/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "BasicHashtable_test" #include <utils/BasicHashtable.h> #include <cutils/log.h> #include <gtest/gtest.h> #include <unistd.h> namespace android { typedef int SimpleKey; typedef int SimpleValue; typedef key_value_pair_t<SimpleKey, SimpleValue> SimpleEntry; typedef BasicHashtable<SimpleKey, SimpleEntry> SimpleHashtable; struct ComplexKey { int k; explicit ComplexKey(int k) : k(k) { instanceCount += 1; } ComplexKey(const ComplexKey& other) : k(other.k) { instanceCount += 1; } ~ComplexKey() { instanceCount -= 1; } bool operator ==(const ComplexKey& other) const { return k == other.k; } bool operator !=(const ComplexKey& other) const { return k != other.k; } static ssize_t instanceCount; }; ssize_t ComplexKey::instanceCount = 0; template<> inline hash_t hash_type(const ComplexKey& value) { return hash_type(value.k); } struct ComplexValue { int v; explicit ComplexValue(int v) : v(v) { instanceCount += 1; } ComplexValue(const ComplexValue& other) : v(other.v) { instanceCount += 1; } ~ComplexValue() { instanceCount -= 1; } static ssize_t instanceCount; }; ssize_t ComplexValue::instanceCount = 0; typedef key_value_pair_t<ComplexKey, ComplexValue> ComplexEntry; typedef BasicHashtable<ComplexKey, ComplexEntry> ComplexHashtable; class BasicHashtableTest : public testing::Test { protected: virtual void SetUp() { ComplexKey::instanceCount = 0; ComplexValue::instanceCount = 0; } virtual void TearDown() { ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0)); } void assertInstanceCount(ssize_t keys, ssize_t values) { if (keys != ComplexKey::instanceCount || values != ComplexValue::instanceCount) { FAIL() << "Expected " << keys << " keys and " << values << " values " "but there were actually " << ComplexKey::instanceCount << " keys and " << ComplexValue::instanceCount << " values"; } } public: template <typename TKey, typename TEntry> static void cookieAt(const BasicHashtable<TKey, TEntry>& h, size_t index, bool* collision, bool* present, hash_t* hash) { uint32_t cookie = h.cookieAt(index); *collision = cookie & BasicHashtable<TKey, TEntry>::Bucket::COLLISION; *present = cookie & BasicHashtable<TKey, TEntry>::Bucket::PRESENT; *hash = cookie & BasicHashtable<TKey, TEntry>::Bucket::HASH_MASK; } template <typename TKey, typename TEntry> static const void* getBuckets(const BasicHashtable<TKey, TEntry>& h) { return h.mBuckets; } }; template <typename TKey, typename TValue> static size_t add(BasicHashtable<TKey, key_value_pair_t<TKey, TValue> >& h, const TKey& key, const TValue& value) { return h.add(hash_type(key), key_value_pair_t<TKey, TValue>(key, value)); } template <typename TKey, typename TValue> static ssize_t find(BasicHashtable<TKey, key_value_pair_t<TKey, TValue> >& h, ssize_t index, const TKey& key) { return h.find(index, hash_type(key), key); } template <typename TKey, typename TValue> static bool remove(BasicHashtable<TKey, key_value_pair_t<TKey, TValue> >& h, const TKey& key) { ssize_t index = find(h, -1, key); if (index >= 0) { h.removeAt(index); return true; } return false; } template <typename TEntry> static void getKeyValue(const TEntry& entry, int* key, int* value); template <> void getKeyValue(const SimpleEntry& entry, int* key, int* value) { *key = entry.key; *value = entry.value; } template <> void getKeyValue(const ComplexEntry& entry, int* key, int* value) { *key = entry.key.k; *value = entry.value.v; } template <typename TKey, typename TValue> static void dump(BasicHashtable<TKey, key_value_pair_t<TKey, TValue> >& h) { ALOGD("hashtable %p, size=%u, capacity=%u, bucketCount=%u", &h, h.size(), h.capacity(), h.bucketCount()); for (size_t i = 0; i < h.bucketCount(); i++) { bool