/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include // ---------------------------------------------------------------------------- namespace android { // ---------------------------------------------------------------------------- Sensor::Sensor() : mHandle(0), mType(0), mMinValue(0), mMaxValue(0), mResolution(0), mPower(0), mMinDelay(0), mFifoReservedEventCount(0), mFifoMaxEventCount(0), mMaxDelay(0), mWakeUpSensor(false) { } Sensor::Sensor(struct sensor_t const* hwSensor, int halVersion) { mName = hwSensor->name; mVendor = hwSensor->vendor; mVersion = hwSensor->version; mHandle = hwSensor->handle; mType = hwSensor->type; mMinValue = 0; // FIXME: minValue mMaxValue = hwSensor->maxRange; // FIXME: maxValue mResolution = hwSensor->resolution; mPower = hwSensor->power; mMinDelay = hwSensor->minDelay; mWakeUpSensor = false; // Set fifo event count zero for older devices which do not support batching. Fused // sensors also have their fifo counts set to zero. if (halVersion >= SENSORS_DEVICE_API_VERSION_1_1) { mFifoReservedEventCount = hwSensor->fifoReservedEventCount; mFifoMaxEventCount = hwSensor->fifoMaxEventCount; } else { mFifoReservedEventCount = 0; mFifoMaxEventCount = 0; } if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) { if (hwSensor->maxDelay > INT_MAX) { // Max delay is declared as a 64 bit integer for 64 bit architectures. But it should // always fit in a 32 bit integer, log error and cap it to INT_MAX. ALOGE("Sensor maxDelay overflow error %s %" PRId64, mName.string(), static_cast(hwSensor->maxDelay)); mMaxDelay = INT_MAX; } else { mMaxDelay = (int32_t) hwSensor->maxDelay; } } else { // For older hals set maxDelay to 0. mMaxDelay = 0; } // Ensure existing sensors have correct string type and required // permissions. switch (mType) { case SENSOR_TYPE_ACCELEROMETER: mStringType = SENSOR_STRING_TYPE_ACCELEROMETER; break; case SENSOR_TYPE_AMBIENT_TEMPERATURE: mStringType = SENSOR_STRING_TYPE_AMBIENT_TEMPERATURE; break; case SENSOR_TYPE_GAME_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_GAME_ROTATION_VECTOR; break; case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_GEOMAGNETIC_ROTATION_VECTOR; break; case SENSOR_TYPE_GRAVITY: mStringType = SENSOR_STRING_TYPE_GRAVITY; break; case SENSOR_TYPE_GYROSCOPE: mStringType = SENSOR_STRING_TYPE_GYROSCOPE; break; case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: mStringType = SENSOR_STRING_TYPE_GYROSCOPE_UNCALIBRATED; break; case SENSOR_TYPE_HEART_RATE: mStringType = SENSOR_STRING_TYPE_HEART_RATE; mRequiredPermission = SENSOR_PERMISSION_BODY_SENSORS; break; case SENSOR_TYPE_LIGHT: mStringType = SENSOR_STRING_TYPE_LIGHT; break; case SENSOR_TYPE_LINEAR_ACCELERATION: mStringType = SENSOR_STRING_TYPE_LINEAR_ACCELERATION; break; case SENSOR_TYPE_MAGNETIC_FIELD: mStringType = SENSOR_STRING_TYPE_MAGNETIC_FIELD; break; case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: mStringType = SENSOR_STRING_TYPE_MAGNETIC_FIELD_UNCALIBRATED; break; case SENSOR_TYPE_ORIENTATION: mStringType = SENSOR_STRING_TYPE_ORIENTATION; break; case SENSOR_TYPE_PRESSURE: mStringType = SENSOR_STRING_TYPE_PRESSURE; break; case SENSOR_TYPE_PROXIMITY: mStringType = SENSOR_STRING_TYPE_PROXIMITY; mWakeUpSensor = true; break; case SENSOR_TYPE_RELATIVE_HUMIDITY: mStringType = SENSOR_STRING_TYPE_RELATIVE_HUMIDITY; break; case SENSOR_TYPE_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_ROTATION_VECTOR; break; case SENSOR_TYPE_SIGNIFICANT_MOTION: mStringType = SENSOR_STRING_TYPE_SIGNIFICANT_MOTION; mWakeUpSensor = true; break; case SENSOR_TYPE_STEP_COUNTER: mStringType = SENSOR_STRING_TYPE_STEP_COUNTER; break; case SENSOR_TYPE_STEP_DETECTOR: mStringType = SENSOR_STRING_TYPE_STEP_DETECTOR; break; case