replicant-frameworks_native/services/sensorservice/SensorService.cpp
Khalid Zubair ec0faee33a sensorservice: fix an invalid format string
Change-Id: Ib41bca95e6be7831c5ce77bceaf6a3d9f8b37d41
2016-04-20 15:50:27 -07:00

1978 lines
77 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <math.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <cutils/properties.h>
#include <utils/SortedVector.h>
#include <utils/KeyedVector.h>
#include <utils/threads.h>
#include <utils/Atomic.h>
#include <utils/Errors.h>
#include <utils/RefBase.h>
#include <utils/Singleton.h>
#include <utils/String16.h>
#include <binder/AppOpsManager.h>
#include <binder/BinderService.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <gui/ISensorServer.h>
#include <gui/ISensorEventConnection.h>
#include <gui/SensorEventQueue.h>
#include <hardware/sensors.h>
#include <hardware_legacy/power.h>
#include "BatteryService.h"
#include "CorrectedGyroSensor.h"
#include "GravitySensor.h"
#include "LinearAccelerationSensor.h"
#include "OrientationSensor.h"
#include "RotationVectorSensor.h"
#include "SensorFusion.h"
#include "SensorService.h"
namespace android {
// ---------------------------------------------------------------------------
/*
* Notes:
*
* - what about a gyro-corrected magnetic-field sensor?
* - run mag sensor from time to time to force calibration
* - gravity sensor length is wrong (=> drift in linear-acc sensor)
*
*/
const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
// Permissions.
static const String16 sDump("android.permission.DUMP");
SensorService::SensorService()
: mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
mWakeLockAcquired(false)
{
}
void SensorService::onFirstRef()
{
ALOGD("nuSensorService starting...");
SensorDevice& dev(SensorDevice::getInstance());
if (dev.initCheck() == NO_ERROR) {
sensor_t const* list;
ssize_t count = dev.getSensorList(&list);
if (count > 0) {
ssize_t orientationIndex = -1;
bool hasGyro = false, hasAccel = false, hasMag = false;
uint32_t virtualSensorsNeeds =
(1<<SENSOR_TYPE_GRAVITY) |
(1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
(1<<SENSOR_TYPE_ROTATION_VECTOR);
mLastEventSeen.setCapacity(count);
for (ssize_t i=0 ; i<count ; i++) {
registerSensor( new HardwareSensor(list[i]) );
switch (list[i].type) {
case SENSOR_TYPE_ACCELEROMETER:
hasAccel = true;
break;
case SENSOR_TYPE_MAGNETIC_FIELD:
hasMag = true;
break;
case SENSOR_TYPE_ORIENTATION:
orientationIndex = i;
break;
case SENSOR_TYPE_GYROSCOPE:
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
hasGyro = true;
break;
case SENSOR_TYPE_GRAVITY:
case SENSOR_TYPE_LINEAR_ACCELERATION:
case SENSOR_TYPE_ROTATION_VECTOR:
virtualSensorsNeeds &= ~(1<<list[i].type);
break;
}
}
// it's safe to instantiate the SensorFusion object here
// (it wants to be instantiated after h/w sensors have been
// registered)
const SensorFusion& fusion(SensorFusion::getInstance());
// build the sensor list returned to users
mUserSensorList = mSensorList;
if (hasGyro && hasAccel && hasMag) {
Sensor aSensor;
// Add Android virtual sensors if they're not already
// available in the HAL
aSensor = registerVirtualSensor( new RotationVectorSensor() );
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) {
mUserSensorList.add(aSensor);
}
aSensor = registerVirtualSensor( new GravitySensor(list, count) );
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) {
mUserSensorList.add(aSensor);
}
aSensor = registerVirtualSensor( new LinearAccelerationSensor(list, count) );
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) {
mUserSensorList.add(aSensor);
}
aSensor = registerVirtualSensor( new OrientationSensor() );
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) {
if (orientationIndex == -1) {
// some sensor HALs don't provide an orientation sensor.
mUserSensorList.add(aSensor);
}
}
// virtual debugging sensors are not added to mUserSensorList
registerVirtualSensor( new CorrectedGyroSensor(list, count) );
registerVirtualSensor( new GyroDriftSensor() );
}
// debugging sensor list
mUserSensorListDebug = mSensorList;
// Check if the device really supports batching by looking at the FIFO event
// counts for each sensor.
bool batchingSupported = false;
for (size_t i = 0; i < mSensorList.size(); ++i) {
if (mSensorList[i].getFifoMaxEventCount() > 0) {
batchingSupported = true;
break;
}
}
if (batchingSupported) {
// Increase socket buffer size to a max of 100 KB for batching capabilities.
mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
} else {
mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
}
// Compare the socketBufferSize value against the system limits and limit
// it to maxSystemSocketBufferSize if necessary.
FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
char line[128];
if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
line[sizeof(line) - 1] = '\0';
size_t maxSystemSocketBufferSize;
sscanf(line, "%zu", &maxSystemSocketBufferSize);
if (mSocketBufferSize > maxSystemSocketBufferSize) {
mSocketBufferSize = maxSystemSocketBufferSize;
}
}
if (fp) {
fclose(fp);
}
mWakeLockAcquired = false;
mLooper = new Looper(false);
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
mSensorEventBuffer = new sensors_event_t[minBufferSize];
mSensorEventScratch = new sensors_event_t[minBufferSize];
mMapFlushEventsToConnections = new SensorEventConnection const * [minBufferSize];
mCurrentOperatingMode = NORMAL;
mNextSensorRegIndex = 0;
for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
mLastNSensorRegistrations.push();
}
mInitCheck = NO_ERROR;
mAckReceiver = new SensorEventAckReceiver(this);
mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
run("SensorService", PRIORITY_URGENT_DISPLAY);
}
}
}
Sensor SensorService::registerSensor(SensorInterface* s)
{
sensors_event_t event;
memset(&event, 0, sizeof(event));
const Sensor sensor(s->getSensor());
// add to the sensor list (returned to clients)
mSensorList.add(sensor);
// add to our handle->SensorInterface mapping
mSensorMap.add(sensor.getHandle(), s);
// create an entry in the mLastEventSeen array
mLastEventSeen.add(sensor.getHandle(), NULL);
return sensor;
}
Sensor SensorService::registerVirtualSensor(SensorInterface* s)
{
Sensor sensor = registerSensor(s);
mVirtualSensorList.add( s );
return sensor;
}
SensorService::~SensorService()
{
for (size_t i=0 ; i<mSensorMap.size() ; i++)
delete mSensorMap.valueAt(i);
}
status_t SensorService::dump(int fd, const Vector<String16>& args)
{
String8 result;
if (!PermissionCache::checkCallingPermission(sDump)) {
result.appendFormat("Permission Denial: "
"can't dump SensorService from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
} else {
if (args.size() > 2) {
return INVALID_OPERATION;
}
Mutex::Autolock _l(mLock);
SensorDevice& dev(SensorDevice::getInstance());
if (args.size() == 2 && args[0] == String16("restrict")) {
// If already in restricted mode. Ignore.
if (mCurrentOperatingMode == RESTRICTED) {
return status_t(NO_ERROR);
}
// If in any mode other than normal, ignore.
if (mCurrentOperatingMode != NORMAL) {
return INVALID_OPERATION;
}
mCurrentOperatingMode = RESTRICTED;
dev.disableAllSensors();
// Clear all pending flush connections for all active sensors. If one of the active
// connections has called flush() and the underlying sensor has been disabled before a
// flush complete event is returned, we need to remove the connection from this queue.
for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
}
mWhiteListedPackage.setTo(String8(args[1]));
return status_t(NO_ERROR);
} else if (args.size() == 1 && args[0] == String16("enable")) {
// If currently in restricted mode, reset back to NORMAL mode else ignore.