collision, present; hash_t hash; BasicHashtableTest::cookieAt(h, i, &collision, &present, &hash); if (present) { int key, value; getKeyValue(h.entryAt(i), &key, &value); ALOGD(" [%3u] = collision=%d, present=%d, hash=0x%08x, key=%3d, value=%3d, " "hash_type(key)=0x%08x", i, collision, present, hash, key, value, hash_type(key)); } else { ALOGD(" [%3u] = collision=%d, present=%d", i, collision, present); } } } TEST_F(BasicHashtableTest, DefaultConstructor_WithDefaultProperties) { SimpleHashtable h; EXPECT_EQ(0U, h.size()); EXPECT_EQ(3U, h.capacity()); EXPECT_EQ(5U, h.bucketCount()); EXPECT_EQ(0.75f, h.loadFactor()); } TEST_F(BasicHashtableTest, Constructor_WithNonUnityLoadFactor) { SimpleHashtable h(52, 0.8f); EXPECT_EQ(0U, h.size()); EXPECT_EQ(77U, h.capacity()); EXPECT_EQ(97U, h.bucketCount()); EXPECT_EQ(0.8f, h.loadFactor()); } TEST_F(BasicHashtableTest, Constructor_WithUnityLoadFactorAndExactCapacity) { SimpleHashtable h(46, 1.0f); EXPECT_EQ(0U, h.size()); EXPECT_EQ(46U, h.capacity()); // must be one less than bucketCount because loadFactor == 1.0f EXPECT_EQ(47U, h.bucketCount()); EXPECT_EQ(1.0f, h.loadFactor()); } TEST_F(BasicHashtableTest, Constructor_WithUnityLoadFactorAndInexactCapacity) { SimpleHashtable h(42, 1.0f); EXPECT_EQ(0U, h.size()); EXPECT_EQ(46U, h.capacity()); // must be one less than bucketCount because loadFactor == 1.0f EXPECT_EQ(47U, h.bucketCount()); EXPECT_EQ(1.0f, h.loadFactor()); } TEST_F(BasicHashtableTest, FindAddFindRemoveFind_OneEntry) { SimpleHashtable h; ssize_t index = find(h, -1, 8); ASSERT_EQ(-1, index); index = add(h, 8, 1); ASSERT_EQ(1U, h.size()); ASSERT_EQ(index, find(h, -1, 8)); ASSERT_EQ(8, h.entryAt(index).key); ASSERT_EQ(1, h.entryAt(index).value); index = find(h, index, 8); ASSERT_EQ(-1, index); ASSERT_TRUE(remove(h, 8)); ASSERT_EQ(0U, h.size()); index = find(h, -1, 8); ASSERT_EQ(-1, index); } TEST_F(BasicHashtableTest, FindAddFindRemoveFind_MultipleEntryWithUniqueKey) { const size_t N = 11; SimpleHashtable h; for (size_t i = 0; i < N; i++) { ssize_t index = find(h, -1, int(i)); ASSERT_EQ(-1, index); index = add(h, int(i), int(i * 10)); ASSERT_EQ(i + 1, h.size()); ASSERT_EQ(index, find(h, -1, int(i))); ASSERT_EQ(int(i), h.entryAt(index).key); ASSERT_EQ(int(i * 10), h.entryAt(index).value); index = find(h, index, int(i)); ASSERT_EQ(-1, index); } for (size_t i = N; --i > 0; ) { ASSERT_TRUE(remove(h, int(i))) << "i = " << i; ASSERT_EQ(i, h.size()); ssize_t index = find(h, -1, int(i)); ASSERT_EQ(-1, index); } } TEST_F(BasicHashtableTest, FindAddFindRemoveFind_MultipleEntryWithDuplicateKey) { const size_t N = 11; const int K = 1; SimpleHashtable h; for (size_t i = 0; i < N; i++) { ssize_t index = find(h, -1, K); if (i == 0) { ASSERT_EQ(-1, index); } else { ASSERT_NE(-1, index); } add(h, K, int(i)); ASSERT_EQ(i + 1, h.size()); index = -1; int values = 0; for (size_t j = 0; j <= i; j++) { index = find(h, index, K); ASSERT_GE(index, 0); ASSERT_EQ(K, h.entryAt(index).key); values |= 1 << h.entryAt(index).value; } ASSERT_EQ(values, (1 << (i + 1)) - 1); index = find(h, index, K); ASSERT_EQ(-1, index); } for (size_t i = N; --i > 0; ) { ASSERT_TRUE(remove(h, K)) << "i = " << i; ASSERT_EQ(i, h.size()); ssize_t index = -1; for (size_t j = 0; j < i; j++) { index = find(h, index, K); ASSERT_GE(index, 0); ASSERT_EQ(K, h.entryAt(index).key); } index = find(h, index, K); ASSERT_EQ(-1, index); } } TEST_F(BasicHashtableTest, Clear_WhenAlreadyEmpty_DoesNothing) { SimpleHashtable h; h.clear(); EXPECT_EQ(0U, h.size()); EXPECT_EQ(3U, h.capacity()); EXPECT_EQ(5U, h.bucketCount()); EXPECT_EQ(0.75f, h.loadFactor()); } TEST_F(BasicHashtableTest, Clear_AfterElementsAdded_RemovesThem) { SimpleHashtable h; add(h, 0, 0); add(h, 1, 