SENSOR_TYPE_TEMPERATURE: mStringType = SENSOR_STRING_TYPE_TEMPERATURE; break; case SENSOR_TYPE_NON_WAKE_UP_PROXIMITY_SENSOR: mStringType = SENSOR_STRING_TYPE_NON_WAKE_UP_PROXIMITY_SENSOR; break; case SENSOR_TYPE_WAKE_UP_ACCELEROMETER: mStringType = SENSOR_STRING_TYPE_WAKE_UP_ACCELEROMETER; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_MAGNETIC_FIELD: mStringType = SENSOR_STRING_TYPE_WAKE_UP_MAGNETIC_FIELD; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_ORIENTATION: mStringType = SENSOR_STRING_TYPE_WAKE_UP_ORIENTATION; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_GYROSCOPE: mStringType = SENSOR_STRING_TYPE_WAKE_UP_GYROSCOPE; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_LIGHT: mStringType = SENSOR_STRING_TYPE_WAKE_UP_LIGHT; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_PRESSURE: mStringType = SENSOR_STRING_TYPE_WAKE_UP_PRESSURE; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_GRAVITY: mStringType = SENSOR_STRING_TYPE_WAKE_UP_GRAVITY; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_LINEAR_ACCELERATION: mStringType = SENSOR_STRING_TYPE_WAKE_UP_LINEAR_ACCELERATION; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_WAKE_UP_ROTATION_VECTOR; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_RELATIVE_HUMIDITY: mStringType = SENSOR_STRING_TYPE_WAKE_UP_RELATIVE_HUMIDITY; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_AMBIENT_TEMPERATURE: mStringType = SENSOR_STRING_TYPE_WAKE_UP_AMBIENT_TEMPERATURE; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_MAGNETIC_FIELD_UNCALIBRATED: mStringType = SENSOR_STRING_TYPE_WAKE_UP_MAGNETIC_FIELD_UNCALIBRATED; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_GAME_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_WAKE_UP_GAME_ROTATION_VECTOR; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_GYROSCOPE_UNCALIBRATED: mStringType = SENSOR_STRING_TYPE_WAKE_UP_GYROSCOPE_UNCALIBRATED; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_STEP_DETECTOR: mStringType = SENSOR_STRING_TYPE_WAKE_UP_STEP_DETECTOR; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_STEP_COUNTER: mStringType = SENSOR_STRING_TYPE_WAKE_UP_STEP_COUNTER; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_GEOMAGNETIC_ROTATION_VECTOR: mStringType = SENSOR_STRING_TYPE_WAKE_UP_GEOMAGNETIC_ROTATION_VECTOR; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_UP_HEART_RATE: mStringType = SENSOR_STRING_TYPE_WAKE_UP_HEART_RATE; mRequiredPermission = SENSOR_PERMISSION_BODY_SENSORS; mWakeUpSensor = true; break; case SENSOR_TYPE_WAKE_GESTURE: mStringType = SENSOR_STRING_TYPE_WAKE_GESTURE; mWakeUpSensor = true; break; default: // Only pipe the stringType, requiredPermission and flags for custom sensors. if (halVersion >= SENSORS_DEVICE_API_VERSION_1_2 && hwSensor->stringType) { mStringType = hwSensor->stringType; } if (halVersion >= SENSORS_DEVICE_API_VERSION_1_2 && hwSensor->requiredPermission) { mRequiredPermission = hwSensor->requiredPermission; } if (halVersion >= SENSORS_DEVICE_API_VERSION_1_3) { mWakeUpSensor = hwSensor->flags & SENSOR_FLAG_WAKE_UP; } break; } } Sensor::~Sensor() { } const String8& Sensor::getName() const { return mName; } const String8& Sensor::getVendor() const { return mVendor; } int32_t Sensor::getHandle() const { return mHandle; } int32_t Sensor::getType() const { return mType; } float Sensor::getMinValue() const { return mMinValue; } float Sensor::getMaxValue() const { return mMaxValue; } float Sensor::getResolution() const { return mResolution; } float Sensor::getPowerUsage() const { return mPower; } int32_t Sensor::getMinDelay() const { return mMinDelay; } nsecs_t Sensor::getMinDelayNs() const { return getMinDelay() * 1000; } int32_t Sensor::getVersion() const { return mVersion; } int32_t Sensor::getFifoReservedEventCount() const { return mFifoReservedEventCount; } int32_t Sensor::getFifoMaxEventCount() const { return mFifoMaxEventCount; } const String8& Sensor::getStringType() const { return mStringType; } const String8& Sensor::getRequiredPermission() const { return mRequiredPermission; } int32_t Sensor::getMaxDelay() const { return mMaxDelay; } bool Sensor::isWakeUpSensor() const { return mWakeUpSensor; } size_t Sensor::getFlattenedSize() const { size_t fixedSize = sizeof(int32_t) * 3 + sizeof(float) * 4 + sizeof(int32_t) * 4 + sizeof(bool) * 1; size_t variableSize = sizeof(uint32_t) + FlattenableUtils::align<4>(mName.length()) + sizeof(uint32_t) + FlattenableUtils::align<4>(mVendor.length()) + sizeof(uint32_t) + FlattenableUtils::align<4>(mStringType.length()) + sizeof(uint32_t) + FlattenableUtils::align<4>(mRequiredPermission.length()); return fixedSize + variableSize; } status_t Sensor::flatten(void* buffer, size_t size) const { if (size < getFlattenedSize()) { return NO_MEMORY; } flattenString8(buffer, size, mName); flattenString8(buffer, size, mVendor); FlattenableUtils::write(buffer, size, mVersion); FlattenableUtils::write(buffer, size, mHandle); FlattenableUtils::write(buffer, size, mType); FlattenableUtils::write(buffer, size, mMinValue); FlattenableUtils::write(buffer, size, mMaxValue); FlattenableUtils::write(buffer, size, mResolution); FlattenableUtils::write(buffer, size, mPower); FlattenableUtils::write(buffer, size, mMinDelay); FlattenableUtils::write(buffer, size, mFifoReservedEventCount); FlattenableUtils::write(buffer, size, mFifoMaxEventCount); flattenString8(buffer, size, mStringType); flattenString8(buffer, size, mRequiredPermission); FlattenableUtils::write(buffer, size, mMaxDelay); FlattenableUtils::write(buffer, size, mWakeUpSensor); return NO_ERROR; } status_t Sensor::unflatten(void const* buffer, size_t size) { if (!unflattenString8(buffer, size, mName)) { return NO_MEMORY; } if (!unflattenString8(buffer, size, mVendor)) { return NO_MEMORY; } size_t fixedSize = sizeof(int32_t) * 3 + sizeof(float) * 4 + sizeof(int32_t) * 4 + sizeof(bool) * 1; if (size < fixedSize) { return NO_MEMORY; } FlattenableUtils::read(buffer, size, mVersion); FlattenableUtils::read(buffer, size, mHandle); FlattenableUtils::read(buffer, size, mType); FlattenableUtils::read(buffer, size, mMinValue); FlattenableUtils::read(buffer, size, mMaxValue); FlattenableUtils::read(buffer, size, mResolution); FlattenableUtils::read(buffer, size, mPower); FlattenableUtils::read(buffer, size, mMinDelay); FlattenableUtils::read(buffer, size, mFifoReservedEventCount); FlattenableUtils::read(buffer, size, mFifoMaxEventCount); if (!unflattenString8(buffer, size, mStringType)) { return NO_MEMORY; } if (!unflattenString8(buffer, size, mRequiredPermission)) { return NO_MEMORY; } FlattenableUtils::read(buffer, size, mMaxDelay); FlattenableUtils::read(buffer, size, mWakeUpSensor); return NO_ERROR; } void Sensor::flattenString8(void*& buffer, size_t& size, const String8& string8) { uint32_t len = string8.length(); FlattenableUtils::write(buffer, size, len); memcpy(static_cast(buffer), string8.string(), len); FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len)); } bool Sensor::unflattenString8(void const*& buffer, size_t& size, String8& outputString8) { uint32_t len; if (size < sizeof(len)) { return false; } FlattenableUtils::read(buffer, size, len); if (size < len) { return false; } outputString8.setTo(static_cast(buffer), len); FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len)); return true; } // ---------------------------------------------------------------------------- }; // namespace android