if (mCurrentOperatingMode == RESTRICTED) {
mCurrentOperatingMode = NORMAL;
dev.enableAllSensors();
}
if (mCurrentOperatingMode == DATA_INJECTION) {
resetToNormalModeLocked();
}
mWhiteListedPackage.clear();
return status_t(NO_ERROR);
} else if (args.size() == 2 && args[0] == String16("data_injection")) {
if (mCurrentOperatingMode == NORMAL) {
dev.disableAllSensors();
status_t err = dev.setMode(DATA_INJECTION);
if (err == NO_ERROR) {
mCurrentOperatingMode = DATA_INJECTION;
} else {
// Re-enable sensors.
dev.enableAllSensors();
}
mWhiteListedPackage.setTo(String8(args[1]));
return NO_ERROR;
} else if (mCurrentOperatingMode == DATA_INJECTION) {
// Already in DATA_INJECTION mode. Treat this as a no_op.
return NO_ERROR;
} else {
// Transition to data injection mode supported only from NORMAL mode.
return INVALID_OPERATION;
}
} else if (mSensorList.size() == 0) {
result.append("No Sensors on the device\n");
} else {
// Default dump the sensor list and debugging information.
result.append("Sensor List:\n");
for (size_t i=0 ; i<mSensorList.size() ; i++) {
const Sensor& s(mSensorList[i]);
result.appendFormat(
"%-15s| %-10s| version=%d |%-20s| 0x%08x | \"%s\" | type=%d |",
s.getName().string(),
s.getVendor().string(),
s.getVersion(),
s.getStringType().string(),
s.getHandle(),
s.getRequiredPermission().string(),
s.getType());
const int reportingMode = s.getReportingMode();
if (reportingMode == AREPORTING_MODE_CONTINUOUS) {
result.append(" continuous | ");
} else if (reportingMode == AREPORTING_MODE_ON_CHANGE) {
result.append(" on-change | ");
} else if (reportingMode == AREPORTING_MODE_ONE_SHOT) {
result.append(" one-shot | ");
} else {
result.append(" special-trigger | ");
}
if (s.getMaxDelay() > 0) {
result.appendFormat("minRate=%.2fHz | ", 1e6f / s.getMaxDelay());
} else {
result.appendFormat("maxDelay=%dus |", s.getMaxDelay());
}
if (s.getMinDelay() > 0) {
result.appendFormat("maxRate=%.2fHz | ", 1e6f / s.getMinDelay());
} else {
result.appendFormat("minDelay=%dus |", s.getMinDelay());
}
if (s.getFifoMaxEventCount() > 0) {
result.appendFormat("FifoMax=%d events | ",
s.getFifoMaxEventCount());
} else {
result.append("no batching | ");
}
if (s.isWakeUpSensor()) {
result.appendFormat("wakeUp | ");
} else {
result.appendFormat("non-wakeUp | ");
}
result.appendFormat("%.4f mA | ", s.getPowerUsage());
int bufIndex = mLastEventSeen.indexOfKey(s.getHandle());
if (bufIndex >= 0) {
const CircularBuffer* buf = mLastEventSeen.valueAt(bufIndex);
if (buf != NULL && s.getRequiredPermission().isEmpty()) {
buf->printBuffer(result);
} else {
result.append("last=<> \n");
}
}
result.append("\n");
}
SensorFusion::getInstance().dump(result);
SensorDevice::getInstance().dump(result);
result.append("Active sensors:\n");
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
int handle = mActiveSensors.keyAt(i);
result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
getSensorName(handle).string(),
handle,
mActiveSensors.valueAt(i)->getNumConnections());
}
result.appendFormat("Socket Buffer size = %d events\n",
mSocketBufferSize/sizeof(sensors_event_t));
result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
"not held");
result.appendFormat("Mode :");
switch(mCurrentOperatingMode) {
case NORMAL:
result.appendFormat(" NORMAL\n");
break;
case RESTRICTED:
result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
break;
case DATA_INJECTION:
result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
}
result.appendFormat("%zd active connections\n", mActiveConnections.size());
for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
result.appendFormat("Connection Number: %zu \n", i);
connection->dump(result);
}
}
result.appendFormat("Previous Registrations:\n");
// Log in the reverse chronological order.
int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
const int startIndex = currentIndex;
do {
const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
if (SensorRegistrationInfo::isSentinel(reg_info)) {
// Ignore sentinel, proceed to next item.
currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
continue;
}
if (reg_info.mActivated) {
result.appendFormat("%02d:%02d:%02d activated package=%s handle=0x%08x "
"samplingRate=%dus maxReportLatency=%dus\n",
reg_info.mHour, reg_info.mMin, reg_info.mSec,
reg_info.mPackageName.string(), reg_info.mSensorHandle,
reg_info.mSamplingRateUs, reg_info.mMaxReportLatencyUs);
} else {
result.appendFormat("%02d:%02d:%02d de-activated package=%s handle=0x%08x\n",
reg_info.mHour, reg_info.mMin, reg_info.mSec,
reg_info.mPackageName.string(), reg_info.mSensorHandle);
}
currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
SENSOR_REGISTRATIONS_BUF_SIZE;
} while(startIndex != currentIndex);
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
sensors_event_t const* buffer, const int count) {
for (int i=0 ; i<count ; i++) {
int handle = buffer[i].sensor;
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
handle = buffer[i].meta_data.sensor;
}
if (connection->hasSensor(handle)) {
SensorInterface* sensor = mSensorMap.valueFor(handle);
// If this buffer has an event from a one_shot sensor and this connection is registered
// for this particular one_shot sensor, try cleaning up the connection.
if (sensor != NULL &&
sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
sensor->autoDisable(connection.get(), handle);
cleanupWithoutDisableLocked(connection, handle);
}
}
}
}
bool SensorService::threadLoop()
{
ALOGD("nuSensorService thread starting...");
// each virtual sensor could generate an event per "real" event, that's why we need
// to size numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.
// in practice, this is too aggressive, but guaranteed to be enough.
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
const size_t numEventMax = minBufferSize / (1 + mVirtualSensorList.size());
SensorDevice& device(SensorDevice::getInstance());
const size_t vcount = mVirtualSensorList.size();
const int halVersion = device.getHalDeviceVersion();
do {
ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
if (count < 0) {
ALOGE("sensor poll failed (%s)", strerror(-count));
break;
}
// Reset sensors_event_t.flags to zero for all events in the buffer.
for (int i = 0; i < count; i++) {
mSensorEventBuffer[i].flags = 0;
}
// Make a copy of the connection vector as some connections may be removed during the
// course of this loop (especially when one-shot sensor events are present in the
// sensor_event buffer). Promote all connections to StrongPointers before the lock is
// acquired. If the destructor of the sp gets called when the lock is acquired, it may
// result in a deadlock as ~SensorEventConnection() needs to acquire mLock again for
// cleanup. So copy all the strongPointers to a vector before the lock is acquired.
SortedVector< sp<SensorEventConnection> > activeConnections;
populateActiveConnections(&activeConnections);
Mutex::Autolock _l(mLock);
// Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
// rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
// sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
// not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
// releasing the wakelock.
bool bufferHasWakeUpEvent = false;
for (int i = 0; i < count; i++) {
if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
bufferHasWakeUpEvent = true;
break;
}
}
if (bufferHasWakeUpEvent && !mWakeLockAcquired) {
setWakeLockAcquiredLocked(true);
}
recordLastValueLocked(mSensorEventBuffer, count);
// handle virtual sensors
if (count && vcount) {
sensors_event_t const * const event = mSensorEventBuffer;
const size_t activeVirtualSensorCount = mActiveVirtualSensors.size();
if (activeVirtualSensorCount) {
size_t k = 0;
SensorFusion& fusion(SensorFusion::getInstance());
if (fusion.isEnabled()) {
for (size_t i=0 ; i<size_t(count) ; i++) {
fusion.process(event[i]);
}
}
for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
for (size_t j=0 ; j<activeVirtualSensorCount ; j++) {
if (count + k >= minBufferSize) {
ALOGE("buffer too small to hold all events: "
"count=%zd, k=%zu, size=%zu",
count, k, minBufferSize);
break;
}
sensors_event_t out;
SensorInterface* si = mActiveVirtualSensors.valueAt(j);
if (si->process(&out, event[i])) {
mSensorEventBuffer[count + k] = out;
k++;
}
}
}
if (k) {
// record the last synthesized values
recordLastValueLocked(&mSensorEventBuffer[count], k);
count += k;
// sort the buffer by time-stamps
sortEventBuffer(mSensorEventBuffer, count);
}
}
}
// handle backward compatibility for RotationVector sensor
if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
for (int i = 0; i < count; i++) {
if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
// All the 4 components of the quaternion should be available
// No heading accuracy. Set it to -1
mSensorEventBuffer[i].data[4] = -1;
}
}
}
// Map flush_complete_events in the buffer to SensorEventConnections which called
// flush on the hardware sensor. mapFlushEventsToConnections[i] will be the
// SensorEventConnection mapped to the corresponding flush_complete_event in
// mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
for (int i = 0; i < count; ++i) {
mMapFlushEventsToConnections[i] = NULL;
if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
if (rec != NULL) {
mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
rec->removeFirstPendingFlushConnection();
}
}
}
// Send our events to clients. Check the state of wake lock for each client and release the
// lock if none of the clients need it.
