replicant-frameworks_native/libs/ui/EventHub.cpp
Jeff Brown 5c1ed84a2d Add support for new input sources.
Added several new coordinate values to MotionEvents to capture
touch major/minor area, tool major/minor area and orientation.

Renamed NDK input constants per convention.

Added InputDevice class in Java which will eventually provide
useful information about available input devices.

Added APIs for manufacturing new MotionEvent objects with multiple
pointers and all necessary coordinate data.

Fixed a bug in the input dispatcher where it could get stuck with
a pointer down forever.

Fixed a bug in the WindowManager where the input window list could
end up containing stale removed windows.

Fixed a bug in the WindowManager where the input channel was being
removed only after the final animation transition had taken place
which caused spurious WINDOW DIED log messages to be printed.

Change-Id: Ie55084da319b20aad29b28a0499b8dd98bb5da68
2010-07-15 18:32:33 -07:00

958 lines
31 KiB
C++

//
// Copyright 2005 The Android Open Source Project
//
// Handle events, like key input and vsync.
//
// The goal is to provide an optimized solution for Linux, not an
// implementation that works well across all platforms. We expect
// events to arrive on file descriptors, so that we can use a select()
// select() call to sleep.
//
// We can't select() on anything but network sockets in Windows, so we
// provide an alternative implementation of waitEvent for that platform.
//
#define LOG_TAG "EventHub"
//#define LOG_NDEBUG 0
#include <ui/EventHub.h>
#include <ui/KeycodeLabels.h>
#include <hardware_legacy/power.h>
#include <cutils/properties.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <utils/Errors.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <memory.h>
#include <errno.h>
#include <assert.h>
#include "KeyLayoutMap.h"
#include <string.h>
#include <stdint.h>
#include <dirent.h>
#ifdef HAVE_INOTIFY
# include <sys/inotify.h>
#endif
#ifdef HAVE_ANDROID_OS
# include <sys/limits.h> /* not part of Linux */
#endif
#include <sys/poll.h>
#include <sys/ioctl.h>
/* this macro is used to tell if "bit" is set in "array"
* it selects a byte from the array, and does a boolean AND
* operation with a byte that only has the relevant bit set.
* eg. to check for the 12th bit, we do (array[1] & 1<<4)
*/
#define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
/* this macro computes the number of bytes needed to represent a bit array of the specified size */
#define sizeof_bit_array(bits) ((bits + 7) / 8)
#define ID_MASK 0x0000ffff
#define SEQ_MASK 0x7fff0000
#define SEQ_SHIFT 16
#define id_to_index(id) ((id&ID_MASK)+1)
#ifndef ABS_MT_TOUCH_MAJOR
#define ABS_MT_TOUCH_MAJOR 0x30 /* Major axis of touching ellipse */
#endif
#ifndef ABS_MT_POSITION_X
#define ABS_MT_POSITION_X 0x35 /* Center X ellipse position */
#endif
#ifndef ABS_MT_POSITION_Y
#define ABS_MT_POSITION_Y 0x36 /* Center Y ellipse position */
#endif
namespace android {
static const char *WAKE_LOCK_ID = "KeyEvents";
static const char *device_path = "/dev/input";
/* return the larger integer */
static inline int max(int v1, int v2)
{
return (v1 > v2) ? v1 : v2;
}
EventHub::device_t::device_t(int32_t _id, const char* _path, const char* name)
: id(_id), path(_path), name(name), classes(0)
, keyBitmask(NULL), layoutMap(new KeyLayoutMap()), next(NULL) {
}
EventHub::device_t::~device_t() {
delete [] keyBitmask;
delete layoutMap;
}
EventHub::EventHub(void)
: mError(NO_INIT), mHaveFirstKeyboard(false), mFirstKeyboardId(0)
, mDevicesById(0), mNumDevicesById(0)
, mOpeningDevices(0), mClosingDevices(0)
, mDevices(0), mFDs(0), mFDCount(0), mOpened(false)
{
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
#ifdef EV_SW
memset(mSwitches, 0, sizeof(mSwitches));
#endif
}
/*
* Clean up.
