/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "HWComposer.h" #include "../Layer.h" // needed only for debugging #include "../SurfaceFlinger.h" namespace android { #define MIN_HWC_HEADER_VERSION HWC_HEADER_VERSION static uint32_t hwcApiVersion(const hwc_composer_device_1_t* hwc) { uint32_t hwcVersion = hwc->common.version; return hwcVersion & HARDWARE_API_VERSION_2_MAJ_MIN_MASK; } static uint32_t hwcHeaderVersion(const hwc_composer_device_1_t* hwc) { uint32_t hwcVersion = hwc->common.version; return hwcVersion & HARDWARE_API_VERSION_2_HEADER_MASK; } static bool hwcHasApiVersion(const hwc_composer_device_1_t* hwc, uint32_t version) { return hwcApiVersion(hwc) >= (version & HARDWARE_API_VERSION_2_MAJ_MIN_MASK); } // --------------------------------------------------------------------------- struct HWComposer::cb_context { struct callbacks : public hwc_procs_t { // these are here to facilitate the transition when adding // new callbacks (an implementation can check for NULL before // calling a new callback). void (*zero[4])(void); }; callbacks procs; HWComposer* hwc; }; // --------------------------------------------------------------------------- HWComposer::HWComposer( const sp& flinger, EventHandler& handler) : mFlinger(flinger), mFbDev(0), mHwc(0), mNumDisplays(1), mCBContext(new cb_context), mEventHandler(handler), mDebugForceFakeVSync(false) { for (size_t i =0 ; i> 24) & 0xff, (hwcApiVersion(mHwc) >> 16) & 0xff); if (mHwc->registerProcs) { mCBContext->hwc = this; mCBContext->procs.invalidate = &hook_invalidate; mCBContext->procs.vsync = &hook_vsync; if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) mCBContext->procs.hotplug = &hook_hotplug; else mCBContext->procs.hotplug = NULL; memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero)); mHwc->registerProcs(mHwc, &mCBContext->procs); } // don't need a vsync thread if we have a hardware composer needVSyncThread = false; // always turn vsync off when we start eventControl(HWC_DISPLAY_PRIMARY, HWC_EVENT_VSYNC, 0); // the number of displays we actually have depends on the // hw composer version if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) { // 1.3 adds support for virtual displays mNumDisplays = MAX_HWC_DISPLAYS; } else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // 1.1 adds support for multiple displays mNumDisplays = NUM_BUILTIN_DISPLAYS; } else { mNumDisplays = 1; } } if (mFbDev) { ALOG_ASSERT(!(mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)), "should only have fbdev if no hwc or hwc is 1.0"); DisplayData& disp(mDisplayData[HWC_DISPLAY_PRIMARY]); disp.connected = true; disp.format = mFbDev->format; DisplayConfig config = DisplayConfig(); config.width = mFbDev->width; config.height = mFbDev->height; config.xdpi = mFbDev->xdpi; config.ydpi = mFbDev->ydpi; config.refresh = nsecs_t(1e9 / mFbDev->fps); disp.configs.push_back(config); disp.currentConfig = 0; } else if (mHwc) { // here we're guaranteed to have at least HWC 1.1 for (size_t i =0 ; irequestExitAndWait(); } if (mHwc) { hwc_close_1(mHwc); } if (mFbDev) { framebuffer_close(mFbDev); } delete mCBContext; } // Load and prepare the hardware composer module. Sets mHwc. void HWComposer::loadHwcModule() { hw_module_t const* module; if (hw_get_module(HWC_HARDWARE_MODULE_ID, &module) != 0) { ALOGE("%s module not found", HWC_HARDWARE_MODULE_ID); return; } int err = hwc_open_1(module, &mHwc); if (err) { ALOGE("%s device failed to initialize (%s)", HWC_HARDWARE_COMPOSER, strerror(-err)); return; } if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_0) || hwcHeaderVersion(mHwc) < MIN_HWC_HEADER_VERSION || hwcHeaderVersion(mHwc) > HWC_HEADER_VERSION) { ALOGE("%s device version %#x