bool needsWakeLock = false;
size_t numConnections = activeConnections.size();
for (size_t i=0 ; i < numConnections; ++i) {
if (activeConnections[i] != 0) {
activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
mMapFlushEventsToConnections);
needsWakeLock |= activeConnections[i]->needsWakeLock();
// If the connection has one-shot sensors, it may be cleaned up after first trigger.
// Early check for one-shot sensors.
if (activeConnections[i]->hasOneShotSensors()) {
cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
count);
}
}
}
if (mWakeLockAcquired && !needsWakeLock) {
setWakeLockAcquiredLocked(false);
}
} while (!Thread::exitPending());
ALOGW("Exiting SensorService::threadLoop => aborting...");
abort();
return false;
}
sp<Looper> SensorService::getLooper() const {
return mLooper;
}
void SensorService::resetAllWakeLockRefCounts() {
SortedVector< sp<SensorEventConnection> > activeConnections;
populateActiveConnections(&activeConnections);
{
Mutex::Autolock _l(mLock);
for (size_t i=0 ; i < activeConnections.size(); ++i) {
if (activeConnections[i] != 0) {
activeConnections[i]->resetWakeLockRefCount();
}
}
setWakeLockAcquiredLocked(false);
}
}
void SensorService::setWakeLockAcquiredLocked(bool acquire) {
if (acquire) {
if (!mWakeLockAcquired) {
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
mWakeLockAcquired = true;
}
mLooper->wake();
} else {
if (mWakeLockAcquired) {
release_wake_lock(WAKE_LOCK_NAME);
mWakeLockAcquired = false;
}
}
}
bool SensorService::isWakeLockAcquired() {
Mutex::Autolock _l(mLock);
return mWakeLockAcquired;
}
bool SensorService::SensorEventAckReceiver::threadLoop() {
ALOGD("new thread SensorEventAckReceiver");
sp<Looper> looper = mService->getLooper();
do {
bool wakeLockAcquired = mService->isWakeLockAcquired();
int timeout = -1;
if (wakeLockAcquired) timeout = 5000;
int ret = looper->pollOnce(timeout);
if (ret == ALOOPER_POLL_TIMEOUT) {
mService->resetAllWakeLockRefCounts();
}
} while(!Thread::exitPending());
return false;
}
void SensorService::recordLastValueLocked(
const sensors_event_t* buffer, size_t count) {
for (size_t i = 0; i < count; i++) {
if (buffer[i].type != SENSOR_TYPE_META_DATA) {
CircularBuffer* &circular_buf = mLastEventSeen.editValueFor(buffer[i].sensor);
if (circular_buf == NULL) {
circular_buf = new CircularBuffer(buffer[i].type);
}
circular_buf->addEvent(buffer[i]);
}
}
}
void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count)
{
struct compar {
static int cmp(void const* lhs, void const* rhs) {
sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
return l->timestamp - r->timestamp;
}
};
qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
}
String8 SensorService::getSensorName(int handle) const {
size_t count = mUserSensorList.size();
for (size_t i=0 ; i<count ; i++) {
const Sensor& sensor(mUserSensorList[i]);
if (sensor.getHandle() == handle) {
return sensor.getName();
}
}
String8 result("unknown");
return result;
}
bool SensorService::isVirtualSensor(int handle) const {
SensorInterface* sensor = mSensorMap.valueFor(handle);
return sensor->isVirtual();
}
bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
int handle = event.sensor;
if (event.type == SENSOR_TYPE_META_DATA) {
handle = event.meta_data.sensor;
}
SensorInterface* sensor = mSensorMap.valueFor(handle);
return sensor != NULL && sensor->getSensor().isWakeUpSensor();
}
SensorService::SensorRecord * SensorService::getSensorRecord(int handle) {
return mActiveSensors.valueFor(handle);
}
Vector<Sensor> SensorService::getSensorList(const String16& opPackageName)
{
char value[PROPERTY_VALUE_MAX];
property_get("debug.sensors", value, "0");
const Vector<Sensor>& initialSensorList = (atoi(value)) ?
mUserSensorListDebug : mUserSensorList;
Vector<Sensor> accessibleSensorList;
for (size_t i = 0; i < initialSensorList.size(); i++) {
Sensor sensor = initialSensorList[i];
if (canAccessSensor(sensor, "getSensorList", opPackageName)) {
accessibleSensorList.add(sensor);
} else {
ALOGI("Skipped sensor %s because it requires permission %s and app op %d",
sensor.getName().string(),
sensor.getRequiredPermission().string(),
sensor.getRequiredAppOp());
}
}
return accessibleSensorList;
}
sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
int requestedMode, const String16& opPackageName) {
// Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
return NULL;
}
Mutex::Autolock _l(mLock);
// To create a client in DATA_INJECTION mode to inject data, SensorService should already be
// operating in DI mode.
if (requestedMode == DATA_INJECTION) {
if (mCurrentOperatingMode != DATA_INJECTION) return NULL;
if (!isWhiteListedPackage(packageName)) return NULL;
}
uid_t uid = IPCThreadState::self()->getCallingUid();
sp<SensorEventConnection> result(new SensorEventConnection(this, uid, packageName,
requestedMode == DATA_INJECTION, opPackageName));
if (requestedMode == DATA_INJECTION) {
if (mActiveConnections.indexOf(result) < 0) {
mActiveConnections.add(result);
}
// Add the associated file descriptor to the Looper for polling whenever there is data to
// be injected.
result->updateLooperRegistration(mLooper);
}
return result;
}
int SensorService::isDataInjectionEnabled() {
Mutex::Autolock _l(mLock);
return (mCurrentOperatingMode == DATA_INJECTION);
}
status_t SensorService::resetToNormalMode() {
Mutex::Autolock _l(mLock);
return resetToNormalModeLocked();
}
status_t SensorService::resetToNormalModeLocked() {
SensorDevice& dev(SensorDevice::getInstance());
dev.enableAllSensors();
status_t err = dev.setMode(NORMAL);
mCurrentOperatingMode = NORMAL;
return err;
}
void SensorService::cleanupConnection(SensorEventConnection* c)
{
Mutex::Autolock _l(mLock);
const wp<SensorEventConnection> connection(c);
size_t size = mActiveSensors.size();
ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
for (size_t i=0 ; i<size ; ) {
int handle = mActiveSensors.keyAt(i);
if (c->hasSensor(handle)) {
ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
SensorInterface* sensor = mSensorMap.valueFor( handle );
ALOGE_IF(!sensor, "mSensorMap[handle=0x%08x] is null!", handle);
if (sensor) {
sensor->activate(c, false);
}
c->removeSensor(handle);
}
SensorRecord* rec = mActiveSensors.valueAt(i);
ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
ALOGD_IF(DEBUG_CONNECTIONS,
"removing connection %p for sensor[%zu].handle=0x%08x",
c, i, handle);
if (rec && rec->removeConnection(connection)) {
ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
mActiveSensors.removeItemsAt(i, 1);
mActiveVirtualSensors.removeItem(handle);
delete rec;
size--;
} else {
i++;
}
}
c->updateLooperRegistration(mLooper);
mActiveConnections.remove(connection);
BatteryService::cleanup(c->getUid());
if (c->needsWakeLock()) {
checkWakeLockStateLocked();
}
}
Sensor SensorService::getSensorFromHandle(int handle) const {
return mSensorMap.valueFor(handle)->getSensor();
}
status_t SensorService::enable(const sp<SensorEventConnection>& connection,
int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
const String16& opPackageName)
{
if (mInitCheck != NO_ERROR)
return mInitCheck;
SensorInterface* sensor = mSensorMap.valueFor(handle);
if (sensor == NULL) {
return BAD_VALUE;
}
if (!canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
if ((mCurrentOperatingMode == RESTRICTED || mCurrentOperatingMode == DATA_INJECTION)
&& !isWhiteListedPackage(connection->getPackageName())) {
return INVALID_OPERATION;
}
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec == 0) {
rec = new SensorRecord(connection);
mActiveSensors.add(handle, rec);
if (sensor->isVirtual()) {
mActiveVirtualSensors.add(handle, sensor);
}
} else {
if (rec->addConnection(connection)) {
// this sensor is already activated, but we are adding a connection that uses it.