0); h.clear(); EXPECT_EQ(0U, h.size()); EXPECT_EQ(3U, h.capacity()); EXPECT_EQ(5U, h.bucketCount()); EXPECT_EQ(0.75f, h.loadFactor()); } TEST_F(BasicHashtableTest, Clear_AfterElementsAdded_DestroysThem) { ComplexHashtable h; add(h, ComplexKey(0), ComplexValue(0)); add(h, ComplexKey(1), ComplexValue(0)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); h.clear(); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0)); EXPECT_EQ(0U, h.size()); EXPECT_EQ(3U, h.capacity()); EXPECT_EQ(5U, h.bucketCount()); EXPECT_EQ(0.75f, h.loadFactor()); } TEST_F(BasicHashtableTest, Remove_AfterElementsAdded_DestroysThem) { ComplexHashtable h; add(h, ComplexKey(0), ComplexValue(0)); add(h, ComplexKey(1), ComplexValue(0)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); ASSERT_TRUE(remove(h, ComplexKey(0))); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(1, 1)); ASSERT_TRUE(remove(h, ComplexKey(1))); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0)); EXPECT_EQ(0U, h.size()); EXPECT_EQ(3U, h.capacity()); EXPECT_EQ(5U, h.bucketCount()); EXPECT_EQ(0.75f, h.loadFactor()); } TEST_F(BasicHashtableTest, Destructor_AfterElementsAdded_DestroysThem) { { ComplexHashtable h; add(h, ComplexKey(0), ComplexValue(0)); add(h, ComplexKey(1), ComplexValue(0)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); } // h is destroyed here ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0)); } TEST_F(BasicHashtableTest, Next_WhenEmpty_ReturnsMinusOne) { SimpleHashtable h; ASSERT_EQ(-1, h.next(-1)); } TEST_F(BasicHashtableTest, Next_WhenNonEmpty_IteratesOverAllEntries) { const int N = 88; SimpleHashtable h; for (int i = 0; i < N; i++) { add(h, i, i * 10); } bool set[N]; memset(set, 0, sizeof(bool) * N); int count = 0; for (ssize_t index = -1; (index = h.next(index)) != -1; ) { ASSERT_GE(index, 0); ASSERT_LT(size_t(index), h.bucketCount()); const SimpleEntry& entry = h.entryAt(index); ASSERT_GE(entry.key, 0); ASSERT_LT(entry.key, N); ASSERT_EQ(false, set[entry.key]); ASSERT_EQ(entry.key * 10, entry.value); set[entry.key] = true; count += 1; } ASSERT_EQ(N, count); } TEST_F(BasicHashtableTest, Add_RehashesOnDemand) { SimpleHashtable h; size_t initialCapacity = h.capacity(); size_t initialBucketCount = h.bucketCount(); for (size_t i = 0; i < initialCapacity; i++) { add(h, int(i), 0); } EXPECT_EQ(initialCapacity, h.size()); EXPECT_EQ(initialCapacity, h.capacity()); EXPECT_EQ(initialBucketCount, h.bucketCount()); add(h, -1, -1); EXPECT_EQ(initialCapacity + 1, h.size()); EXPECT_GT(h.capacity(), initialCapacity); EXPECT_GT(h.bucketCount(), initialBucketCount); EXPECT_GT(h.bucketCount(), h.capacity()); } TEST_F(BasicHashtableTest, Rehash_WhenCapacityAndBucketCountUnchanged_DoesNothing) { ComplexHashtable h; add(h, ComplexKey(0), ComplexValue(0)); const void* oldBuckets = getBuckets(h); ASSERT_NE((void*)NULL, oldBuckets); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(1, 1)); h.rehash(h.capacity(), h.loadFactor()); ASSERT_EQ(oldBuckets, getBuckets(h)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(1, 1)); } TEST_F(BasicHashtableTest, Rehash_WhenEmptyAndHasNoBuckets_ButDoesNotAllocateBuckets) { ComplexHashtable h; ASSERT_EQ((void*)NULL, getBuckets(h)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0)); h.rehash(9, 1.0f); EXPECT_EQ(0U, h.size()); EXPECT_EQ(10U, h.capacity()); EXPECT_EQ(11U, h.bucketCount()); EXPECT_EQ(1.0f, h.loadFactor()); EXPECT_EQ((void*)NULL, getBuckets(h)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0)); } TEST_F(BasicHashtableTest, Rehash_WhenEmptyAndHasBuckets_ReleasesBucketsAndSetsCapacity) { ComplexHashtable h(10); add(h, ComplexKey(0), ComplexValue(0)); ASSERT_TRUE(remove(h, ComplexKey(0))); ASSERT_NE((void*)NULL, getBuckets(h)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0)); h.rehash(0, 