*/
EventHub::~EventHub(void)
{
release_wake_lock(WAKE_LOCK_ID);
// we should free stuff here...
}
status_t EventHub::errorCheck() const
{
return mError;
}
String8 EventHub::getDeviceName(int32_t deviceId) const
{
AutoMutex _l(mLock);
device_t* device = getDevice(deviceId);
if (device == NULL) return String8();
return device->name;
}
uint32_t EventHub::getDeviceClasses(int32_t deviceId) const
{
AutoMutex _l(mLock);
device_t* device = getDevice(deviceId);
if (device == NULL) return 0;
return device->classes;
}
int EventHub::getAbsoluteInfo(int32_t deviceId, int axis, int *outMinValue,
int* outMaxValue, int* outFlat, int* outFuzz) const
{
AutoMutex _l(mLock);
device_t* device = getDevice(deviceId);
if (device == NULL) return -1;
struct input_absinfo info;
if(ioctl(mFDs[id_to_index(device->id)].fd, EVIOCGABS(axis), &info)) {
LOGE("Error reading absolute controller %d for device %s fd %d\n",
axis, device->name.string(), mFDs[id_to_index(device->id)].fd);
return -1;
}
*outMinValue = info.minimum;
*outMaxValue = info.maximum;
*outFlat = info.flat;
*outFuzz = info.fuzz;
return 0;
}
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t deviceClasses,
int32_t scanCode) const {
if (scanCode >= 0 && scanCode <= KEY_MAX) {
AutoMutex _l(mLock);
if (deviceId == -1) {
for (int i = 0; i < mNumDevicesById; i++) {
device_t* device = mDevicesById[i].device;
if (device != NULL && (device->classes & deviceClasses) != 0) {
int32_t result = getScanCodeStateLocked(device, scanCode);
if (result >= AKEY_STATE_DOWN) {
return result;
}
}
}
return AKEY_STATE_UP;
} else {
device_t* device = getDevice(deviceId);
if (device != NULL) {
return getScanCodeStateLocked(device, scanCode);
}
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getScanCodeStateLocked(device_t* device, int32_t scanCode) const {
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
if (ioctl(mFDs[id_to_index(device->id)].fd,
EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t deviceClasses,
int32_t keyCode) const {
if (deviceId == -1) {
for (int i = 0; i < mNumDevicesById; i++) {
device_t* device = mDevicesById[i].device;
if (device != NULL && (device->classes & deviceClasses) != 0) {
int32_t result = getKeyCodeStateLocked(device, keyCode);
if (result >= AKEY_STATE_DOWN) {
return result;
}
}
}
return AKEY_STATE_UP;
} else {
device_t* device = getDevice(deviceId);
if (device != NULL) {
return getKeyCodeStateLocked(device, keyCode);
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeStateLocked(device_t* device, int32_t keyCode) const {
Vector<int32_t> scanCodes;
device->layoutMap->findScancodes(keyCode, &scanCodes);
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
if (ioctl(mFDs[id_to_index(device->id)].fd,
EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
#if 0
for (size_t i=0; i<=KEY_MAX; i++) {
LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask));
}
#endif
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
//LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask));
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) {
return AKEY_STATE_DOWN;
}
}
return AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t deviceClasses, int32_t sw) const {
#ifdef EV_SW
if (sw >= 0 && sw <= SW_MAX) {
AutoMutex _l(mLock);
if (deviceId == -1) {
deviceId = mSwitches[sw];
if (deviceId == 0) {
return AKEY_STATE_UNKNOWN;
}
}
device_t* device = getDevice(deviceId);
if (device == NULL) {
return AKEY_STATE_UNKNOWN;
}
return getSwitchStateLocked(device, sw);
}
#endif
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchStateLocked(device_t* device, int32_t sw) const {
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
memset(sw_bitmask, 0, sizeof(sw_bitmask));
if (ioctl(mFDs[id_to_index(device->id)].fd,
EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) {
return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