// Immediately send down the last known value of the requested sensor if it's not a
// "continuous" sensor.
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
// NOTE: The wake_up flag of this event may get set to
// WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
CircularBuffer *circular_buf = mLastEventSeen.valueFor(handle);
if (circular_buf) {
sensors_event_t event;
memset(&event, 0, sizeof(event));
// It is unlikely that this buffer is empty as the sensor is already active.
// One possible corner case may be two applications activating an on-change
// sensor at the same time.
if(circular_buf->populateLastEvent(&event)) {
event.sensor = handle;
if (event.version == sizeof(sensors_event_t)) {
if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
setWakeLockAcquiredLocked(true);
}
connection->sendEvents(&event, 1, NULL);
if (!connection->needsWakeLock() && mWakeLockAcquired) {
checkWakeLockStateLocked();
}
}
}
}
}
}
}
if (connection->addSensor(handle)) {
BatteryService::enableSensor(connection->getUid(), handle);
// the sensor was added (which means it wasn't already there)
// so, see if this connection becomes active
if (mActiveConnections.indexOf(connection) < 0) {
mActiveConnections.add(connection);
}
} else {
ALOGW("sensor %08x already enabled in connection %p (ignoring)",
handle, connection.get());
}
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (samplingPeriodNs < minDelayNs) {
samplingPeriodNs = minDelayNs;
}
ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
"rate=%" PRId64 " timeout== %" PRId64"",
handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
maxBatchReportLatencyNs);
// Call flush() before calling activate() on the sensor. Wait for a first
// flush complete event before sending events on this connection. Ignore
// one-shot sensors which don't support flush(). Ignore on-change sensors
// to maintain the on-change logic (any on-change events except the initial
// one should be trigger by a change in value). Also if this sensor isn't
// already active, don't call flush().
const SensorDevice& device(SensorDevice::getInstance());
if (err == NO_ERROR &&
sensor->getSensor().getReportingMode() != AREPORTING_MODE_ONE_SHOT &&
sensor->getSensor().getReportingMode() != AREPORTING_MODE_ON_CHANGE &&
rec->getNumConnections() > 1) {
if (device.getHalDeviceVersion() >= SENSORS_DEVICE_API_VERSION_1_1) {
connection->setFirstFlushPending(handle, true);
status_t err_flush = sensor->flush(connection.get(), handle);
// Flush may return error if the underlying h/w sensor uses an older HAL.
if (err_flush == NO_ERROR) {
rec->addPendingFlushConnection(connection.get());
} else {
connection->setFirstFlushPending(handle, false);
}
}
}
if (err == NO_ERROR) {
ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
err = sensor->activate(connection.get(), true);
}
if (err == NO_ERROR) {
connection->updateLooperRegistration(mLooper);
SensorRegistrationInfo &reg_info =
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex);
reg_info.mSensorHandle = handle;
reg_info.mSamplingRateUs = samplingPeriodNs/1000;
reg_info.mMaxReportLatencyUs = maxBatchReportLatencyNs/1000;
reg_info.mActivated = true;
reg_info.mPackageName = connection->getPackageName();
time_t rawtime = time(NULL);
struct tm * timeinfo = localtime(&rawtime);
reg_info.mHour = timeinfo->tm_hour;
reg_info.mMin = timeinfo->tm_min;
reg_info.mSec = timeinfo->tm_sec;
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
}
if (device.getHalDeviceVersion() < SENSORS_DEVICE_API_VERSION_1_1) {
// Pre-1.1 sensor HALs had no flush method, and relied on setDelay at init
sensor->setDelay(connection.get(), handle, samplingPeriodNs);
}
if (err != NO_ERROR) {
// batch/activate has failed, reset our state.
cleanupWithoutDisableLocked(connection, handle);
}
return err;
}
status_t SensorService::disable(const sp<SensorEventConnection>& connection,
int handle)
{
if (mInitCheck != NO_ERROR)
return mInitCheck;
Mutex::Autolock _l(mLock);
status_t err = cleanupWithoutDisableLocked(connection, handle);
if (err == NO_ERROR) {
SensorInterface* sensor = mSensorMap.valueFor(handle);
err = sensor ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
}
if (err == NO_ERROR) {
SensorRegistrationInfo &reg_info =
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex);
reg_info.mActivated = false;
reg_info.mPackageName= connection->getPackageName();
reg_info.mSensorHandle = handle;
time_t rawtime = time(NULL);
struct tm * timeinfo = localtime(&rawtime);
reg_info.mHour = timeinfo->tm_hour;
reg_info.mMin = timeinfo->tm_min;
reg_info.mSec = timeinfo->tm_sec;
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
}
return err;
}
status_t SensorService::cleanupWithoutDisable(
const sp<SensorEventConnection>& connection, int handle) {
Mutex::Autolock _l(mLock);
return cleanupWithoutDisableLocked(connection, handle);
}
status_t SensorService::cleanupWithoutDisableLocked(
const sp<SensorEventConnection>& connection, int handle) {
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec) {
// see if this connection becomes inactive
if (connection->removeSensor(handle)) {
BatteryService::disableSensor(connection->getUid(), handle);
}
if (connection->hasAnySensor() == false) {
connection->updateLooperRegistration(mLooper);
mActiveConnections.remove(connection);
}
// see if this sensor becomes inactive
if (rec->removeConnection(connection)) {
mActiveSensors.removeItem(handle);
mActiveVirtualSensors.removeItem(handle);
delete rec;
}
return NO_ERROR;
}
return BAD_VALUE;
}
status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
int handle, nsecs_t ns, const String16& opPackageName)
{
if (mInitCheck != NO_ERROR)
return mInitCheck;
SensorInterface* sensor = mSensorMap.valueFor(handle);
if (!sensor)
return BAD_VALUE;
if (!canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
return BAD_VALUE;
}
if (ns < 0)
return BAD_VALUE;
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (ns < minDelayNs) {
ns = minDelayNs;
}
return sensor->setDelay(connection.get(), handle, ns);
}
status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
const String16& opPackageName) {
if (mInitCheck != NO_ERROR) return mInitCheck;
SensorDevice& dev(SensorDevice::getInstance());
const int halVersion = dev.getHalDeviceVersion();
status_t err(NO_ERROR);
Mutex::Autolock _l(mLock);
// Loop through all sensors for this connection and call flush on each of them.
for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
const int handle = connection->mSensorInfo.keyAt(i);
SensorInterface* sensor = mSensorMap.valueFor(handle);
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
ALOGE("flush called on a one-shot sensor");
err = INVALID_OPERATION;
continue;
}
if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
// For older devices just increment pending flush count which will send a trivial
// flush complete event.
connection->incrementPendingFlushCount(handle);
} else {
if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
err = INVALID_OPERATION;
continue;
}
status_t err_flush = sensor->flush(connection.get(), handle);
if (err_flush == NO_ERROR) {
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec != NULL) rec->addPendingFlushConnection(connection);
}
err = (err_flush != NO_ERROR) ? err_flush : err;
}
}
return err;
}
bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
const String16& opPackageName) {
const String8& requiredPermission = sensor.getRequiredPermission();
if (requiredPermission.length() <= 0) {
return true;
}
bool hasPermission = false;
// Runtime permissions can't use the cache as they may change.