0.75f); EXPECT_EQ(0U, h.size()); EXPECT_EQ(3U, h.capacity()); EXPECT_EQ(5U, h.bucketCount()); EXPECT_EQ(0.75f, h.loadFactor()); EXPECT_EQ((void*)NULL, getBuckets(h)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(0, 0)); } TEST_F(BasicHashtableTest, Rehash_WhenLessThanCurrentCapacity_ShrinksBuckets) { ComplexHashtable h(10); add(h, ComplexKey(0), ComplexValue(0)); add(h, ComplexKey(1), ComplexValue(1)); const void* oldBuckets = getBuckets(h); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); h.rehash(0, 0.75f); EXPECT_EQ(2U, h.size()); EXPECT_EQ(3U, h.capacity()); EXPECT_EQ(5U, h.bucketCount()); EXPECT_EQ(0.75f, h.loadFactor()); EXPECT_NE(oldBuckets, getBuckets(h)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); } TEST_F(BasicHashtableTest, CopyOnWrite) { ComplexHashtable h1; add(h1, ComplexKey(0), ComplexValue(0)); add(h1, ComplexKey(1), ComplexValue(1)); const void* originalBuckets = getBuckets(h1); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); ssize_t index0 = find(h1, -1, ComplexKey(0)); EXPECT_GE(index0, 0); // copy constructor acquires shared reference ComplexHashtable h2(h1); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); ASSERT_EQ(originalBuckets, getBuckets(h2)); EXPECT_EQ(h1.size(), h2.size()); EXPECT_EQ(h1.capacity(), h2.capacity()); EXPECT_EQ(h1.bucketCount(), h2.bucketCount()); EXPECT_EQ(h1.loadFactor(), h2.loadFactor()); EXPECT_EQ(index0, find(h2, -1, ComplexKey(0))); // operator= acquires shared reference ComplexHashtable h3; h3 = h2; ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); ASSERT_EQ(originalBuckets, getBuckets(h3)); EXPECT_EQ(h1.size(), h3.size()); EXPECT_EQ(h1.capacity(), h3.capacity()); EXPECT_EQ(h1.bucketCount(), h3.bucketCount()); EXPECT_EQ(h1.loadFactor(), h3.loadFactor()); EXPECT_EQ(index0, find(h3, -1, ComplexKey(0))); // editEntryAt copies shared contents h1.editEntryAt(index0).value.v = 42; ASSERT_NO_FATAL_FAILURE(assertInstanceCount(4, 4)); ASSERT_NE(originalBuckets, getBuckets(h1)); EXPECT_EQ(42, h1.entryAt(index0).value.v); EXPECT_EQ(0, h2.entryAt(index0).value.v); EXPECT_EQ(0, h3.entryAt(index0).value.v); // clear releases reference to shared contents h2.clear(); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(4, 4)); EXPECT_EQ(0U, h2.size()); ASSERT_NE(originalBuckets, getBuckets(h2)); // operator= acquires shared reference, destroys unshared contents h1 = h3; ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); ASSERT_EQ(originalBuckets, getBuckets(h1)); EXPECT_EQ(h3.size(), h1.size()); EXPECT_EQ(h3.capacity(), h1.capacity()); EXPECT_EQ(h3.bucketCount(), h1.bucketCount()); EXPECT_EQ(h3.loadFactor(), h1.loadFactor()); EXPECT_EQ(index0, find(h1, -1, ComplexKey(0))); // add copies shared contents add(h1, ComplexKey(2), ComplexValue(2)); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(5, 5)); ASSERT_NE(originalBuckets, getBuckets(h1)); EXPECT_EQ(3U, h1.size()); EXPECT_EQ(0U, h2.size()); EXPECT_EQ(2U, h3.size()); // remove copies shared contents h1 = h3; ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); ASSERT_EQ(originalBuckets, getBuckets(h1)); h1.removeAt(index0); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(3, 3)); ASSERT_NE(originalBuckets, getBuckets(h1)); EXPECT_EQ(1U, h1.size()); EXPECT_EQ(0U, h2.size()); EXPECT_EQ(2U, h3.size()); // rehash copies shared contents h1 = h3; ASSERT_NO_FATAL_FAILURE(assertInstanceCount(2, 2)); ASSERT_EQ(originalBuckets, getBuckets(h1)); h1.rehash(10, 1.0f); ASSERT_NO_FATAL_FAILURE(assertInstanceCount(4, 4)); ASSERT_NE(originalBuckets, getBuckets(h1)); EXPECT_EQ(2U, h1.size()); EXPECT_EQ(0U, h2.size()); EXPECT_EQ(2U, h3.size()); } } // namespace android