/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "EventHub" // #define LOG_NDEBUG 0 #include "EventHub.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* this macro is used to tell if "bit" is set in "array" * it selects a byte from the array, and does a boolean AND * operation with a byte that only has the relevant bit set. * eg. to check for the 12th bit, we do (array[1] & 1<<4) */ #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8))) /* this macro computes the number of bytes needed to represent a bit array of the specified size */ #define sizeof_bit_array(bits) ((bits + 7) / 8) #define INDENT " " #define INDENT2 " " #define INDENT3 " " namespace android { static const char *WAKE_LOCK_ID = "KeyEvents"; static const char *DEVICE_PATH = "/dev/input"; /* return the larger integer */ static inline int max(int v1, int v2) { return (v1 > v2) ? v1 : v2; } static inline const char* toString(bool value) { return value ? "true" : "false"; } static String8 sha1(const String8& in) { SHA1_CTX ctx; SHA1Init(&ctx); SHA1Update(&ctx, reinterpret_cast(in.string()), in.size()); u_char digest[SHA1_DIGEST_LENGTH]; SHA1Final(digest, &ctx); String8 out; for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) { out.appendFormat("%02x", digest[i]); } return out; } static void getLinuxRelease(int* major, int* minor) { struct utsname info; if (uname(&info) || sscanf(info.release, "%d.%d", major, minor) <= 0) { *major = 0, *minor = 0; ALOGE("Could not get linux version: %s", strerror(errno)); } } // --- Global Functions --- uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) { // Touch devices get dibs on touch-related axes. if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) { switch (axis) { case ABS_X: case ABS_Y: case ABS_PRESSURE: case ABS_TOOL_WIDTH: case ABS_DISTANCE: case ABS_TILT_X: case ABS_TILT_Y: case ABS_MT_SLOT: case ABS_MT_TOUCH_MAJOR: case ABS_MT_TOUCH_MINOR: case ABS_MT_WIDTH_MAJOR: case ABS_MT_WIDTH_MINOR: case ABS_MT_ORIENTATION: case ABS_MT_POSITION_X: case ABS_MT_POSITION_Y: case ABS_MT_TOOL_TYPE: case ABS_MT_BLOB_ID: case ABS_MT_TRACKING_ID: case ABS_MT_PRESSURE: case ABS_MT_DISTANCE: return INPUT_DEVICE_CLASS_TOUCH; } } // Joystick devices get the rest. return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK; } // --- EventHub::Device --- EventHub::Device::Device(int fd, int32_t id, const String8& path, const InputDeviceIdentifier& identifier) : next(NULL), fd(fd), id(id), path(path), identifier(identifier), classes(0), configuration(NULL), virtualKeyMap(NULL), ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0), timestampOverrideSec(0), timestampOverrideUsec(0) { memset(keyBitmask, 0, sizeof(keyBitmask)); memset(absBitmask, 0, sizeof(absBitmask)); memset(relBitmask, 0, sizeof(relBitmask)); memset(swBitmask, 0, sizeof(swBitmask)); memset(ledBitmask, 0, sizeof(ledBitmask)); memset(ffBitmask, 0, sizeof(ffBitmask)); memset(propBitmask, 0, sizeof(propBitmask)); } EventHub::Device::~Device() { close(); delete configuration; delete virtualKeyMap; } void EventHub::Device::close() { if (fd >= 0) { ::close(fd); fd = -1; } } // --- EventHub --- const uint32_t EventHub::EPOLL_ID_INOTIFY; const uint32_t EventHub::EPOLL_ID_WAKE; const int EventHub::EPOLL_SIZE_HINT; const int EventHub::EPOLL_MAX_EVENTS; EventHub::EventHub(void) : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(), mOpeningDevices(0), mClosingDevices(0), mNeedToSendFinishedDeviceScan(false), mNeedToReopenDevices(false), mNeedToScanDevices(true), mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); mEpollFd = epoll_create(EPOLL_SIZE_HINT); LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); mINotifyFd = inotify_init(); int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d", DEVICE_PATH, errno); struct epoll_event eventItem; memset(&eventItem, 0, sizeof(eventItem)); eventItem.events = EPOLLIN; eventItem.data.u32 = EPOLL_ID_INOTIFY; result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); int wakeFds[2]; result = pipe(wakeFds); LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); mWakeReadPipeFd = wakeFds[0]; mWakeWritePipeFd = wakeFds[1]; result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", errno); result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", errno); eventItem.data.u32 = EPOLL_ID_WAKE; result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", errno); int major, minor; getLinuxRelease(&major, &minor); // EPOLLWAKEUP was introduced in kernel 3.5 mUsingEpollWakeup = major > 3 || (major == 3 && minor >= 5); } EventHub::~EventHub(void) { closeAllDevicesLocked(); while (mClosingDevices) { Device* device = mClosingDevices; mClosingDevices = device->next; delete device; } ::close(mEpollFd); ::close(mINotifyFd); ::close(mWakeReadPipeFd); ::close(mWakeWritePipeFd); release_wake_lock(WAKE_LOCK_ID); } InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device == NULL) return InputDeviceIdentifier(); return device->identifier; } uint32_t EventHub::getDeviceClasses(int32_t deviceId) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device == NULL) return 0; return device->classes; } int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device == NULL) return 0; return device->controllerNumber; } void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && device->configuration) { *outConfiguration = *device->configuration; } else { outConfiguration->clear(); } } status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, RawAbsoluteAxisInfo* outAxisInfo) const { outAxisInfo->clear(); if (axis >= 0 && axis <= ABS_MAX) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { struct input_absinfo info; if(ioctl(device->fd, EVIOCGABS(axis), &info)) { ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis, device->identifier.name.string(), device->fd, errno); return -errno; } if (info.minimum != info.maximum) { outAxisInfo->valid = true; outAxisInfo->minValue = info.minimum; outAxisInfo->maxValue = info.maximum; outAxisInfo->flat = info.flat; outAxisInfo->fuzz = info.fuzz; outAxisInfo->resolution = info.resolution; } return OK; } } return -1; } bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const { if (axis >= 0 && axis <= REL_MAX) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device) { return test_bit(axis, device->relBitmask); } } return false; } bool EventHub::hasInputProperty(int32_t deviceId, int property) const { if (property >= 0 && property <= INPUT_PROP_MAX) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device) { return test_bit(property, device->propBitmask); } } return false; } int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { if (scanCode >= 0 && scanCode <= KEY_MAX) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) { uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; memset(keyState, 0, sizeof(keyState)); if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } } } return AKEY_STATE_UNKNOWN; } int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) { Vector scanCodes; device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes); if (scanCodes.size() != 0) { uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; memset(keyState, 0, sizeof(keyState)); if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { for (size_t i = 0; i < scanCodes.size(); i++) { int32_t sc = scanCodes.itemAt(i); if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) { return AKEY_STATE_DOWN; } } return AKEY_STATE_UP; } } } return AKEY_STATE_UNKNOWN; } int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { if (sw >= 0 && sw <= SW_MAX) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) { uint8_t swState[sizeof_bit_array(SW_MAX + 1)]; memset(swState, 0, sizeof(swState)); if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) { return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } } } return AKEY_STATE_UNKNOWN; } status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { *outValue = 0; if (axis >= 0 && axis <= ABS_MAX) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { struct input_absinfo info; if(ioctl(device->fd, EVIOCGABS(axis), &info)) { ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis, device->identifier.name.string(), device->fd, errno); return -errno; } *outValue = info.value; return OK; } } return -1; } bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && device->keyMap.haveKeyLayout()) { Vector scanCodes; for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) { scanCodes.clear(); status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey( keyCodes[codeIndex], &scanCodes); if (! err) { // check the possible scan codes identified by the layout map against the // map of codes actually emitted by the driver for (size_t sc = 0; sc < scanCodes.size(); sc++) { if (test_bit(scanCodes[sc], device->keyBitmask)) { outFlags[codeIndex] = 1; break; } } } } return true; } return false; } status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t* outKeycode, uint32_t* outFlags) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device) { // Check the key character map first. sp kcm = device->getKeyCharacterMap(); if (kcm != NULL) { if (!kcm->mapKey(scanCode, usageCode, outKeycode)) { *outFlags = 0; return NO_ERROR; } } // Check the key layout next. if (device->keyMap.haveKeyLayout()) { if (!device->keyMap.keyLayoutMap->mapKey( scanCode, usageCode, outKeycode, outFlags)) { return NO_ERROR; } } } *outKeycode = 0; *outFlags = 0; return NAME_NOT_FOUND; } status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && device->keyMap.haveKeyLayout()) { status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo); if (err == NO_ERROR) { return NO_ERROR; } } return NAME_NOT_FOUND; } void EventHub::setExcludedDevices(const Vector& devices) { AutoMutex _l(mLock); mExcludedDevices = devices; } bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && scanCode >= 0 && scanCode <= KEY_MAX) { if (test_bit(scanCode, device->keyBitmask)) { return true; } } return false; } bool EventHub::hasLed(int32_t deviceId, int32_t led) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); int32_t sc; if (device && mapLed(device, led, &sc) == NO_ERROR) { if (test_bit(sc, device->ledBitmask)) { return true; } } return false; } void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); setLedStateLocked(device, led, on); } void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) { int32_t sc; if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) { struct input_event ev; ev.time.tv_sec = 0; ev.time.tv_usec = 0; ev.type = EV_LED; ev.code = sc; ev.value = on ? 