if (sensor.isRequiredPermissionRuntime()) {
hasPermission = checkPermission(String16(requiredPermission),
IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
} else {
hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
}
if (!hasPermission) {
ALOGE("%s a sensor (%s) without holding its required permission: %s",
operation, sensor.getName().string(), sensor.getRequiredPermission().string());
return false;
}
const int32_t opCode = sensor.getRequiredAppOp();
if (opCode >= 0) {
AppOpsManager appOps;
if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName)
!= AppOpsManager::MODE_ALLOWED) {
ALOGE("%s a sensor (%s) without enabled required app op: %d",
operation, sensor.getName().string(), opCode);
return false;
}
}
return true;
}
void SensorService::checkWakeLockState() {
Mutex::Autolock _l(mLock);
checkWakeLockStateLocked();
}
void SensorService::checkWakeLockStateLocked() {
if (!mWakeLockAcquired) {
return;
}
bool releaseLock = true;
for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
if (connection->needsWakeLock()) {
releaseLock = false;
break;
}
}
}
if (releaseLock) {
setWakeLockAcquiredLocked(false);
}
}
void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
Mutex::Autolock _l(mLock);
connection->writeToSocketFromCache();
if (connection->needsWakeLock()) {
setWakeLockAcquiredLocked(true);
}
}
void SensorService::populateActiveConnections(
SortedVector< sp<SensorEventConnection> >* activeConnections) {
Mutex::Autolock _l(mLock);
for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
activeConnections->add(connection);
}
}
}
bool SensorService::isWhiteListedPackage(const String8& packageName) {
return (packageName.contains(mWhiteListedPackage.string()));
}
int SensorService::getNumEventsForSensorType(int sensor_event_type) {
switch (sensor_event_type) {
case SENSOR_TYPE_ROTATION_VECTOR:
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
return 5;
case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
return 6;
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
return 4;
case SENSOR_TYPE_SIGNIFICANT_MOTION:
case SENSOR_TYPE_STEP_DETECTOR:
case SENSOR_TYPE_STEP_COUNTER:
return 1;
default:
return 3;
}
}
// ---------------------------------------------------------------------------
SensorService::SensorRecord::SensorRecord(
const sp<SensorEventConnection>& connection)
{
mConnections.add(connection);
}
bool SensorService::SensorRecord::addConnection(
const sp<SensorEventConnection>& connection)
{
if (mConnections.indexOf(connection) < 0) {
mConnections.add(connection);
return true;
}
return false;
}
bool SensorService::SensorRecord::removeConnection(
const wp<SensorEventConnection>& connection)
{
ssize_t index = mConnections.indexOf(connection);
if (index >= 0) {
mConnections.removeItemsAt(index, 1);
}
// Remove this connections from the queue of flush() calls made on this sensor.
for (Vector< wp<SensorEventConnection> >::iterator it =
mPendingFlushConnections.begin(); it != mPendingFlushConnections.end();) {
if (it->unsafe_get() == connection.unsafe_get()) {
it = mPendingFlushConnections.erase(it);
} else {
++it;
}
}
return mConnections.size() ? false : true;
}
void SensorService::SensorRecord::addPendingFlushConnection(
const sp<SensorEventConnection>& connection) {
mPendingFlushConnections.add(connection);
}
void SensorService::SensorRecord::removeFirstPendingFlushConnection() {
if (mPendingFlushConnections.size() > 0) {
mPendingFlushConnections.removeAt(0);
}
}
SensorService::SensorEventConnection *
SensorService::SensorRecord::getFirstPendingFlushConnection() {
if (mPendingFlushConnections.size() > 0) {
return mPendingFlushConnections[0].unsafe_get();
}
return NULL;
}
void SensorService::SensorRecord::clearAllPendingFlushConnections() {
mPendingFlushConnections.clear();
}
// ---------------------------------------------------------------------------
SensorService::TrimmedSensorEvent::TrimmedSensorEvent(int sensorType) {
mTimestamp = -1;
const int numData = SensorService::getNumEventsForSensorType(sensorType);
if (sensorType == SENSOR_TYPE_STEP_COUNTER) {
mStepCounter = 0;
} else {
mData = new float[numData];
for (int i = 0; i < numData; ++i) {
mData[i] = -1.0;
}
}
mHour = mMin = mSec = INT32_MIN;
}
bool SensorService::TrimmedSensorEvent::isSentinel(const TrimmedSensorEvent& event) {
return (event.mHour == INT32_MIN && event.mMin == INT32_MIN && event.mSec == INT32_MIN);
}
// --------------------------------------------------------------------------
SensorService::CircularBuffer::CircularBuffer(int sensor_event_type) {
mNextInd = 0;
mBufSize = CIRCULAR_BUF_SIZE;
if (sensor_event_type == SENSOR_TYPE_STEP_COUNTER ||
sensor_event_type == SENSOR_TYPE_SIGNIFICANT_MOTION ||
sensor_event_type == SENSOR_TYPE_ACCELEROMETER) {
mBufSize = CIRCULAR_BUF_SIZE * 5;
}
mTrimmedSensorEventArr = new TrimmedSensorEvent *[mBufSize];
mSensorType = sensor_event_type;
for (int i = 0; i < mBufSize; ++i) {
mTrimmedSensorEventArr[i] = new TrimmedSensorEvent(mSensorType);
}
}
void SensorService::CircularBuffer::addEvent(const sensors_event_t& sensor_event) {
TrimmedSensorEvent *curr_event = mTrimmedSensorEventArr[mNextInd];
curr_event->mTimestamp = sensor_event.timestamp;
if (mSensorType == SENSOR_TYPE_STEP_COUNTER) {
curr_event->mStepCounter = sensor_event.u64.step_counter;
} else {
memcpy(curr_event->mData, sensor_event.data,
sizeof(float) * SensorService::getNumEventsForSensorType(mSensorType));
}
time_t rawtime = time(NULL);
struct tm * timeinfo = localtime(&rawtime);
curr_event->mHour = timeinfo->tm_hour;
curr_event->mMin = timeinfo->tm_min;
curr_event->mSec = timeinfo->tm_sec;
mNextInd = (mNextInd + 1) % mBufSize;
}
void SensorService::CircularBuffer::printBuffer(String8& result) const {
const int numData = SensorService::getNumEventsForSensorType(mSensorType);
int i = mNextInd, eventNum = 1;
result.appendFormat("last %d events = < ", mBufSize);
do {
if (TrimmedSensorEvent::isSentinel(*mTrimmedSensorEventArr[i])) {
// Sentinel, ignore.
i = (i + 1) % mBufSize;
continue;
}
result.appendFormat("%d) ", eventNum++);
if (mSensorType == SENSOR_TYPE_STEP_COUNTER) {
result.appendFormat("%llu,", mTrimmedSensorEventArr[i]->mStepCounter);
} else {
for (int j = 0; j < numData; ++j) {
result.appendFormat("%5.1f,", mTrimmedSensorEventArr[i]->mData[j]);
}
}
result.appendFormat("%lld %02d:%02d:%02d ", mTrimmedSensorEventArr[i]->mTimestamp,
mTrimmedSensorEventArr[i]->mHour, mTrimmedSensorEventArr[i]->mMin,
mTrimmedSensorEventArr[i]->mSec);
i = (i + 1) % mBufSize;
} while (i != mNextInd);
result.appendFormat(">\n");
}
bool SensorService::CircularBuffer::populateLastEvent(sensors_event_t *event) {
int lastEventInd = (mNextInd - 1 + mBufSize) % mBufSize;
// Check if the buffer is empty.
