replicant-frameworks_native/services/sensorservice/SensorFusion.cpp
Aravind Akella 8850909038 Bug fix for SensorFusion data rate.
SensorFusion is always returning data at the slowest possible sampling rate (5 Hz). batch() is getting called twice, first time with the requested rate and second time with the slowest rate (which overwrites the requested rate). Fix batch call in SensorFusion::activate()

Bug: 12064319
Change-Id: If62f3e514233f69810336fd22b136b4395b667d3
2013-12-10 01:57:12 +00:00

160 lines
5.2 KiB
C++

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorDevice.h"
#include "SensorFusion.h"
#include "SensorService.h"
namespace android {
// ---------------------------------------------------------------------------
ANDROID_SINGLETON_STATIC_INSTANCE(SensorFusion)
SensorFusion::SensorFusion()
: mSensorDevice(SensorDevice::getInstance()),
mEnabled(false), mGyroTime(0)
{
sensor_t const* list;
Sensor uncalibratedGyro;
ssize_t count = mSensorDevice.getSensorList(&list);
if (count > 0) {
for (size_t i=0 ; i<size_t(count) ; i++) {
if (list[i].type == SENSOR_TYPE_ACCELEROMETER) {
mAcc = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_MAGNETIC_FIELD) {
mMag = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_GYROSCOPE) {
mGyro = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
uncalibratedGyro = Sensor(list + i);
}
}
// Use the uncalibrated gyroscope for sensor fusion when available
if (uncalibratedGyro.getType() == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) {
mGyro = uncalibratedGyro;
}
// 200 Hz for gyro events is a good compromise between precision
// and power/cpu usage.
mEstimatedGyroRate = 200;
mTargetDelayNs = 1000000000LL/mEstimatedGyroRate;
mFusion.init();
}
}
void SensorFusion::process(const sensors_event_t& event) {
if (event.type == mGyro.getType()) {
if (mGyroTime != 0) {
const float dT = (event.timestamp - mGyroTime) / 1000000000.0f;
mFusion.handleGyro(vec3_t(event.data), dT);
// here we estimate the gyro rate (useful for debugging)
const float freq = 1 / dT;
if (freq >= 100 && freq<1000) { // filter values obviously wrong
const float alpha = 1 / (1 + dT); // 1s time-constant
mEstimatedGyroRate = freq + (mEstimatedGyroRate - freq)*alpha;
}
}
mGyroTime = event.timestamp;
} else if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) {
const vec3_t mag(event.data);
mFusion.handleMag(mag);
} else if (event.type == SENSOR_TYPE_ACCELEROMETER) {
const vec3_t acc(event.data);
mFusion.handleAcc(acc);
mAttitude = mFusion.getAttitude();
}
}
template <typename T> inline T min(T a, T b) { return a<b ? a : b; }
template <typename T> inline T max(T a, T b) { return a>b ? a : b; }
status_t SensorFusion::activate(void* ident, bool enabled) {
ALOGD_IF(DEBUG_CONNECTIONS,
"SensorFusion::activate(ident=%p, enabled=%d)",
ident, enabled);
const ssize_t idx = mClients.indexOf(ident);
if (enabled) {
if (idx < 0) {
mClients.add(ident);
}
} else {
if (idx >= 0) {
mClients.removeItemsAt(idx);
}
}
mSensorDevice.activate(ident, mAcc.getHandle(), enabled);
mSensorDevice.activate(ident, mMag.getHandle(), enabled);
mSensorDevice.activate(ident, mGyro.getHandle(), enabled);
const bool newState = mClients.size() != 0;
if (newState != mEnabled) {
mEnabled = newState;
if (newState) {
mFusion.init();
mGyroTime = 0;
}
}
return NO_ERROR;
}
status_t SensorFusion::setDelay(void* ident, int64_t ns) {
// Call batch with timeout zero instead of setDelay().
mSensorDevice.batch(ident, mAcc.getHandle(), 0, ns, 0);
mSensorDevice.batch(ident, mMag.getHandle(), 0, ms2ns(20), 0);
mSensorDevice.batch(ident, mGyro.getHandle(), 0, mTargetDelayNs, 0);
return NO_ERROR;
}
float SensorFusion::getPowerUsage() const {
float power = mAcc.getPowerUsage() +
mMag.getPowerUsage() +
mGyro.getPowerUsage();
return power;
}
int32_t SensorFusion::getMinDelay() const {
return mAcc.getMinDelay();
}
void SensorFusion::dump(String8& result) {
const Fusion& fusion(mFusion);
result.appendFormat("9-axis fusion %s (%d clients), gyro-rate=%7.2fHz, "
"q=< %g, %g, %g, %g > (%g), "
"b=< %g, %g, %g >\n",
mEnabled ? "enabled" : "disabled",
mClients.size(),
mEstimatedGyroRate,
fusion.getAttitude().x,
fusion.getAttitude().y,
fusion.getAttitude().z,
fusion.getAttitude().w,
length(fusion.getAttitude()),
fusion.getBias().x,
fusion.getBias().y,
fusion.getBias().z);
}
// ---------------------------------------------------------------------------
}; // namespace android