status_t EventHub::scancodeToKeycode(int32_t deviceId, int scancode,
int32_t* outKeycode, uint32_t* outFlags) const
{
AutoMutex _l(mLock);
device_t* device = getDevice(deviceId);
if (device != NULL && device->layoutMap != NULL) {
status_t err = device->layoutMap->map(scancode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
if (mHaveFirstKeyboard) {
device = getDevice(mFirstKeyboardId);
if (device != NULL && device->layoutMap != NULL) {
status_t err = device->layoutMap->map(scancode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
}
*outKeycode = 0;
*outFlags = 0;
return NAME_NOT_FOUND;
}
void EventHub::addExcludedDevice(const char* deviceName)
{
String8 name(deviceName);
mExcludedDevices.push_back(name);
}
EventHub::device_t* EventHub::getDevice(int32_t deviceId) const
{
if (deviceId == 0) deviceId = mFirstKeyboardId;
int32_t id = deviceId & ID_MASK;
if (id >= mNumDevicesById || id < 0) return NULL;
device_t* dev = mDevicesById[id].device;
if (dev == NULL) return NULL;
if (dev->id == deviceId) {
return dev;
}
return NULL;
}
bool EventHub::getEvent(int32_t* outDeviceId, int32_t* outType,
int32_t* outScancode, int32_t* outKeycode, uint32_t *outFlags,
int32_t* outValue, nsecs_t* outWhen)
{
*outDeviceId = 0;
*outType = 0;
*outScancode = 0;
*outKeycode = 0;
*outFlags = 0;
*outValue = 0;
*outWhen = 0;
status_t err;
int i;
int res;
int pollres;
struct input_event iev;
// Note that we only allow one caller to getEvent(), so don't need
// to do locking here... only when adding/removing devices.
if (!mOpened) {
mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;
mOpened = true;
}
while(1) {
// First, report any devices that had last been added/removed.
if (mClosingDevices != NULL) {
device_t* device = mClosingDevices;
LOGV("Reporting device closed: id=0x%x, name=%s\n",
device->id, device->path.string());
mClosingDevices = device->next;
*outDeviceId = device->id;
if (*outDeviceId == mFirstKeyboardId) *outDeviceId = 0;
*outType = DEVICE_REMOVED;
delete device;
return true;
}
if (mOpeningDevices != NULL) {
device_t* device = mOpeningDevices;
LOGV("Reporting device opened: id=0x%x, name=%s\n",
device->id, device->path.string());
mOpeningDevices = device->next;
*outDeviceId = device->id;
if (*outDeviceId == mFirstKeyboardId) *outDeviceId = 0;
*outType = DEVICE_ADDED;
return true;
}
release_wake_lock(WAKE_LOCK_ID);
pollres = poll(mFDs, mFDCount, -1);
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
if (pollres <= 0) {
if (errno != EINTR) {
LOGW("select failed (errno=%d)\n", errno);
usleep(100000);
}
continue;
}
//printf("poll %d, returned %d\n", mFDCount, pollres);
// mFDs[0] is used for inotify, so process regular events starting at mFDs[1]
for(i = 1; i < mFDCount; i++) {
if(mFDs[i].revents) {
LOGV("revents for %d = 0x%08x", i, mFDs[i].revents);
if(mFDs[i].revents & POLLIN) {
res = read(mFDs[i].fd, &iev, sizeof(iev));
if (res == sizeof(iev)) {
LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, v=%d",
mDevices[i]->path.string(),
(int) iev.time.tv_sec, (int) iev.time.tv_usec,
iev.type, iev.code, iev.value);
*outDeviceId = mDevices[i]->id;
if (*outDeviceId == mFirstKeyboardId) *outDeviceId = 0;
*outType = iev.type;
*outScancode = iev.code;
if (iev.type == EV_KEY) {
err = mDevices[i]->layoutMap->map(iev.code, outKeycode, outFlags);
LOGV("iev.code=%d outKeycode=%d outFlags=0x%08x err=%d\n",
iev.code, *outKeycode, *outFlags, err);
if (err != 0) {
*outKeycode = AKEYCODE_UNKNOWN;
*outFlags = 0;
}
} else {
*outKeycode = iev.code;
}
*outValue = iev.value;
*outWhen = s2ns(iev.time.tv_sec) + us2ns(iev.time.tv_usec);
return true;
} else {
if (res<0) {
LOGW("could not get event (errno=%d)", errno);
} else {
LOGE("could not get event (wrong size: %d)", res);
}
continue;
}
}
}
}
// read_notify() will modify mFDs and mFDCount, so this must be done after
// processing all other events.