if (TrimmedSensorEvent::isSentinel(*mTrimmedSensorEventArr[lastEventInd])) {
return false;
}
event->version = sizeof(sensors_event_t);
event->type = mSensorType;
event->timestamp = mTrimmedSensorEventArr[lastEventInd]->mTimestamp;
if (mSensorType == SENSOR_TYPE_STEP_COUNTER) {
event->u64.step_counter = mTrimmedSensorEventArr[lastEventInd]->mStepCounter;
} else {
memcpy(event->data, mTrimmedSensorEventArr[lastEventInd]->mData,
sizeof(float) * SensorService::getNumEventsForSensorType(mSensorType));
}
return true;
}
SensorService::CircularBuffer::~CircularBuffer() {
for (int i = 0; i < mBufSize; ++i) {
delete mTrimmedSensorEventArr[i];
}
delete [] mTrimmedSensorEventArr;
}
// ---------------------------------------------------------------------------
SensorService::SensorEventConnection::SensorEventConnection(
const sp<SensorService>& service, uid_t uid, String8 packageName, bool isDataInjectionMode,
const String16& opPackageName)
: mService(service), mUid(uid), mWakeLockRefCount(0), mHasLooperCallbacks(false),
mDead(false), mDataInjectionMode(isDataInjectionMode), mEventCache(NULL),
mCacheSize(0), mMaxCacheSize(0), mPackageName(packageName), mOpPackageName(opPackageName) {
mChannel = new BitTube(mService->mSocketBufferSize);
#if DEBUG_CONNECTIONS
mEventsReceived = mEventsSentFromCache = mEventsSent = 0;
mTotalAcksNeeded = mTotalAcksReceived = 0;
#endif
}
SensorService::SensorEventConnection::~SensorEventConnection() {
ALOGD_IF(DEBUG_CONNECTIONS, "~SensorEventConnection(%p)", this);
mService->cleanupConnection(this);
if (mEventCache != NULL) {
delete mEventCache;
}
}
void SensorService::SensorEventConnection::onFirstRef() {
LooperCallback::onFirstRef();
}
bool SensorService::SensorEventConnection::needsWakeLock() {
Mutex::Autolock _l(mConnectionLock);
return !mDead && mWakeLockRefCount > 0;
}
void SensorService::SensorEventConnection::resetWakeLockRefCount() {
Mutex::Autolock _l(mConnectionLock);
mWakeLockRefCount = 0;
}
void SensorService::SensorEventConnection::dump(String8& result) {
Mutex::Autolock _l(mConnectionLock);
result.appendFormat("\tOperating Mode: %s\n",mDataInjectionMode ? "DATA_INJECTION" : "NORMAL");
result.appendFormat("\t %s | WakeLockRefCount %d | uid %d | cache size %d | "
"max cache size %d\n", mPackageName.string(), mWakeLockRefCount, mUid, mCacheSize,
mMaxCacheSize);
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
const FlushInfo& flushInfo = mSensorInfo.valueAt(i);
result.appendFormat("\t %s 0x%08x | status: %s | pending flush events %d \n",
mService->getSensorName(mSensorInfo.keyAt(i)).string(),
mSensorInfo.keyAt(i),
flushInfo.mFirstFlushPending ? "First flush pending" :
"active",
flushInfo.mPendingFlushEventsToSend);
}
#if DEBUG_CONNECTIONS
result.appendFormat("\t events recvd: %d | sent %d | cache %d | dropped %d |"
" total_acks_needed %d | total_acks_recvd %d\n",
mEventsReceived,
mEventsSent,
mEventsSentFromCache,
mEventsReceived - (mEventsSentFromCache + mEventsSent + mCacheSize),
mTotalAcksNeeded,
mTotalAcksReceived);
#endif
}
bool SensorService::SensorEventConnection::addSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
if (!canAccessSensor(mService->getSensorFromHandle(handle),
"Tried adding", mOpPackageName)) {
return false;
}
if (mSensorInfo.indexOfKey(handle) < 0) {
mSensorInfo.add(handle, FlushInfo());
return true;
}
return false;
}
bool SensorService::SensorEventConnection::removeSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.removeItem(handle) >= 0) {
return true;
}
return false;
}
bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const {
Mutex::Autolock _l(mConnectionLock);
return mSensorInfo.indexOfKey(handle) >= 0;
}
bool SensorService::SensorEventConnection::hasAnySensor() const {
Mutex::Autolock _l(mConnectionLock);
return mSensorInfo.size() ? true : false;
}
bool SensorService::SensorEventConnection::hasOneShotSensors() const {
Mutex::Autolock _l(mConnectionLock);
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
const int handle = mSensorInfo.keyAt(i);
if (mService->getSensorFromHandle(handle).getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
return true;
}
}
return false;
}
String8 SensorService::SensorEventConnection::getPackageName() const {
return mPackageName;
}
void SensorService::SensorEventConnection::setFirstFlushPending(int32_t handle,
bool value) {
Mutex::Autolock _l(mConnectionLock);
ssize_t index = mSensorInfo.indexOfKey(handle);
if (index >= 0) {
FlushInfo& flushInfo = mSensorInfo.editValueAt(index);
flushInfo.mFirstFlushPending = value;
}
}
void SensorService::SensorEventConnection::updateLooperRegistration(const sp<Looper>& looper) {
Mutex::Autolock _l(mConnectionLock);
updateLooperRegistrationLocked(looper);
}
void SensorService::SensorEventConnection::updateLooperRegistrationLocked(
const sp<Looper>& looper) {
bool isConnectionActive = (mSensorInfo.size() > 0 && !mDataInjectionMode) ||
mDataInjectionMode;
// If all sensors are unregistered OR Looper has encountered an error, we
// can remove the Fd from the Looper if it has been previously added.
if (!isConnectionActive || mDead) {
if (mHasLooperCallbacks) {
ALOGD_IF(DEBUG_CONNECTIONS, "%p removeFd fd=%d", this, mChannel->getSendFd());
looper->removeFd(mChannel->getSendFd());
mHasLooperCallbacks = false;
}
return;
}
int looper_flags = 0;
if (mCacheSize > 0) looper_flags |= ALOOPER_EVENT_OUTPUT;
if (mDataInjectionMode) looper_flags |= ALOOPER_EVENT_INPUT;
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
const int handle = mSensorInfo.keyAt(i);
if (mService->getSensorFromHandle(handle).isWakeUpSensor()) {
looper_flags |= ALOOPER_EVENT_INPUT;
break;
}
}
// If flags is still set to zero, we don't need to add this fd to the Looper, if
// the fd has already been added, remove it. This is likely to happen when ALL the
// events stored in the cache have been sent to the corresponding app.
if (looper_flags == 0) {
if (mHasLooperCallbacks) {
ALOGD_IF(DEBUG_CONNECTIONS, "removeFd fd=%d", mChannel->getSendFd());
looper->removeFd(mChannel->getSendFd());
mHasLooperCallbacks = false;
}
return;
}
// Add the file descriptor to the Looper for receiving acknowledegments if the app has
// registered for wake-up sensors OR for sending events in the cache.
int ret = looper->addFd(mChannel->getSendFd(), 0, looper_flags, this, NULL);
if (ret == 1) {
ALOGD_IF(DEBUG_CONNECTIONS, "%p addFd fd=%d", this, mChannel->getSendFd());
mHasLooperCallbacks = true;
} else {
ALOGE("Looper::addFd failed ret=%d fd=%d", ret, mChannel->getSendFd());
}
}
void SensorService::SensorEventConnection::incrementPendingFlushCount(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
ssize_t index = mSensorInfo.indexOfKey(handle);
if (index >= 0) {
FlushInfo& flushInfo = mSensorInfo.editValueAt(index);
flushInfo.mPendingFlushEventsToSend++;
}
}
status_t SensorService::SensorEventConnection::sendEvents(
sensors_event_t const* buffer, size_t numEvents,
sensors_event_t* scratch,
SensorEventConnection const * const * mapFlushEventsToConnections) {
// filter out events not for this connection
int count = 0;
Mutex::Autolock _l(mConnectionLock);
if (scratch) {
size_t i=0;
while (i<numEvents) {
int32_t sensor_handle = buffer[i].sensor;
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
ALOGD_IF(DEBUG_CONNECTIONS, "flush complete event sensor==%d ",
buffer[i].meta_data.sensor);
// Setting sensor_handle to the correct sensor to ensure the sensor events per
// connection are filtered correctly. buffer[i].sensor is zero for meta_data
// events.
