4; i++) {
GLfixed x = c->vc.vBuffer[i].window.x;
GLfixed y = c->vc.vBuffer[i].window.y;
if (x < 0 || y < 0 || (x & 0xf) != 0 || (y & 0xf) != 0) {
return false;
}
sx[i] = x >> 4;
sy[i] = y >> 4;
}
/*
* This is the pattern we're looking for:
* (2)--(3)
* |\ |
* | \ |
* | \ |
* | \|
* (1)--(0)
*
*/
int dx[4];
int dy[4];
for (int i = 0; i < 4; i++) {
int i1 = (i + 1) & 3;
dx[i] = sx[i] - sx[i1];
dy[i] = sy[i] - sy[i1];
}
if (dx[1] | dx[3] | dy[0] | dy[2]) {
return false;
}
if (dx[0] != -dx[2] || dy[1] != -dy[3]) {
return false;
}
int x = sx[1];
int y = sy[1];
int w = dx[0];
int h = dy[3];
// We expect the texture coordinates to always be the unit square:
static const GLfixed kExpectedUV[8] = {
0, 0,
0, FIXED_ONE,
FIXED_ONE, FIXED_ONE,
FIXED_ONE, 0
};
{
const GLfixed* pExpected = &kExpectedUV[0];
for (int i = 0; i < 4; i++) {
GLfixed u = c->vc.vBuffer[i].texture[0].x;
GLfixed v = c->vc.vBuffer[i].texture[0].y;
if (u != *pExpected++ || v != *pExpected++) {
return false;
}
}
}
static const int tmu = 0;
texture_unit_t& u(c->textures.tmu[tmu]);
EGLTextureObject* textureObject = u.texture;
GLint tWidth = textureObject->surface.width;
GLint tHeight = textureObject->surface.height;
GLint crop_rect[4] = {0, tHeight, tWidth, -tHeight};
const GGLSurface& cbSurface = c->rasterizer.state.buffers.color.s;
y = cbSurface.height - (y + h);
return copybit(x, y, w, h, textureObject, crop_rect,
COPYBIT_TRANSFORM_ROT_90, c);
}
/*
* Try to drawTexiOESWithCopybit, return false if we fail.
*/
bool drawTexiOESWithCopybit_impl(GLint x, GLint y, GLint z,
GLint w, GLint h, ogles_context_t* c)
{
// quickly process empty rects
if ((w|h) <= 0) {
return true;
}
if (! checkContext(c)) {
return false;
}
static const int tmu = 0;
texture_unit_t& u(c->textures.tmu[tmu]);
EGLTextureObject* textureObject = u.texture;
return copybit(x, y, w, h, textureObject, textureObject->crop_rect,
0, c);
}
} // namespace android