1 : 0; ssize_t nWrite; do { nWrite = write(device->fd, &ev, sizeof(struct input_event)); } while (nWrite == -1 && errno == EINTR); } } void EventHub::getVirtualKeyDefinitions(int32_t deviceId, Vector& outVirtualKeys) const { outVirtualKeys.clear(); AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && device->virtualKeyMap) { outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys()); } } sp EventHub::getKeyCharacterMap(int32_t deviceId) const { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device) { return device->getKeyCharacterMap(); } return NULL; } bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, const sp& map) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device) { if (map != device->overlayKeyMap) { device->overlayKeyMap = map; device->combinedKeyMap = KeyCharacterMap::combine( device->keyMap.keyCharacterMap, map); return true; } } return false; } static String8 generateDescriptor(InputDeviceIdentifier& identifier) { String8 rawDescriptor; rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product); // TODO add handling for USB devices to not uniqueify kbs that show up twice if (!identifier.uniqueId.isEmpty()) { rawDescriptor.append("uniqueId:"); rawDescriptor.append(identifier.uniqueId); } else if (identifier.nonce != 0) { rawDescriptor.appendFormat("nonce:%04x", identifier.nonce); } if (identifier.vendor == 0 && identifier.product == 0) { // If we don't know the vendor and product id, then the device is probably // built-in so we need to rely on other information to uniquely identify // the input device. Usually we try to avoid relying on the device name or // location but for built-in input device, they are unlikely to ever change. if (!identifier.name.isEmpty()) { rawDescriptor.append("name:"); rawDescriptor.append(identifier.name); } else if (!identifier.location.isEmpty()) { rawDescriptor.append("location:"); rawDescriptor.append(identifier.location); } } identifier.descriptor = sha1(rawDescriptor); return rawDescriptor; } void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) { // Compute a device descriptor that uniquely identifies the device. // The descriptor is assumed to be a stable identifier. Its value should not // change between reboots, reconnections, firmware updates or new releases // of Android. In practice we sometimes get devices that cannot be uniquely // identified. In this case we enforce uniqueness between connected devices. // Ideally, we also want the descriptor to be short and relatively opaque. identifier.nonce = 0; String8 rawDescriptor = generateDescriptor(identifier); if (identifier.uniqueId.isEmpty()) { // If it didn't have a unique id check for conflicts and enforce // uniqueness if necessary. while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) { identifier.nonce++; rawDescriptor = generateDescriptor(identifier); } } ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(), identifier.descriptor.string()); } void EventHub::vibrate(int32_t deviceId, nsecs_t duration) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && !device->isVirtual()) { ff_effect effect; memset(&effect, 0, sizeof(effect)); effect.type = FF_RUMBLE; effect.id = device->ffEffectId; effect.u.rumble.strong_magnitude = 0xc000; effect.u.rumble.weak_magnitude = 0xc000; effect.replay.length = (duration + 999999LL) / 1000000LL; effect.replay.delay = 0; if (ioctl(device->fd, EVIOCSFF, &effect)) { ALOGW("Could not upload force feedback effect to device %s due to error %d.", device->identifier.name.string(), errno); return; } device->ffEffectId = effect.id; struct input_event ev; ev.time.tv_sec = 0; ev.time.tv_usec = 0; ev.type = EV_FF; ev.code = device->ffEffectId; ev.value = 1; if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { ALOGW("Could not start force feedback effect on device %s due to error %d.", device->identifier.name.string(), errno); return; } device->ffEffectPlaying = true; } } void EventHub::cancelVibrate(int32_t deviceId) { AutoMutex _l(mLock); Device* device = getDeviceLocked(deviceId); if (device && !device->isVirtual()) { if (device->ffEffectPlaying) { device->ffEffectPlaying = false; struct input_event ev; ev.time.tv_sec = 0; ev.time.tv_usec = 0; ev.type = EV_FF; ev.code = device->ffEffectId; ev.value = 0; if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { ALOGW("Could not stop force feedback effect on device %s due to error %d.", device->identifier.name.string(), errno); return; } } } } EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const { size_t size = mDevices.size(); for (size_t i = 0; i < size; i++) { Device* device = mDevices.valueAt(i); if (descriptor.compare(device->identifier.descriptor) == 0) { return device; } } return NULL; } EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const { if (deviceId == BUILT_IN_KEYBOARD_ID) { deviceId = mBuiltInKeyboardId; } ssize_t index = mDevices.indexOfKey(deviceId); return index >= 0 ? mDevices.valueAt(index) : NULL; } EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const { for (size_t i = 0; i < mDevices.size(); i++) { Device* device = mDevices.valueAt(i); if (device->path == devicePath) { return device; } } return NULL; } size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { ALOG_ASSERT(bufferSize >= 1); AutoMutex _l(mLock); struct input_event readBuffer[bufferSize]; RawEvent* event = buffer; size_t capacity = bufferSize; bool awoken = false; for (;;) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); // Reopen input devices if needed. if (mNeedToReopenDevices) { mNeedToReopenDevices = false; ALOGI("Reopening all input devices due to a configuration change."); closeAllDevicesLocked(); mNeedToScanDevices = true; break; // return to the caller before we actually rescan } // Report any devices that had last been added/removed. while (mClosingDevices) { Device* device = mClosingDevices; ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.string()); mClosingDevices = device->next; event->when = now; event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id; event->type = DEVICE_REMOVED; event += 1; delete device; mNeedToSendFinishedDeviceScan = true; if (--capacity == 0) { break; } } if (mNeedToScanDevices) { mNeedToScanDevices = false; scanDevicesLocked(); mNeedToSendFinishedDeviceScan = true; } while (mOpeningDevices != NULL) { Device* device = mOpeningDevices; ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.string()); mOpeningDevices = device->next; event->when = now; event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; event->type = DEVICE_ADDED; event += 1; mNeedToSendFinishedDeviceScan = true; if (--capacity == 0) { break; } } if (mNeedToSendFinishedDeviceScan) { mNeedToSendFinishedDeviceScan = false; event->when = now; event->type = FINISHED_DEVICE_SCAN; event += 1; if (--capacity == 0) { break; } } // Grab the next input event. bool deviceChanged = false; while (mPendingEventIndex < mPendingEventCount) { const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; if (eventItem.data.u32 == EPOLL_ID_INOTIFY) { if (eventItem.events & EPOLLIN) { mPendingINotify = true; } else { ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); } continue; } if (eventItem.data.u32 == EPOLL_ID_WAKE) { if (eventItem.events & EPOLLIN) { ALOGV("awoken after wake()"); awoken = true; char buffer[16]; ssize_t nRead; do { nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer)); } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer)); } else { ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", eventItem.events); } continue; } ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32); if (deviceIndex < 0) { ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.", eventItem.events, eventItem.data.u32); continue; } Device* device = mDevices.valueAt(deviceIndex); if (eventItem.events & EPOLLIN) { int32_t readSize = read(device->fd, readBuffer, sizeof(struct input_event) * capacity); if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { // Device was removed before INotify noticed. ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d " "capacity: %zu errno: %d)\n", device->fd, readSize, bufferSize, capacity, errno); deviceChanged = true; closeDeviceLocked(device); } else if (readSize < 0) { if (errno != EAGAIN && errno != EINTR) { ALOGW("could not get event (errno=%d)", errno); } } else if ((readSize % sizeof(struct input_event)) != 0) { ALOGE("could not get event (wrong size: %d)", readSize); } else { int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; size_t count = size_t(readSize) / sizeof(struct input_event); for (size_t i = 0; i < count; i++) { struct input_event& iev = readBuffer[i]; ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d", device->path.string(), (int) iev.time.tv_sec, (int) iev.time.tv_usec, iev.type, iev.code, iev.value); // Some input devices may have a better concept of the time // when an input event was actually generated than the kernel // which simply timestamps all events on entry to evdev. // This is a custom Android extension of the input protocol // mainly intended for use with uinput based device drivers. if (iev.type == EV_MSC) { if (iev.code == MSC_ANDROID_TIME_SEC) { device->timestampOverrideSec = iev.value; continue; } else if (iev.code == MSC_ANDROID_TIME_USEC) { device->timestampOverrideUsec = iev.value; continue; } } if (device->timestampOverrideSec || device->timestampOverrideUsec) { iev.time.tv_sec = device->timestampOverrideSec; iev.time.tv_usec = device->timestampOverrideUsec; if (iev.type == EV_SYN && iev.code == SYN_REPORT) { device->timestampOverrideSec = 0; device->timestampOverrideUsec = 0; } ALOGV("applied override time %d.%06d", int(iev.time.tv_sec), int(iev.time.tv_usec)); } #ifdef HAVE_POSIX_CLOCKS // Use the time specified in the event instead of the current time // so that downstream code can get more accurate estimates of // event dispatch latency from the time the event is enqueued onto // the evdev client buffer. // // The event's timestamp fortuitously uses the same monotonic clock // time base as the rest of Android. The kernel event device driver // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts(). // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a // system call that also queries ktime_get_ts(). event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL + nsecs_t(iev.time.tv_usec) * 1000LL; ALOGV("event time %lld, now %lld", event->when, now); // Bug 7291243: Add a guard in case the kernel generates timestamps // that appear to be far into the future because they were generated // using the wrong clock source. // // This can happen because when the input device is initially opened // it has a default clock source of CLOCK_REALTIME. Any input events // enqueued right after the device is opened will have timestamps // generated using CLOCK_REALTIME. We later set the clock source // to CLOCK_MONOTONIC but it is already too late. // // Invalid input event timestamps can result in ANRs, crashes and // and other issues that are hard to track down. We must not let them // propagate through the system. // // Log a warning so that we notice the problem and recover gracefully. if (event->when >= now + 10 * 1000000000LL) { // Double-check. Time may have moved on. nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC); if (event->when > time) { ALOGW("An input event from %s has a timestamp that appears to " "have been generated using the wrong clock source " "(expected CLOCK_MONOTONIC): " "event time %lld, current time %lld, call time %lld. " "Using current time instead.", device->path.string(), event->when, time, now); event->when = time; } else { ALOGV("Event time is ok but failed the fast path and required " "an extra call to systemTime: " "event time %lld, current time %lld, call time %lld.", event->when, time, now); } } #else event->when = now; #endif event->deviceId = deviceId; event->type = iev.type; event->code = iev.code; event->value = iev.value; event += 1; capacity -= 1; } if (capacity == 0) { // The result buffer is full. Reset the pending event index // so we will try to read the device again on the next iteration. mPendingEventIndex -= 1; break; } } } else if (eventItem.events & EPOLLHUP) { ALOGI("Removing device %s due to epoll hang-up event.", device->identifier.name.string()); deviceChanged = true; closeDeviceLocked(device); } else { ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events, device->identifier.name.string()); } } // readNotify() will modify the list of devices so this must be done after // processing all other events to ensure that we read all remaining events // before closing the devices. if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { mPendingINotify = false; readNotifyLocked(); deviceChanged = true; } // Report added or removed devices immediately. if (deviceChanged) { continue; } // Return now if we have collected any events or if we were explicitly awoken. if (event != buffer || awoken) { break; } // Poll for events. Mind the wake lock dance! // We hold a wake lock at all times except during epoll_wait(). This works due to some // subtle choreography. When a device driver has pending (unread) events, it acquires // a kernel wake lock. However, once the last pending event has been read, the device // driver will release the kernel wake lock. To prevent the system from going to sleep // when this happens, the EventHub holds onto its own user wake lock while the client // is processing events. Thus the system can only sleep if there are no events // pending or currently being processed. // // The timeout is advisory only. If the device is asleep, it will not wake just to // service the timeout. mPendingEventIndex = 0; mLock.unlock(); // release lock before poll, must be before release_wake_lock release_wake_lock(WAKE_LOCK_ID); int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock if (pollResult == 0) { // Timed out. mPendingEventCount = 0; break; } if (pollResult < 0) { // An error occurred. mPendingEventCount = 0; // Sleep after errors to avoid locking up the system. // Hopefully the error is transient. if (errno != EINTR) { ALOGW("poll failed (errno=%d)\n", errno); usleep(100000); } } else { // Some events occurred. mPendingEventCount = size_t(pollResult); } } // All done, return the number of events we read. return event - buffer; } void EventHub::wake() { ALOGV("wake() called"); ssize_t nWrite; do { nWrite = write(mWakeWritePipeFd, "W", 1); } while (nWrite == -1 && errno == EINTR); if (nWrite != 1 && errno != EAGAIN) { ALOGW("Could not write wake signal, errno=%d", errno); } } void EventHub::scanDevicesLocked() { status_t res = scanDirLocked(DEVICE_PATH); if(res < 0) { ALOGE("scan dir failed for %s\n", DEVICE_PATH); } if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) { createVirtualKeyboardLocked(); } } // ---------------------------------------------------------------------------- static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) { const uint8_t* end = array + endIndex; array += startIndex; while (array != end) { if (*(array++) != 0) { return true; } } return false; } static const int32_t GAMEPAD_KEYCODES[] = { AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, }; status_t EventHub::openDeviceLocked(const char *devicePath) { char buffer[80]; ALOGV("Opening device: %s", devicePath); int fd = open(devicePath, O_RDWR | O_CLOEXEC); if(fd < 0) { ALOGE("could not open %s, %s\n", devicePath, strerror(errno)); return -1; } InputDeviceIdentifier identifier; // Get device name. if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno)); } else { buffer[sizeof(buffer) - 1] = '\0'; identifier.name.setTo(buffer); } // Check to see if the device is on our excluded list for (size_t i = 0; i < mExcludedDevices.size(); i++) { const String8& item = mExcludedDevices.itemAt(i); if (identifier.name == item) { ALOGI("ignoring event id %s driver %s\n", devicePath, item.string()); close(fd); return -1; } } // Get device driver version. int driverVersion; if(ioctl(fd, EVIOCGVERSION, &driverVersion)) { ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno)); close(fd); return -1; } // Get device identifier. struct input_id inputId; if(ioctl(fd, EVIOCGID, &inputId)) { ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno)); close(fd); return -1; } identifier.bus = inputId.bustype; identifier.product = inputId.product; identifier.vendor = inputId.vendor; identifier.version = inputId.version; // Get device physical location. if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); } else { buffer[sizeof(buffer) - 1] = '\0'; identifier.location.setTo(buffer); } // Get device unique id. if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); } else { buffer[sizeof(buffer) - 1] = '\0'; identifier.uniqueId.setTo(buffer); } // Fill in the descriptor. assignDescriptorLocked(identifier); // Make file descriptor non-blocking for use with poll(). if (fcntl(fd, F_SETFL, O_NONBLOCK)) { ALOGE("Error %d making device file descriptor non-blocking.", errno); close(fd); return -1; } // Allocate device. (The device object takes ownership of the fd at this point.) int32_t deviceId = mNextDeviceId++; Device* device = new Device(fd, deviceId, String8(devicePath), identifier); ALOGV("add device %d: %s\n", deviceId, devicePath); ALOGV(" bus: %04x\n" " vendor %04x\n" " product %04x\n" " version %04x\n", identifier.bus, identifier.vendor, identifier.product, identifier.version); ALOGV(" name: \"%s\"\n", identifier.name.string()); ALOGV(" location: \"%s\"\n", identifier.location.string()); ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string()); ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string()); ALOGV(" driver: v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff); // Load the configuration file for the device. loadConfigurationLocked(device); // Figure out the kinds of events the device reports. ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask); ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask); ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask); ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask); ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask); ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask); ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask); // See if this is a keyboard. Ignore everything in the button range except for // joystick and gamepad buttons which are handled like keyboards for the most part. bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC)) || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK), sizeof_bit_array(KEY_MAX + 1)); bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC), sizeof_bit_array(BTN_MOUSE)) || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK), sizeof_bit_array(BTN_DIGI)); if (haveKeyboardKeys || haveGamepadButtons) { device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; } // See if this is a cursor device such as a trackball or mouse. if (test_bit(BTN_MOUSE, device->keyBitmask) && test_bit(REL_X, device->relBitmask) && test_bit(REL_Y, device->relBitmask)) { device->classes |= INPUT_DEVICE_CLASS_CURSOR; } // See if this is a touch pad. // Is this a new modern multi-touch driver? if (test_bit(ABS_MT_POSITION_X, device->absBitmask) && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) { // Some joysticks such as the PS3 controller report axes that conflict // with the ABS_MT range. Try to confirm that the device really is // a touch screen. if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) { device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT; } // Is this an old style single-touch driver? } else if (test_bit(BTN_TOUCH, device->keyBitmask) && test_bit(ABS_X, device->absBitmask) && test_bit(ABS_Y, device->absBitmask)) { device->classes |= INPUT_DEVICE_CLASS_TOUCH; } // See if this device is a joystick. // Assumes that joysticks always have gamepad buttons in order to distinguish them // from other devices such as accelerometers that also have absolute axes. if (haveGamepadButtons) { uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK; for (int i = 0; i <= ABS_MAX; i++) { if (test_bit(i, device->absBitmask) && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) { device->classes = assumedClasses; break; } } } // Check whether this device has switches. for (int i = 0; i <= SW_MAX; i++) { if (test_bit(i, device->swBitmask)) { device->classes |= INPUT_DEVICE_CLASS_SWITCH; break; } } // Check whether this device supports the vibrator. if (test_bit(FF_RUMBLE, device->ffBitmask)) { device->classes |= INPUT_DEVICE_CLASS_VIBRATOR; } // Configure virtual keys. if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) { // Load the virtual keys for the touch screen, if any. // We do this now so that we can make sure to load the keymap if necessary. status_t status = loadVirtualKeyMapLocked(device); if (!status) { device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; } } // Load the key map. // We need to do this for joysticks too because the key layout may specify axes. status_t keyMapStatus = NAME_NOT_FOUND; if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) { // Load the keymap for the device. keyMapStatus = loadKeyMapLocked(device); } // Configure the keyboard, gamepad or virtual keyboard. if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) { // Register the keyboard as a built-in keyboard if it is eligible. if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD && isEligibleBuiltInKeyboard(device->identifier, device->configuration, &device->keyMap)) { mBuiltInKeyboardId = device->id; } // 'Q' key support = cheap test of whether this is an alpha-capable kbd if (hasKeycodeLocked(device, AKEYCODE_Q)) { device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; } // See if this device has a DPAD. if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { device->classes |= INPUT_DEVICE_CLASS_DPAD; } // See if this device has a gamepad. for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; break; } } // Disable kernel key repeat since we handle it ourselves unsigned int repeatRate[] = {0,0}; if (ioctl(fd, EVIOCSREP, repeatRate)) { ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno)); } } // If the device isn't recognized as something we handle, don't monitor it. if (device->classes == 0) { ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath, device->identifier.name.string()); delete device; return -1; } // Determine whether the device is external or internal. if (isExternalDeviceLocked(device)) { device->classes |= INPUT_DEVICE_CLASS_EXTERNAL; } if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD) && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) { device->controllerNumber = getNextControllerNumberLocked(device); setLedForController(device); } // Register with epoll. struct epoll_event eventItem; memset(&eventItem, 0, sizeof(eventItem)); eventItem.events = mUsingEpollWakeup ? EPOLLIN : EPOLLIN | EPOLLWAKEUP; eventItem.data.u32 = deviceId; if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { ALOGE("Could not add device fd to epoll instance. errno=%d", errno); delete device; return -1; } String8 wakeMechanism("EPOLLWAKEUP"); if (!mUsingEpollWakeup) { #ifndef EVIOCSSUSPENDBLOCK // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels // will use an epoll flag instead, so as long as we want to support // this feature, we need to be prepared to define the ioctl ourselves. #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int) #endif if (ioctl(fd, EVIOCSSUSPENDBLOCK, 1)) { wakeMechanism = ""; } else { wakeMechanism = "EVIOCSSUSPENDBLOCK"; } } // Tell the kernel that we want to use the monotonic clock for reporting timestamps // associated with input events. This is important because the input system // uses the timestamps extensively and assumes they were recorded using the monotonic // clock. // // In older kernel, before Linux 3.4, there was no way to tell the kernel which // clock to use to input event timestamps. The standard kernel behavior was to // record a real time timestamp, which isn't what we want. Android kernels therefore // contained a patch to the evdev_event() function in drivers/input/evdev.c to // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic // clock to be used instead of the real time clock. // // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock. // Therefore, we no longer require the Android-specific kernel patch described above // as long as we make sure to set select the monotonic clock. We do that here. int clockId = CLOCK_MONOTONIC; bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId); ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, " "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, " "wakeMechanism=%s, usingClockIoctl=%s", deviceId, fd, devicePath, device->identifier.name.string(), device->classes, device->configurationFile.string(), device->keyMap.keyLayoutFile.string(), device->keyMap.keyCharacterMapFile.string(), toString(mBuiltInKeyboardId == deviceId), wakeMechanism.string(), toString(usingClockIoctl)); addDeviceLocked(device); return 0; } void EventHub::createVirtualKeyboardLocked() { InputDeviceIdentifier identifier; identifier.name = "Virtual"; identifier.uniqueId = ""; assignDescriptorLocked(identifier); Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8(""), identifier); device->classes = INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_ALPHAKEY | INPUT_DEVICE_CLASS_DPAD | INPUT_DEVICE_CLASS_VIRTUAL; loadKeyMapLocked(device); addDeviceLocked(device); } void EventHub::addDeviceLocked(Device* device) { mDevices.add(device->id, device); device->next = mOpeningDevices; mOpeningDevices = device; } void EventHub::loadConfigurationLocked(Device* device) { device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier( device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION); if (device->configurationFile.isEmpty()) { ALOGD("No input device configuration file found for device '%s'.", device->identifier.name.string()); } else { status_t status = PropertyMap::load(device->configurationFile, &device->configuration); if (status) { ALOGE("Error loading input device configuration file for device '%s'. " "Using default configuration.", device->identifier.name.string()); } } } status_t EventHub::loadVirtualKeyMapLocked(Device* device) { // The virtual key map is supplied by the kernel as a system board property file. String8 path; path.append("/sys/board_properties/virtualkeys."); path.append(device->identifier.name); if (access(path.string(), R_OK)) { return NAME_NOT_FOUND; } return VirtualKeyMap::load(path, &device->virtualKeyMap); } status_t EventHub::loadKeyMapLocked(Device* device) { return device->keyMap.load(device->identifier, device->configuration); } bool EventHub::isExternalDeviceLocked(Device* device) { if (device->configuration) { bool value; if (device->configuration->tryGetProperty(String8("device.internal"), value)) { return !value; } } return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH; } int32_t EventHub::getNextControllerNumberLocked(Device* device) { if (mControllerNumbers.isFull()) { ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s", device->identifier.name.string()); return 0; } // Since the controller number 0 is reserved for non-controllers, translate all numbers up by // one return static_cast(mControllerNumbers.markFirstUnmarkedBit() + 1); } void EventHub::releaseControllerNumberLocked(Device* device) { int32_t num = device->controllerNumber; device->controllerNumber= 0; if (num == 0) { return; } mControllerNumbers.clearBit(static_cast(num - 1)); } void EventHub::setLedForController(Device* device) { for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) { setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1); } } bool EventHub::hasKeycodeLocked(Device* device, int keycode) const { if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) { return false; } Vector scanCodes; device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes); const size_t N = scanCodes.size(); for (size_t i=0; i= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) { return true; } } return false; } status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const { if (!device->keyMap.haveKeyLayout() || !device->ledBitmask) { return NAME_NOT_FOUND; } int32_t scanCode; if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) { if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) { *outScanCode = scanCode; return NO_ERROR; } } return NAME_NOT_FOUND; } status_t EventHub::closeDeviceByPathLocked(const char *devicePath) { Device* device = getDeviceByPathLocked(devicePath); if (device) { closeDeviceLocked(device); return 0; } ALOGV("Remove device: %s not found, device may already have been removed.", devicePath); return -1; } void EventHub::closeAllDevicesLocked() { while (mDevices.size() > 0) { closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1)); } } void EventHub::closeDeviceLocked(Device* device) { ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n", device->path.string(), device->identifier.name.string(), device->id, device->fd, device->classes); if (device->id == mBuiltInKeyboardId) { ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", device->path.string(), mBuiltInKeyboardId); mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD; } if (!device->isVirtual()) { if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) { ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); } } releaseControllerNumberLocked(device); mDevices.removeItem(device->id); device->close(); // Unlink for opening devices list if it is present. Device* pred = NULL; bool found = false; for (Device* entry = mOpeningDevices; entry != NULL; ) { if (entry == device) { found = true; break; } pred = entry; entry = entry->next; } if (found) { // Unlink the device from the opening devices list then delete it. // We don't need to tell the client that the device was closed because // it does not even know it was opened in the first place. ALOGI("Device %s was immediately closed after opening.", device->path.string()); if (pred) { pred->next = device->next; } else { mOpeningDevices = device->next; } delete device; } else { // Link into closing devices list. // The device will be deleted later after we have informed the client. device->next = mClosingDevices; mClosingDevices = device; } } status_t EventHub::readNotifyLocked() { int res; char devname[PATH_MAX]; char *filename; char event_buf[512]; int event_size; int event_pos = 0; struct inotify_event *event; ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd); res = read(mINotifyFd, event_buf, sizeof(event_buf)); if(res < (int)sizeof(*event)) { if(errno == EINTR) return 0; ALOGW("could not get event, %s\n", strerror(errno)); return -1; } //printf("got %d bytes of event information\n", res); strcpy(devname, DEVICE_PATH); filename = devname + strlen(devname); *filename++ = '/'; while(res >= (int)sizeof(*event)) { event = (struct inotify_event *)(event_buf + event_pos); //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : ""); if(event->len) { strcpy(filename, event->name); if(event->mask & IN_CREATE) { openDeviceLocked(devname); } else { ALOGI("Removing device '%s' due to inotify event\n", devname); closeDeviceByPathLocked(devname); } } event_size = sizeof(*event) + event->len; res -= event_size; event_pos += event_size; } return 0; } status_t EventHub::scanDirLocked(const char *dirname) { char devname[PATH_MAX]; char *filename; DIR *dir; struct dirent *de; dir = opendir(dirname); if(dir == NULL) return -1; strcpy(devname, dirname); filename = devname + strlen(devname); *filename++ = '/'; while((de = readdir(dir))) { if(de->d_name[0] == '.' && (de->d_name[1] == '\0' || (de->d_name[1] == '.' && de->d_name[2] == '\0'))) continue; strcpy(filename, de->d_name); openDeviceLocked(devname); } closedir(dir); return 0; } void EventHub::requestReopenDevices() { ALOGV("requestReopenDevices() called"); AutoMutex _l(mLock); mNeedToReopenDevices = true; } void EventHub::dump(String8& dump) { dump.append("Event Hub State:\n"); { // acquire lock AutoMutex _l(mLock); dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId); dump.append(INDENT "Devices:\n"); for (size_t i = 0; i < mDevices.size(); i++) { const Device* device = mDevices.valueAt(i); if (mBuiltInKeyboardId == device->id) { dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n", device->id, device->identifier.name.string()); } else { dump.appendFormat(INDENT2 "%d: %s\n", device->id, device->identifier.name.string()); } dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes); dump.appendFormat(INDENT3 "Path: %s\n", device->path.string()); dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string()); dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string()); dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber); dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string()); dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, " "product=0x%04x, version=0x%04x\n", device->identifier.bus, device->identifier.vendor, device->identifier.product, device->identifier.version); dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n", device->keyMap.keyLayoutFile.string()); dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n", device->keyMap.keyCharacterMapFile.string()); dump.appendFormat(INDENT3 "ConfigurationFile: %s\n", device->configurationFile.string()); dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n", toString(device->overlayKeyMap != NULL)); } } // release lock } void EventHub::monitor() { // Acquire and release the lock to ensure that the event hub has not deadlocked. mLock.lock(); mLock.unlock(); } }; // namespace android