sensor_handle = buffer[i].meta_data.sensor;
}
ssize_t index = mSensorInfo.indexOfKey(sensor_handle);
// Check if this connection has registered for this sensor. If not continue to the
// next sensor_event.
if (index < 0) {
++i;
continue;
}
FlushInfo& flushInfo = mSensorInfo.editValueAt(index);
// Check if there is a pending flush_complete event for this sensor on this connection.
if (buffer[i].type == SENSOR_TYPE_META_DATA && flushInfo.mFirstFlushPending == true &&
this == mapFlushEventsToConnections[i]) {
flushInfo.mFirstFlushPending = false;
ALOGD_IF(DEBUG_CONNECTIONS, "First flush event for sensor==%d ",
buffer[i].meta_data.sensor);
++i;
continue;
}
// If there is a pending flush complete event for this sensor on this connection,
// ignore the event and proceed to the next.
if (flushInfo.mFirstFlushPending) {
++i;
continue;
}
do {
// Keep copying events into the scratch buffer as long as they are regular
// sensor_events are from the same sensor_handle OR they are flush_complete_events
// from the same sensor_handle AND the current connection is mapped to the
// corresponding flush_complete_event.
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
if (this == mapFlushEventsToConnections[i]) {
scratch[count++] = buffer[i];
}
++i;
} else {
// Regular sensor event, just copy it to the scratch buffer.
scratch[count++] = buffer[i++];
}
} while ((i<numEvents) && ((buffer[i].sensor == sensor_handle &&
buffer[i].type != SENSOR_TYPE_META_DATA) ||
(buffer[i].type == SENSOR_TYPE_META_DATA &&
buffer[i].meta_data.sensor == sensor_handle)));
}
} else {
scratch = const_cast<sensors_event_t *>(buffer);
count = numEvents;
}
sendPendingFlushEventsLocked();
// Early return if there are no events for this connection.
if (count == 0) {
return status_t(NO_ERROR);
}
#if DEBUG_CONNECTIONS
mEventsReceived += count;
#endif
if (mCacheSize != 0) {
// There are some events in the cache which need to be sent first. Copy this buffer to
// the end of cache.
if (mCacheSize + count <= mMaxCacheSize) {
memcpy(&mEventCache[mCacheSize], scratch, count * sizeof(sensors_event_t));
mCacheSize += count;
} else {
// Check if any new sensors have registered on this connection which may have increased
// the max cache size that is desired.
if (mCacheSize + count < computeMaxCacheSizeLocked()) {
reAllocateCacheLocked(scratch, count);
return status_t(NO_ERROR);
}
// Some events need to be dropped.
int remaningCacheSize = mMaxCacheSize - mCacheSize;
if (remaningCacheSize != 0) {
memcpy(&mEventCache[mCacheSize], scratch,
remaningCacheSize * sizeof(sensors_event_t));
}
int numEventsDropped = count - remaningCacheSize;
countFlushCompleteEventsLocked(mEventCache, numEventsDropped);
// Drop the first "numEventsDropped" in the cache.
memmove(mEventCache, &mEventCache[numEventsDropped],
(mCacheSize - numEventsDropped) * sizeof(sensors_event_t));
// Copy the remainingEvents in scratch buffer to the end of cache.
memcpy(&mEventCache[mCacheSize - numEventsDropped], scratch + remaningCacheSize,
numEventsDropped * sizeof(sensors_event_t));
}
return status_t(NO_ERROR);
}
int index_wake_up_event = findWakeUpSensorEventLocked(scratch, count);
if (index_wake_up_event >= 0) {
scratch[index_wake_up_event].flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
++mWakeLockRefCount;
#if DEBUG_CONNECTIONS
++mTotalAcksNeeded;
#endif
}
// NOTE: ASensorEvent and sensors_event_t are the same type.
ssize_t size = SensorEventQueue::write(mChannel,
reinterpret_cast<ASensorEvent const*>(scratch), count);
if (size < 0) {
// Write error, copy events to local cache.
if (index_wake_up_event >= 0) {
// If there was a wake_up sensor_event, reset the flag.
scratch[index_wake_up_event].flags &= ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
if (mWakeLockRefCount > 0) {
--mWakeLockRefCount;
}
#if DEBUG_CONNECTIONS
--mTotalAcksNeeded;
#endif
}
if (mEventCache == NULL) {
mMaxCacheSize = computeMaxCacheSizeLocked();
mEventCache = new sensors_event_t[mMaxCacheSize];
mCacheSize = 0;
}
memcpy(&mEventCache[mCacheSize], scratch, count * sizeof(sensors_event_t));
mCacheSize += count;
// Add this file descriptor to the looper to get a callback when this fd is available for
// writing.
updateLooperRegistrationLocked(mService->getLooper());
return size;
}
#if DEBUG_CONNECTIONS
if (size > 0) {
mEventsSent += count;
}
#endif
return size < 0 ? status_t(size) : status_t(NO_ERROR);
}
void SensorService::SensorEventConnection::reAllocateCacheLocked(sensors_event_t const* scratch,
int count) {
sensors_event_t *eventCache_new;
const int new_cache_size = computeMaxCacheSizeLocked();
// Allocate new cache, copy over events from the old cache & scratch, free up memory.
eventCache_new = new sensors_event_t[new_cache_size];
memcpy(eventCache_new, mEventCache, mCacheSize * sizeof(sensors_event_t));
memcpy(&eventCache_new[mCacheSize], scratch, count * sizeof(sensors_event_t));
ALOGD_IF(DEBUG_CONNECTIONS, "reAllocateCacheLocked maxCacheSize=%d %d", mMaxCacheSize,
new_cache_size);
delete mEventCache;
mEventCache = eventCache_new;
mCacheSize += count;
mMaxCacheSize = new_cache_size;
}
void SensorService::SensorEventConnection::sendPendingFlushEventsLocked() {
ASensorEvent flushCompleteEvent;
memset(&flushCompleteEvent, 0, sizeof(flushCompleteEvent));
flushCompleteEvent.type = SENSOR_TYPE_META_DATA;
// Loop through all the sensors for this connection and check if there are any pending
// flush complete events to be sent.
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
FlushInfo& flushInfo = mSensorInfo.editValueAt(i);
while (flushInfo.mPendingFlushEventsToSend > 0) {
const int sensor_handle = mSensorInfo.keyAt(i);
flushCompleteEvent.meta_data.sensor = sensor_handle;
bool wakeUpSensor = mService->getSensorFromHandle(sensor_handle).isWakeUpSensor();
if (wakeUpSensor) {
++mWakeLockRefCount;
flushCompleteEvent.flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
}
ssize_t size = SensorEventQueue::write(mChannel, &flushCompleteEvent, 1);
if (size < 0) {
if (wakeUpSensor) --mWakeLockRefCount;
return;
}
ALOGD_IF(DEBUG_CONNECTIONS, "sent dropped flush complete event==%d ",
flushCompleteEvent.meta_data.sensor);
flushInfo.mPendingFlushEventsToSend--;
}
}
}
void SensorService::SensorEventConnection::writeToSocketFromCache() {
// At a time write at most half the size of the receiver buffer in SensorEventQueue OR
// half the size of the socket buffer allocated in BitTube whichever is smaller.
const int maxWriteSize = helpers::min(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT/2,
int(mService->mSocketBufferSize/(sizeof(sensors_event_t)*2)));
Mutex::Autolock _l(mConnectionLock);
// Send pending flush complete events (if any)
sendPendingFlushEventsLocked();
for (int numEventsSent = 0; numEventsSent < mCacheSize;) {
const int numEventsToWrite = helpers::min(mCacheSize - numEventsSent, maxWriteSize);
int index_wake_up_event =
findWakeUpSensorEventLocked(mEventCache + numEventsSent, numEventsToWrite);
if (index_wake_up_event >= 0) {
mEventCache[index_wake_up_event + numEventsSent].flags |=
WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
++mWakeLockRefCount;
#if DEBUG_CONNECTIONS
++mTotalAcksNeeded;
#endif
}
ssize_t size = SensorEventQueue::write(mChannel,
reinterpret_cast<ASensorEvent const*>(mEventCache + numEventsSent),
numEventsToWrite);
if (size < 0) {
if (index_wake_up_event >= 0) {
// If there was a wake_up sensor_event, reset the flag.