if(mFDs[0].revents & POLLIN) {
read_notify(mFDs[0].fd);
}
}
}
/*
* Open the platform-specific input device.
*/
bool EventHub::openPlatformInput(void)
{
/*
* Open platform-specific input device(s).
*/
int res;
mFDCount = 1;
mFDs = (pollfd *)calloc(1, sizeof(mFDs[0]));
mDevices = (device_t **)calloc(1, sizeof(mDevices[0]));
mFDs[0].events = POLLIN;
mDevices[0] = NULL;
#ifdef HAVE_INOTIFY
mFDs[0].fd = inotify_init();
res = inotify_add_watch(mFDs[0].fd, device_path, IN_DELETE | IN_CREATE);
if(res < 0) {
LOGE("could not add watch for %s, %s\n", device_path, strerror(errno));
}
#else
/*
* The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd.
* We allocate space for it and set it to something invalid.
*/
mFDs[0].fd = -1;
#endif
res = scan_dir(device_path);
if(res < 0) {
LOGE("scan dir failed for %s\n", device_path);
//open_device("/dev/input/event0");
}
return true;
}
/*
* Inspect the known devices to determine whether physical keys exist for the given
* framework-domain key codes.
*/
bool EventHub::hasKeys(size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) const {
for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
outFlags[codeIndex] = 0;
// check each available hardware device for support for this keycode
Vector<int32_t> scanCodes;
for (int n = 0; (n < mFDCount) && (outFlags[codeIndex] == 0); n++) {
if (mDevices[n]) {
status_t err = mDevices[n]->layoutMap->findScancodes(
keyCodes[codeIndex], &scanCodes);
if (!err) {
// check the possible scan codes identified by the layout map against the
// map of codes actually emitted by the driver
for (size_t sc = 0; sc < scanCodes.size(); sc++) {
if (test_bit(scanCodes[sc], mDevices[n]->keyBitmask)) {
outFlags[codeIndex] = 1;
break;
}
}
}
}
}
}
return true;
}
// ----------------------------------------------------------------------------
static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
const uint8_t* end = array + endIndex;
array += startIndex;
while (array != end) {
if (*(array++) != 0) {
return true;
}
}
return false;
}
static const int32_t GAMEPAD_KEYCODES[] = {
AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE
};
int EventHub::open_device(const char *deviceName)
{
int version;
int fd;
struct pollfd *new_mFDs;
device_t **new_devices;
char **new_device_names;
char name[80];
char location[80];
char idstr[80];
struct input_id id;
LOGV("Opening device: %s", deviceName);
AutoMutex _l(mLock);
fd = open(deviceName, O_RDWR);
if(fd < 0) {
LOGE("could not open %s, %s\n", deviceName, strerror(errno));
return -1;
}
if(ioctl(fd, EVIOCGVERSION, &version)) {
LOGE("could not get driver version for %s, %s\n", deviceName, strerror(errno));
return -1;
}
if(ioctl(fd, EVIOCGID, &id)) {
LOGE("could not get driver id for %s, %s\n", deviceName, strerror(errno));
return -1;
}
name[sizeof(name) - 1] = '\0';
location[sizeof(location) - 1] = '\0';
idstr[sizeof(idstr) - 1] = '\0';
if(ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
//fprintf(stderr, "could not get device name for %s, %s\n", deviceName, strerror(errno));
name[0] = '\0';
}
// check to see if the device is on our excluded list