unsupported, will not be used", HWC_HARDWARE_COMPOSER, mHwc->common.version); hwc_close_1(mHwc); mHwc = NULL; return; } } // Load and prepare the FB HAL, which uses the gralloc module. Sets mFbDev. int HWComposer::loadFbHalModule() { hw_module_t const* module; int err = hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module); if (err != 0) { ALOGE("%s module not found", GRALLOC_HARDWARE_MODULE_ID); return err; } return framebuffer_open(module, &mFbDev); } status_t HWComposer::initCheck() const { return mHwc ? NO_ERROR : NO_INIT; } void HWComposer::hook_invalidate(const struct hwc_procs* procs) { cb_context* ctx = reinterpret_cast( const_cast(procs)); ctx->hwc->invalidate(); } void HWComposer::hook_vsync(const struct hwc_procs* procs, int disp, int64_t timestamp) { cb_context* ctx = reinterpret_cast( const_cast(procs)); ctx->hwc->vsync(disp, timestamp); } void HWComposer::hook_hotplug(const struct hwc_procs* procs, int disp, int connected) { cb_context* ctx = reinterpret_cast( const_cast(procs)); ctx->hwc->hotplug(disp, connected); } void HWComposer::invalidate() { mFlinger->repaintEverything(); } void HWComposer::vsync(int disp, int64_t timestamp) { if (uint32_t(disp) < HWC_NUM_PHYSICAL_DISPLAY_TYPES) { { Mutex::Autolock _l(mLock); // There have been reports of HWCs that signal several vsync events // with the same timestamp when turning the display off and on. This // is a bug in the HWC implementation, but filter the extra events // out here so they don't cause havoc downstream. if (timestamp == mLastHwVSync[disp]) { ALOGW("Ignoring duplicate VSYNC event from HWC (t=%" PRId64 ")", timestamp); return; } mLastHwVSync[disp] = timestamp; } char tag[16]; snprintf(tag, sizeof(tag), "HW_VSYNC_%1u", disp); ATRACE_INT(tag, ++mVSyncCounts[disp] & 1); mEventHandler.onVSyncReceived(disp, timestamp); } } void HWComposer::hotplug(int disp, int connected) { if (disp >= VIRTUAL_DISPLAY_ID_BASE) { ALOGE("hotplug event received for invalid display: disp=%d connected=%d", disp, connected); return; } queryDisplayProperties(disp); // Do not teardown or recreate the primary display if (disp != HWC_DISPLAY_PRIMARY) { mEventHandler.onHotplugReceived(disp, bool(connected)); } } static float getDefaultDensity(uint32_t width, uint32_t height) { // Default density is based on TVs: 1080p displays get XHIGH density, // lower-resolution displays get TV density. Maybe eventually we'll need // to update it for 4K displays, though hopefully those just report // accurate DPI information to begin with. This is also used for virtual // displays and even primary displays with older hwcomposers, so be // careful about orientation. uint32_t h = width < height ? width : height; if (h >= 1080) return ACONFIGURATION_DENSITY_XHIGH; else return ACONFIGURATION_DENSITY_TV; } static const uint32_t DISPLAY_ATTRIBUTES[] = { HWC_DISPLAY_VSYNC_PERIOD, HWC_DISPLAY_WIDTH, HWC_DISPLAY_HEIGHT, HWC_DISPLAY_DPI_X, HWC_DISPLAY_DPI_Y, HWC_DISPLAY_COLOR_TRANSFORM, HWC_DISPLAY_NO_ATTRIBUTE, }; #define NUM_DISPLAY_ATTRIBUTES (sizeof(DISPLAY_ATTRIBUTES) / sizeof(DISPLAY_ATTRIBUTES)[0]) static const uint32_t PRE_HWC15_DISPLAY_ATTRIBUTES[] = { HWC_DISPLAY_VSYNC_PERIOD, HWC_DISPLAY_WIDTH, HWC_DISPLAY_HEIGHT, HWC_DISPLAY_DPI_X, HWC_DISPLAY_DPI_Y, HWC_DISPLAY_NO_ATTRIBUTE, }; status_t HWComposer::queryDisplayProperties(int disp) { LOG_ALWAYS_FATAL_IF(!mHwc || !hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)); // use zero as default value for unspecified attributes int32_t values[NUM_DISPLAY_ATTRIBUTES - 1]; memset(values, 0, sizeof(values)); const size_t MAX_NUM_CONFIGS = 128; uint32_t configs[MAX_NUM_CONFIGS] = {0}; size_t numConfigs = MAX_NUM_CONFIGS; status_t err = mHwc->getDisplayConfigs(mHwc, disp, configs, &numConfigs); if (err != NO_ERROR) { // this can happen if an unpluggable display is not connected mDisplayData[disp].connected = false; return err; } mDisplayData[disp].currentConfig = 0; for (size_t c = 0; c < numConfigs; ++c) { err = mHwc->getDisplayAttributes(mHwc, disp, configs[c], DISPLAY_ATTRIBUTES, values); // If this is a pre-1.5 HWC, it may not know about color transform, so // try again with a smaller set of attributes if (err != NO_ERROR) { err = mHwc->getDisplayAttributes(mHwc, disp, configs[c], PRE_HWC15_DISPLAY_ATTRIBUTES, values); } if (err != NO_ERROR) { // we can't get this display's info. turn it off. mDisplayData[disp].connected = false; return err; } DisplayConfig config = DisplayConfig(); for (size_t i = 0; i < NUM_DISPLAY_ATTRIBUTES - 1; i++) { switch (DISPLAY_ATTRIBUTES[i]) { case HWC_DISPLAY_VSYNC_PERIOD: config.refresh = nsecs_t(values[i]); break; case HWC_DISPLAY_WIDTH: config.width = values[i]; break; case HWC_DISPLAY_HEIGHT: config.height = values[i]; break; case HWC_DISPLAY_DPI_X: config.xdpi = values[i] / 1000.0f; break; case HWC_DISPLAY_DPI_Y: config.ydpi = values[i] / 1000.0f; break; case HWC_DISPLAY_COLOR_TRANSFORM: config.colorTransform = values[i]; break; default: ALOG_ASSERT(false, "unknown display attribute[%zu] %#x", i, DISPLAY_ATTRIBUTES[i]); break; } } if (config.xdpi == 0.0f || config.ydpi == 0.0f) { float dpi = getDefaultDensity(config.width, config.height); config.xdpi = dpi; config.ydpi = dpi; } mDisplayData[disp].configs.push_back(config); } // FIXME: what should we set the format to? mDisplayData[disp].format = HAL_PIXEL_FORMAT_RGBA_8888; mDisplayData[disp].connected = true; return NO_ERROR; } status_t HWComposer::setVirtualDisplayProperties(int32_t id, uint32_t w, uint32_t h, uint32_t format) { if (id < VIRTUAL_DISPLAY_ID_BASE || id >= int32_t(mNumDisplays) || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } size_t configId = mDisplayData[id].currentConfig; mDisplayData[id].format = format; DisplayConfig& config = mDisplayData[id].configs.editItemAt(configId); config.width = w; config.height = h; config.xdpi = config.ydpi = getDefaultDensity(w, h); return NO_ERROR; } int32_t HWComposer::allocateDisplayId() { if (mAllocatedDisplayIDs.count() >= mNumDisplays) { return NO_MEMORY; } int32_t id = mAllocatedDisplayIDs.firstUnmarkedBit(); mAllocatedDisplayIDs.markBit(id); mDisplayData[id].connected = true; mDisplayData[id].configs.resize(1); mDisplayData[id].currentConfig = 0; return id; } status_t HWComposer::freeDisplayId(int32_t id) { if (id < NUM_BUILTIN_DISPLAYS) { // cannot free the reserved IDs return BAD_VALUE; } if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } mAllocatedDisplayIDs.clearBit(id); mDisplayData[id].connected = false; return NO_ERROR; } nsecs_t HWComposer::getRefreshTimestamp(int disp) const { // this returns the last refresh timestamp. // if the last one is not available, we estimate it based on // the refresh period and whatever closest timestamp we have. Mutex::Autolock _l(mLock); nsecs_t now = systemTime(CLOCK_MONOTONIC); size_t configId = mDisplayData[disp].currentConfig; return now - ((now - mLastHwVSync[disp]) % mDisplayData[disp].configs[configId].refresh); } sp HWComposer::getDisplayFence(int disp) const { return mDisplayData[disp].lastDisplayFence; } uint32_t HWComposer::getFormat(int disp) const { if (static_cast(disp) >= MAX_HWC_DISPLAYS || !mAllocatedDisplayIDs.hasBit(disp)) { return HAL_PIXEL_FORMAT_RGBA_8888; } else { return mDisplayData[disp].format; } } bool HWComposer::isConnected(int disp) const { return mDisplayData[disp].connected; } uint32_t HWComposer::getWidth(int disp) const { size_t currentConfig = mDisplayData[disp].currentConfig; return mDisplayData[disp].configs[currentConfig].width; } uint32_t HWComposer::getHeight(int disp) const { size_t currentConfig = mDisplayData[disp].currentConfig; return mDisplayData[disp].configs[currentConfig].height; } float HWComposer::getDpiX(int disp) const { size_t currentConfig = mDisplayData[disp].currentConfig; return mDisplayData[disp].configs[currentConfig].xdpi; } float HWComposer::getDpiY(int disp) const { size_t currentConfig = mDisplayData[disp].currentConfig; return mDisplayData[disp].configs[currentConfig].ydpi; } nsecs_t HWComposer::getRefreshPeriod(int disp) const { size_t currentConfig = mDisplayData[disp].currentConfig; return mDisplayData[disp].configs[currentConfig].refresh; } const Vector& HWComposer::getConfigs(int disp) const { return mDisplayData[disp].configs; } size_t HWComposer::getCurrentConfig(int disp) const { return mDisplayData[disp].currentConfig; } void HWComposer::eventControl(int disp, int event, int enabled) { if (uint32_t(disp)>31 || !mAllocatedDisplayIDs.hasBit(disp)) { ALOGD("eventControl ignoring event %d on unallocated disp %d (en=%d)", event, disp, enabled); return; } if (event != EVENT_VSYNC) { ALOGW("eventControl got unexpected event %d (disp=%d en=%d)", event, disp, enabled); return; } status_t err = NO_ERROR; if (mHwc && !mDebugForceFakeVSync) { // NOTE: we use our own internal lock here because we have to call // into the HWC with the lock held, and we want to make sure // that even if HWC blocks (which it shouldn't), it won't // affect other threads. Mutex::Autolock _l(mEventControlLock); const int32_t eventBit = 1UL << event; const int32_t newValue = enabled ? eventBit : 0; const int32_t oldValue = mDisplayData[disp].events & eventBit; if (newValue != oldValue) { ATRACE_CALL(); err = mHwc->eventControl(mHwc, disp, event, enabled); if (!err) { int32_t& events(mDisplayData[disp].events); events = (events & ~eventBit) | newValue; char tag[16]; snprintf(tag, sizeof(tag), "HW_VSYNC_ON_%1u", disp); ATRACE_INT(tag, enabled); } } // error here should not happen -- not sure what we should // do if it does. ALOGE_IF(err, "eventControl(%d, %d) failed %s", event, enabled, strerror(-err)); } if (err == NO_ERROR && mVSyncThread != NULL) { mVSyncThread->setEnabled(enabled); } } status_t HWComposer::createWorkList(int32_t id, size_t numLayers) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } if (mHwc) { DisplayData& disp(mDisplayData[id]); if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // we need space for the HWC_FRAMEBUFFER_TARGET numLayers++; } if (disp.capacity < numLayers || disp.list == NULL) { size_t size = sizeof(hwc_display_contents_1_t) + numLayers * sizeof(hwc_layer_1_t); free(disp.list); disp.list = (hwc_display_contents_1_t*)malloc(size); disp.capacity = numLayers; } if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { disp.framebufferTarget = &disp.list->hwLayers[numLayers - 1]; memset(disp.framebufferTarget, 0, sizeof(hwc_layer_1_t)); const DisplayConfig& currentConfig = disp.configs[disp.currentConfig]; const hwc_rect_t r = { 0, 0, (int) currentConfig.width, (int) currentConfig.height }; disp.framebufferTarget->compositionType = HWC_FRAMEBUFFER_TARGET; disp.framebufferTarget->hints = 0; disp.framebufferTarget->flags = 0; disp.framebufferTarget->handle = disp.fbTargetHandle; disp.framebufferTarget->transform = 0; disp.framebufferTarget->blending = HWC_BLENDING_PREMULT; if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) { disp.framebufferTarget->sourceCropf.left = 0; disp.framebufferTarget->sourceCropf.top = 0; disp.framebufferTarget->sourceCropf.right = currentConfig.width; disp.framebufferTarget->sourceCropf.bottom = currentConfig.height; } else { disp.framebufferTarget->sourceCrop = r; } disp.framebufferTarget->displayFrame = r; disp.framebufferTarget->visibleRegionScreen.numRects = 1; disp.framebufferTarget->visibleRegionScreen.rects = &disp.framebufferTarget->displayFrame; disp.framebufferTarget->acquireFenceFd = -1; disp.framebufferTarget->releaseFenceFd = -1; disp.framebufferTarget->planeAlpha = 0xFF; } disp.list->retireFenceFd = -1; disp.list->flags = HWC_GEOMETRY_CHANGED; disp.list->numHwLayers = numLayers; } return NO_ERROR; } status_t HWComposer::setFramebufferTarget(int32_t id, const sp& acquireFence, const sp& buf) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } DisplayData& disp(mDisplayData[id]); if (!disp.framebufferTarget) { // this should never happen, but apparently eglCreateWindowSurface() // triggers a Surface::queueBuffer() on some // devices (!?) -- log and ignore. ALOGE("HWComposer: framebufferTarget is null"); return NO_ERROR; } int acquireFenceFd = -1; if (acquireFence->isValid()) { acquireFenceFd = acquireFence->dup(); } // ALOGD("fbPost: handle=%p, fence=%d", buf->handle, acquireFenceFd); disp.fbTargetHandle = buf->handle; disp.framebufferTarget->handle = disp.fbTargetHandle; disp.framebufferTarget->acquireFenceFd = acquireFenceFd; return NO_ERROR; } status_t HWComposer::prepare() { Mutex::Autolock _l(mDisplayLock); for (size_t i=0 ; icompositionType = HWC_FRAMEBUFFER_TARGET; } if (!disp.connected && disp.list != NULL) { ALOGW("WARNING: disp %zu: connected, non-null list, layers=%zu", i, disp.list->numHwLayers); } mLists[i] = disp.list; if (mLists[i]) { if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) { mLists[i]->outbuf = disp.outbufHandle; mLists[i]->outbufAcquireFenceFd = -1; } else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // garbage data to catch improper use mLists[i]->dpy = (hwc_display_t)0xDEADBEEF; mLists[i]->sur = (hwc_surface_t)0xDEADBEEF; } else { mLists[i]->dpy = EGL_NO_DISPLAY; mLists[i]->sur = EGL_NO_SURFACE; } } } int err = mHwc->prepare(mHwc, mNumDisplays, mLists); ALOGE_IF(err, "HWComposer: prepare failed (%s)", strerror(-err)); if (err == NO_ERROR) { // here we're just making sure that "skip" layers are set // to HWC_FRAMEBUFFER and we're also counting how many layers // we have of each type. // // If there are no window layers, we treat the display has having FB // composition, because SurfaceFlinger will use GLES to draw the // wormhole region. for (size_t i=0 ; inumHwLayers ; i++) { hwc_layer_1_t& l = disp.list->hwLayers[i]; //ALOGD("prepare: %d, type=%d, handle=%p", // i, l.compositionType, l.handle); if (l.flags & HWC_SKIP_LAYER) { l.compositionType = HWC_FRAMEBUFFER; } if (l.compositionType == HWC_FRAMEBUFFER) { disp.hasFbComp = true; } if (l.compositionType == HWC_OVERLAY) { disp.hasOvComp = true; } if (l.compositionType == HWC_CURSOR_OVERLAY) { disp.hasOvComp = true; } } if (disp.list->numHwLayers == (disp.framebufferTarget ? 1 : 0)) { disp.hasFbComp = true; } } else { disp.hasFbComp = true; } } } return (status_t)err; } bool HWComposer::hasHwcComposition(int32_t id) const { if (!mHwc || uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return false; return mDisplayData[id].hasOvComp; } bool HWComposer::hasGlesComposition(int32_t id) const { if (!mHwc || uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return true; return mDisplayData[id].hasFbComp; } sp HWComposer::getAndResetReleaseFence(int32_t id) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return Fence::NO_FENCE; int fd = INVALID_OPERATION; if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { const DisplayData& disp(mDisplayData[id]); if (disp.framebufferTarget) { fd = disp.framebufferTarget->releaseFenceFd; disp.framebufferTarget->acquireFenceFd = -1; disp.framebufferTarget->releaseFenceFd = -1; } } return fd >= 0 ? new Fence(fd) : Fence::NO_FENCE; } status_t HWComposer::commit() { int err = NO_ERROR; if (mHwc) { if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // On version 1.0, the OpenGL ES target surface is communicated // by the (dpy, sur) fields and we are guaranteed to have only // a single display. mLists[0]->dpy = eglGetCurrentDisplay(); mLists[0]->sur = eglGetCurrentSurface(EGL_DRAW); } for (size_t i=VIRTUAL_DISPLAY_ID_BASE; ioutbuf = disp.outbufHandle; mLists[i]->outbufAcquireFenceFd = disp.outbufAcquireFence->dup(); } } err = mHwc->set(mHwc, mNumDisplays, mLists); for (size_t i=0 ; iretireFenceFd != -1) { disp.lastRetireFence = new Fence(disp.list->retireFenceFd); disp.list->retireFenceFd = -1; } disp.list->flags &= ~HWC_GEOMETRY_CHANGED; } } } return (status_t)err; } status_t HWComposer::setPowerMode(int disp, int mode) { LOG_FATAL_IF(disp >= VIRTUAL_DISPLAY_ID_BASE); if (mHwc) { if (mode == HWC_POWER_MODE_OFF) { eventControl(disp, HWC_EVENT_VSYNC, 0); } if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_4)) { return (status_t)mHwc->setPowerMode(mHwc, disp, mode); } else { return (status_t)mHwc->blank(mHwc, disp, mode == HWC_POWER_MODE_OFF ? 1 : 0); } } return NO_ERROR; } status_t HWComposer::setActiveConfig(int disp, int mode) { LOG_FATAL_IF(disp >= VIRTUAL_DISPLAY_ID_BASE); DisplayData& dd(mDisplayData[disp]); dd.currentConfig = mode; if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_4)) { return (status_t)mHwc->setActiveConfig(mHwc, disp, mode); } else { LOG_FATAL_IF(mode != 0); } return NO_ERROR; } void HWComposer::disconnectDisplay(int disp) { LOG_ALWAYS_FATAL_IF(disp < 0 || disp == HWC_DISPLAY_PRIMARY); DisplayData& dd(mDisplayData[disp]); free(dd.list); dd.list = NULL; dd.framebufferTarget = NULL; // points into dd.list dd.fbTargetHandle = NULL; dd.outbufHandle = NULL; dd.lastRetireFence = Fence::NO_FENCE; dd.lastDisplayFence = Fence::NO_FENCE; dd.outbufAcquireFence = Fence::NO_FENCE; // clear all the previous configs and repopulate when a new // device is added dd.configs.clear(); } int HWComposer::getVisualID() const { if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // FIXME: temporary hack until HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED // is supported by the implementation. we can only be in this case // if we have HWC 1.1 return HAL_PIXEL_FORMAT_RGBA_8888; //return HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; } else { return mFbDev->format; } } bool HWComposer::supportsFramebufferTarget() const { return (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)); } int HWComposer::fbPost(int32_t id, const sp& acquireFence, const sp& buffer) { if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { return setFramebufferTarget(id, acquireFence, buffer); } else { acquireFence->waitForever("HWComposer::fbPost"); return mFbDev->post(mFbDev, buffer->handle); } } int HWComposer::fbCompositionComplete() { if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) return NO_ERROR; if (mFbDev->compositionComplete) { return mFbDev->compositionComplete(mFbDev); } else { return INVALID_OPERATION; } } void HWComposer::fbDump(String8& result) { if (mFbDev && mFbDev->common.version >= 1 && mFbDev->dump) { const size_t SIZE = 4096; char buffer[SIZE]; mFbDev->dump(mFbDev, buffer, SIZE); result.append(buffer); } } status_t HWComposer::setOutputBuffer(int32_t id, const sp& acquireFence, const sp& buf) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return BAD_INDEX; if (id < VIRTUAL_DISPLAY_ID_BASE) return INVALID_OPERATION; DisplayData& disp(mDisplayData[id]); disp.outbufHandle = buf->handle; disp.outbufAcquireFence = acquireFence; return NO_ERROR; } sp HWComposer::getLastRetireFence(int32_t id) const { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return Fence::NO_FENCE; return mDisplayData[id].lastRetireFence; } status_t HWComposer::setCursorPositionAsync(int32_t id, const Rect& pos) { if (mHwc->setCursorPositionAsync) { return (status_t)mHwc->setCursorPositionAsync(mHwc, id, pos.left, pos.top); } else { return NO_ERROR; } } /* * Helper template to implement a concrete HWCLayer * This holds the pointer to the concrete hwc layer type * and implements the "iterable" side of HWCLayer. */ template class Iterable : public HWComposer::HWCLayer { protected: HWCTYPE* const mLayerList; HWCTYPE* mCurrentLayer; Iterable(HWCTYPE* layer) : mLayerList(layer), mCurrentLayer(layer) { } inline HWCTYPE const * getLayer() const { return mCurrentLayer; } inline HWCTYPE* getLayer() { return mCurrentLayer; } virtual ~Iterable() { } private: // returns a copy of ourselves virtual HWComposer::HWCLayer* dup() { return new CONCRETE( static_cast(*this) ); } virtual status_t setLayer(size_t index) { mCurrentLayer = &mLayerList[index]; return NO_ERROR; } }; /* * Concrete implementation of HWCLayer for HWC_DEVICE_API_VERSION_1_0. * This implements the HWCLayer side of HWCIterableLayer. */ class HWCLayerVersion1 : public Iterable { struct hwc_composer_device_1* mHwc; public: HWCLayerVersion1(struct hwc_composer_device_1* hwc, hwc_layer_1_t* layer) : Iterable(layer), mHwc(hwc) { } virtual int32_t getCompositionType() const { return getLayer()->compositionType; } virtual uint32_t getHints() const { return getLayer()->hints; } virtual sp getAndResetReleaseFence() { int fd = getLayer()->releaseFenceFd; getLayer()->releaseFenceFd = -1; return fd >= 0 ? new Fence(fd) : Fence::NO_FENCE; } virtual void setAcquireFenceFd(int fenceFd) { getLayer()->acquireFenceFd = fenceFd; } virtual void setPerFrameDefaultState() { //getLayer()->compositionType = HWC_FRAMEBUFFER; } virtual void setPlaneAlpha(uint8_t alpha) { if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_2)) { getLayer()->planeAlpha = alpha; } else { if (alpha < 0xFF) { getLayer()->flags |= HWC_SKIP_LAYER; } } } virtual void setDefaultState() { hwc_layer_1_t* const l = getLayer(); l->compositionType = HWC_FRAMEBUFFER; l->hints = 0; l->flags = HWC_SKIP_LAYER; l->handle = 0; l->transform = 0; l->blending = HWC_BLENDING_NONE; l->visibleRegionScreen.numRects = 0; l->visibleRegionScreen.rects = NULL; l->acquireFenceFd = -1; l->releaseFenceFd = -1; l->planeAlpha = 0xFF; } virtual void setSkip(bool skip) { if (skip) { getLayer()->flags |= HWC_SKIP_LAYER; } else { getLayer()->flags &= ~HWC_SKIP_LAYER; } } virtual void setIsCursorLayerHint(bool isCursor) { if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_4)) { if (isCursor) { getLayer()->flags |= HWC_IS_CURSOR_LAYER; } else { getLayer()->flags &= ~HWC_IS_CURSOR_LAYER; } } } virtual void setBlending(uint32_t blending) { getLayer()->blending = blending; } virtual void setTransform(uint32_t transform) { getLayer()->transform = transform; } virtual void setFrame(const Rect& frame) { getLayer()->displayFrame = reinterpret_cast(frame); } virtual void setCrop(const FloatRect& crop) { if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) { getLayer()->sourceCropf = reinterpret_cast(crop); } else { /* * Since h/w composer didn't support a flot crop rect before version 1.3, * using integer coordinates instead produces a different output from the GL code in * Layer::drawWithOpenGL(). The difference can be large if the buffer crop to * window size ratio is large and a window crop is defined * (i.e.: if we scale the buffer a lot