mEventCache[index_wake_up_event + numEventsSent].flags &=
~WAKE_UP_SENSOR_EVENT_NEEDS_ACK;
if (mWakeLockRefCount > 0) {
--mWakeLockRefCount;
}
#if DEBUG_CONNECTIONS
--mTotalAcksNeeded;
#endif
}
memmove(mEventCache, &mEventCache[numEventsSent],
(mCacheSize - numEventsSent) * sizeof(sensors_event_t));
ALOGD_IF(DEBUG_CONNECTIONS, "wrote %d events from cache size==%d ",
numEventsSent, mCacheSize);
mCacheSize -= numEventsSent;
return;
}
numEventsSent += numEventsToWrite;
#if DEBUG_CONNECTIONS
mEventsSentFromCache += numEventsToWrite;
#endif
}
ALOGD_IF(DEBUG_CONNECTIONS, "wrote all events from cache size=%d ", mCacheSize);
// All events from the cache have been sent. Reset cache size to zero.
mCacheSize = 0;
// There are no more events in the cache. We don't need to poll for write on the fd.
// Update Looper registration.
updateLooperRegistrationLocked(mService->getLooper());
}
void SensorService::SensorEventConnection::countFlushCompleteEventsLocked(
sensors_event_t const* scratch, const int numEventsDropped) {
ALOGD_IF(DEBUG_CONNECTIONS, "dropping %d events ", numEventsDropped);
// Count flushComplete events in the events that are about to the dropped. These will be sent
// separately before the next batch of events.
for (int j = 0; j < numEventsDropped; ++j) {
if (scratch[j].type == SENSOR_TYPE_META_DATA) {
FlushInfo& flushInfo = mSensorInfo.editValueFor(scratch[j].meta_data.sensor);
flushInfo.mPendingFlushEventsToSend++;
ALOGD_IF(DEBUG_CONNECTIONS, "increment pendingFlushCount %d",
flushInfo.mPendingFlushEventsToSend);
}
}
return;
}
int SensorService::SensorEventConnection::findWakeUpSensorEventLocked(
sensors_event_t const* scratch, const int count) {
for (int i = 0; i < count; ++i) {
if (mService->isWakeUpSensorEvent(scratch[i])) {
return i;
}
}
return -1;
}
sp<BitTube> SensorService::SensorEventConnection::getSensorChannel() const
{
return mChannel;
}
status_t SensorService::SensorEventConnection::enableDisable(
int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs,
int reservedFlags)
{
status_t err;
if (enabled) {
err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs,
reservedFlags, mOpPackageName);
} else {
err = mService->disable(this, handle);
}
return err;
}
status_t SensorService::SensorEventConnection::setEventRate(
int handle, nsecs_t samplingPeriodNs)
{
return mService->setEventRate(this, handle, samplingPeriodNs, mOpPackageName);
}
status_t SensorService::SensorEventConnection::flush() {
return mService->flushSensor(this, mOpPackageName);
}
int SensorService::SensorEventConnection::handleEvent(int fd, int events, void* /*data*/) {
if (events & ALOOPER_EVENT_HANGUP || events & ALOOPER_EVENT_ERROR) {
{
// If the Looper encounters some error, set the flag mDead, reset mWakeLockRefCount,
// and remove the fd from Looper. Call checkWakeLockState to know if SensorService
// can release the wake-lock.
ALOGD_IF(DEBUG_CONNECTIONS, "%p Looper error %d", this, fd);
Mutex::Autolock _l(mConnectionLock);
mDead = true;
mWakeLockRefCount = 0;
updateLooperRegistrationLocked(mService->getLooper());
}
mService->checkWakeLockState();
if (mDataInjectionMode) {
// If the Looper has encountered some error in data injection mode, reset SensorService
// back to normal mode.
mService->resetToNormalMode();
mDataInjectionMode = false;
}
return 1;
}
if (events & ALOOPER_EVENT_INPUT) {
unsigned char buf[sizeof(sensors_event_t)];
ssize_t numBytesRead = ::recv(fd, buf, sizeof(buf), MSG_DONTWAIT);
{
Mutex::Autolock _l(mConnectionLock);
if (numBytesRead == sizeof(sensors_event_t)) {
if (!mDataInjectionMode) {
ALOGE("Data injected in normal mode, dropping event"
"package=%s uid=%d", mPackageName.string(), mUid);
// Unregister call backs.
return 0;
}
SensorDevice& dev(SensorDevice::getInstance());
sensors_event_t sensor_event;
memset(&sensor_event, 0, sizeof(sensor_event));
memcpy(&sensor_event, buf, sizeof(sensors_event_t));
Sensor sensor = mService->getSensorFromHandle(sensor_event.sensor);
sensor_event.type = sensor.getType();
dev.injectSensorData(&sensor_event);
#if DEBUG_CONNECTIONS
++mEventsReceived;
#endif
} else if (numBytesRead == sizeof(uint32_t)) {
uint32_t numAcks = 0;
memcpy(&numAcks, buf, numBytesRead);
// Sanity check to ensure there are no read errors in recv, numAcks is always
// within the range and not zero. If any of the above don't hold reset
// mWakeLockRefCount to zero.
if (numAcks > 0 && numAcks < mWakeLockRefCount) {
mWakeLockRefCount -= numAcks;
} else {
mWakeLockRefCount = 0;
}
#if DEBUG_CONNECTIONS
mTotalAcksReceived += numAcks;
#endif
} else {
// Read error, reset wakelock refcount.
mWakeLockRefCount = 0;
}
}
// Check if wakelock can be released by sensorservice. mConnectionLock needs to be released
// here as checkWakeLockState() will need it.
if (mWakeLockRefCount == 0) {
mService->checkWakeLockState();
}
// continue getting callbacks.
return 1;
}
if (events & ALOOPER_EVENT_OUTPUT) {
// send sensor data that is stored in mEventCache for this connection.
mService->sendEventsFromCache(this);
}
return 1;
}
int SensorService::SensorEventConnection::computeMaxCacheSizeLocked() const {
size_t fifoWakeUpSensors = 0;
size_t fifoNonWakeUpSensors = 0;
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
const Sensor& sensor = mService->getSensorFromHandle(mSensorInfo.keyAt(i));
if (sensor.getFifoReservedEventCount() == sensor.getFifoMaxEventCount()) {
// Each sensor has a reserved fifo. Sum up the fifo sizes for all wake up sensors and
// non wake_up sensors.
if (sensor.isWakeUpSensor()) {
fifoWakeUpSensors += sensor.getFifoReservedEventCount();
} else {
fifoNonWakeUpSensors += sensor.getFifoReservedEventCount();
}
} else {
// Shared fifo. Compute the max of the fifo sizes for wake_up and non_wake up sensors.
if (sensor.isWakeUpSensor()) {
fifoWakeUpSensors = fifoWakeUpSensors > sensor.getFifoMaxEventCount() ?
fifoWakeUpSensors : sensor.getFifoMaxEventCount();
} else {
fifoNonWakeUpSensors = fifoNonWakeUpSensors > sensor.getFifoMaxEventCount() ?
fifoNonWakeUpSensors : sensor.getFifoMaxEventCount();
}
}
}
if (fifoWakeUpSensors + fifoNonWakeUpSensors == 0) {
// It is extremely unlikely that there is a write failure in non batch mode. Return a cache
// size that is equal to that of the batch mode.
// ALOGW("Write failure in non-batch mode");
return MAX_SOCKET_BUFFER_SIZE_BATCHED/sizeof(sensors_event_t);
}
return fifoWakeUpSensors + fifoNonWakeUpSensors;
}
// ---------------------------------------------------------------------------
}; // namespace android