List<String8>::iterator iter = mExcludedDevices.begin();
List<String8>::iterator end = mExcludedDevices.end();
for ( ; iter != end; iter++) {
const char* test = *iter;
if (strcmp(name, test) == 0) {
LOGI("ignoring event id %s driver %s\n", deviceName, test);
close(fd);
fd = -1;
return -1;
}
}
if(ioctl(fd, EVIOCGPHYS(sizeof(location) - 1), &location) < 1) {
//fprintf(stderr, "could not get location for %s, %s\n", deviceName, strerror(errno));
location[0] = '\0';
}
if(ioctl(fd, EVIOCGUNIQ(sizeof(idstr) - 1), &idstr) < 1) {
//fprintf(stderr, "could not get idstring for %s, %s\n", deviceName, strerror(errno));
idstr[0] = '\0';
}
int devid = 0;
while (devid < mNumDevicesById) {
if (mDevicesById[devid].device == NULL) {
break;
}
devid++;
}
if (devid >= mNumDevicesById) {
device_ent* new_devids = (device_ent*)realloc(mDevicesById,
sizeof(mDevicesById[0]) * (devid + 1));
if (new_devids == NULL) {
LOGE("out of memory");
return -1;
}
mDevicesById = new_devids;
mNumDevicesById = devid+1;
mDevicesById[devid].device = NULL;
mDevicesById[devid].seq = 0;
}
mDevicesById[devid].seq = (mDevicesById[devid].seq+(1<<SEQ_SHIFT))&SEQ_MASK;
if (mDevicesById[devid].seq == 0) {
mDevicesById[devid].seq = 1<<SEQ_SHIFT;
}
new_mFDs = (pollfd*)realloc(mFDs, sizeof(mFDs[0]) * (mFDCount + 1));
new_devices = (device_t**)realloc(mDevices, sizeof(mDevices[0]) * (mFDCount + 1));
if (new_mFDs == NULL || new_devices == NULL) {
LOGE("out of memory");
return -1;
}
mFDs = new_mFDs;
mDevices = new_devices;
#if 0
LOGI("add device %d: %s\n", mFDCount, deviceName);
LOGI(" bus: %04x\n"
" vendor %04x\n"
" product %04x\n"
" version %04x\n",
id.bustype, id.vendor, id.product, id.version);
LOGI(" name: \"%s\"\n", name);
LOGI(" location: \"%s\"\n"
" id: \"%s\"\n", location, idstr);
LOGI(" version: %d.%d.%d\n",
version >> 16, (version >> 8) & 0xff, version & 0xff);
#endif
device_t* device = new device_t(devid|mDevicesById[devid].seq, deviceName, name);
if (device == NULL) {
LOGE("out of memory");
return -1;
}
mFDs[mFDCount].fd = fd;
mFDs[mFDCount].events = POLLIN;
// Figure out the kinds of events the device reports.
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
LOGV("Getting keys...");
if (ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask) >= 0) {
//LOGI("MAP\n");
//for (int i = 0; i < sizeof(key_bitmask); i++) {
// LOGI("%d: 0x%02x\n", i, key_bitmask[i]);
//}
// See if this is a keyboard. Ignore everything in the button range except for
// gamepads which are also considered keyboards.
if (containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC))
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_GAMEPAD),
sizeof_bit_array(BTN_DIGI))
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK),
sizeof_bit_array(KEY_MAX + 1))) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
device->keyBitmask = new uint8_t[sizeof(key_bitmask)];
if (device->keyBitmask != NULL) {
memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask));
} else {
delete device;
LOGE("out of memory allocating key bitmask");
return -1;
}
}
}
// See if this is a trackball (or mouse).
if (test_bit(BTN_MOUSE, key_bitmask)) {
uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)];
memset(rel_bitmask, 0, sizeof(rel_bitmask));
LOGV("Getting relative controllers...");
if (ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask) >= 0) {
if (test_bit(REL_X, rel_bitmask) && test_bit(REL_Y, rel_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TRACKBALL;
}
}
}
// See if this is a touch pad.
uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)];
memset(abs_bitmask, 0, sizeof(abs_bitmask));
LOGV("Getting absolute controllers...");
if (ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask) >= 0) {
// Is this a new modern multi-touch driver?
if (test_bit(ABS_MT_TOUCH_MAJOR, abs_bitmask)
&& test_bit(ABS_MT_POSITION_X, abs_bitmask)
&& test_bit(ABS_MT_POSITION_Y, abs_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN | INPUT_DEVICE_CLASS_TOUCHSCREEN_MT;
// Is this an old style single-touch driver?
} else if (test_bit(BTN_TOUCH, key_bitmask)
&& test_bit(ABS_X, abs_bitmask) && test_bit(ABS_Y, abs_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN;
}
}
#ifdef EV_SW
// figure out the switches this device reports
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
memset(sw_bitmask, 0, sizeof(sw_bitmask));
if (ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask) >= 0) {
for (int i=0; i<EV_SW; i++) {
//LOGI("Device 0x%x sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask));
if (test_bit(i, sw_bitmask)) {
if (mSwitches[i] == 0) {
mSwitches[i] = device->id;
}
}
}
}
#endif
if ((device->classes & INPUT_DEVICE_CLASS_KEYBOARD) != 0) {
char tmpfn[sizeof(name)];
char keylayoutFilename[300];
// a more descriptive name
device->name = name;
// replace all the spaces with underscores
strcpy(tmpfn, name);
for (char *p = strchr(tmpfn, ' '); p && *p; p = strchr(tmpfn, ' '))
*p = '_';
// find the .kl file we need for this device
const char* root = getenv("ANDROID_ROOT");
snprintf(keylayoutFilename, sizeof(keylayoutFilename),
"%s/usr/keylayout/%s.kl", root, tmpfn);
bool defaultKeymap = false;
if (access(keylayoutFilename, R_OK)) {
snprintf(keylayoutFilename, sizeof(keylayoutFilename),
"%s/usr/keylayout/%s", root, "qwerty.kl");
defaultKeymap = true;
}
status_t status = device->layoutMap->load(keylayoutFilename);
if (status) {
LOGE("Error %d loading key layout.", status);
}
// tell the world about the devname (the descriptive name)
if (!mHaveFirstKeyboard && !defaultKeymap && strstr(name, "-keypad")) {
// the built-in keyboard has a well-known device ID of 0,
// this device better not go away.
mHaveFirstKeyboard = true;
mFirstKeyboardId = device->id;
property_set("hw.keyboards.0.devname", name);
} else {
// ensure mFirstKeyboardId is set to -something-.
if (mFirstKeyboardId == 0) {
mFirstKeyboardId = device->id;
}
}
char propName[100];
sprintf(propName, "hw.keyboards.%u.devname", device->id);
property_set(propName, name);
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
if (hasKeycode(device, AKEYCODE_Q)) {
device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
}
// See if this device has a DPAD.
if (hasKeycode(device, AKEYCODE_DPAD_UP) &&
hasKeycode(device, AKEYCODE_DPAD_DOWN) &&
hasKeycode(device, AKEYCODE_DPAD_LEFT) &&
hasKeycode(device, AKEYCODE_DPAD_RIGHT) &&
hasKeycode(device, AKEYCODE_DPAD_CENTER)) {
device->classes |= INPUT_DEVICE_CLASS_DPAD;
}
// See if this device has a gamepad.
for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES); i++) {
if (hasKeycode(device, GAMEPAD_KEYCODES[i])) {
device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
break;
}
}
LOGI("New keyboard: device->id=0x%x devname='%s' propName='%s' keylayout='%s'\n",
device->id, name, propName, keylayoutFilename);
}
LOGI("New device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n",
deviceName, name, device->id, mNumDevicesById, mFDCount, fd, device->classes);
LOGV("Adding device %s %p at %d, id = %d, classes = 0x%x\n",
deviceName, device, mFDCount, devid, device->classes);
mDevicesById[devid].device = device;
device->next = mOpeningDevices;
mOpeningDevices = device;
mDevices[mFDCount] = device;
mFDCount++;
return 0;
}
bool EventHub::hasKeycode(device_t* device, int keycode) const
{
if (device->keyBitmask == NULL || device->layoutMap == NULL) {
return false;
}
Vector<int32_t> scanCodes;
device->layoutMap->findScancodes(keycode, &scanCodes);
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
return true;
}
}
return false;
}
int EventHub::close_device(const char *deviceName)
{
AutoMutex _l(mLock);
int i;
for(i = 1; i < mFDCount; i++) {
if(strcmp(mDevices[i]->path.string(), deviceName) == 0) {
//LOGD("remove device %d: %s\n", i, deviceName);
device_t* device = mDevices[i];
LOGI("Removed device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n",
device->path.string(), device->name.string(), device->id,
mNumDevicesById, mFDCount, mFDs[i].fd, device->classes);
// Clear this device's entry.
int index = (device->id&ID_MASK);
mDevicesById[index].device = NULL;
// Close the file descriptor and compact the fd array.
close(mFDs[i].fd);
int count = mFDCount - i - 1;
memmove(mDevices + i, mDevices + i + 1, sizeof(mDevices[0]) * count);
memmove(mFDs + i, mFDs + i + 1, sizeof(mFDs[0]) * count);
mFDCount--;
#ifdef EV_SW
for (int j=0; j<EV_SW; j++) {
if (mSwitches[j] == device->id) {
mSwitches[j] = 0;
}
}
#endif
device->next = mClosingDevices;
mClosingDevices = device;
if (device->id == mFirstKeyboardId) {
LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
device->path.string(), mFirstKeyboardId);
mFirstKeyboardId = 0;
property_set("hw.keyboards.0.devname", NULL);
}
// clear the property
char propName[100];
sprintf(propName, "hw.keyboards.%u.devname", device->id);
property_set(propName, NULL);
return 0;
}
}
LOGE("remove device: %s not found\n", deviceName);
return -1;
}
int EventHub::read_notify(int nfd)
{
#ifdef HAVE_INOTIFY
int res;
char devname[PATH_MAX];
char *filename;
char event_buf[512];
int event_size;
int event_pos = 0;
struct inotify_event *event;
LOGV("EventHub::read_notify nfd: %d\n", nfd);
res = read(nfd, event_buf, sizeof(event_buf));
if(res < (int)sizeof(*event)) {
if(errno == EINTR)
return 0;
LOGW("could not get event, %s\n", strerror(errno));
return 1;
}
//printf("got %d bytes of event information\n", res);
strcpy(devname, device_path);
filename = devname + strlen(devname);
*filename++ = '/';
while(res >= (int)sizeof(*event)) {
event = (struct inotify_event *)(event_buf + event_pos);
//printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
if(event->len) {
strcpy(filename, event->name);
if(event->mask & IN_CREATE) {
open_device(devname);
}
else {
close_device(devname);
}
}
event_size = sizeof(*event) + event->len;
res -= event_size;
event_pos += event_size;
}
#endif
return 0;
}
int EventHub::scan_dir(const char *dirname)
{
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
open_device(devname);
}
closedir(dir);
return 0;
}
}; // namespace android