and we also crop it with a window crop). */ hwc_rect_t& r = getLayer()->sourceCrop; r.left = int(ceilf(crop.left)); r.top = int(ceilf(crop.top)); r.right = int(floorf(crop.right)); r.bottom= int(floorf(crop.bottom)); } } virtual void setVisibleRegionScreen(const Region& reg) { // Region::getSharedBuffer creates a reference to the underlying // SharedBuffer of this Region, this reference is freed // in onDisplayed() hwc_region_t& visibleRegion = getLayer()->visibleRegionScreen; SharedBuffer const* sb = reg.getSharedBuffer(&visibleRegion.numRects); visibleRegion.rects = reinterpret_cast(sb->data()); } virtual void setSurfaceDamage(const Region& reg) { if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_5)) { return; } hwc_region_t& surfaceDamage = getLayer()->surfaceDamage; // We encode default full-screen damage as INVALID_RECT upstream, but as // 0 rects for HWComposer if (reg.isRect() && reg.getBounds() == Rect::INVALID_RECT) { surfaceDamage.numRects = 0; surfaceDamage.rects = NULL; return; } SharedBuffer const* sb = reg.getSharedBuffer(&surfaceDamage.numRects); surfaceDamage.rects = reinterpret_cast(sb->data()); } virtual void setSidebandStream(const sp& stream) { ALOG_ASSERT(stream->handle() != NULL); getLayer()->compositionType = HWC_SIDEBAND; getLayer()->sidebandStream = stream->handle(); } virtual void setBuffer(const sp& buffer) { if (buffer == 0 || buffer->handle == 0) { getLayer()->compositionType = HWC_FRAMEBUFFER; getLayer()->flags |= HWC_SKIP_LAYER; getLayer()->handle = 0; } else { if (getLayer()->compositionType == HWC_SIDEBAND) { // If this was a sideband layer but the stream was removed, reset // it to FRAMEBUFFER. The HWC can change it to OVERLAY in prepare. getLayer()->compositionType = HWC_FRAMEBUFFER; } getLayer()->handle = buffer->handle; } } virtual void onDisplayed() { hwc_region_t& visibleRegion = getLayer()->visibleRegionScreen; SharedBuffer const* sb = SharedBuffer::bufferFromData(visibleRegion.rects); if (sb) { sb->release(); // not technically needed but safer visibleRegion.numRects = 0; visibleRegion.rects = NULL; } getLayer()->acquireFenceFd = -1; if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_5)) { return; } hwc_region_t& surfaceDamage = getLayer()->surfaceDamage; sb = SharedBuffer::bufferFromData(surfaceDamage.rects); if (sb) { sb->release(); surfaceDamage.numRects = 0; surfaceDamage.rects = NULL; } } }; /* * returns an iterator initialized at a given index in the layer list */ HWComposer::LayerListIterator HWComposer::getLayerIterator(int32_t id, size_t index) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return LayerListIterator(); } const DisplayData& disp(mDisplayData[id]); if (!mHwc || !disp.list || index > disp.list->numHwLayers) { return LayerListIterator(); } return LayerListIterator(new HWCLayerVersion1(mHwc, disp.list->hwLayers), index); } /* * returns an iterator on the beginning of the layer list */ HWComposer::LayerListIterator HWComposer::begin(int32_t id) { return getLayerIterator(id, 0); } /* * returns an iterator on the end of the layer list */ HWComposer::LayerListIterator HWComposer::end(int32_t id) { size_t numLayers = 0; if (uint32_t(id) <= 31 && mAllocatedDisplayIDs.hasBit(id)) { const DisplayData& disp(mDisplayData[id]); if (mHwc && disp.list) { numLayers = disp.list->numHwLayers; if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // with HWC 1.1, the last layer is always the HWC_FRAMEBUFFER_TARGET, // which we ignore when iterating through the layer list. ALOGE_IF(!numLayers, "mDisplayData[%d].list->numHwLayers is 0", id); if (numLayers) { numLayers--; } } } } return getLayerIterator(id, numLayers); } // Converts a PixelFormat to a human-readable string. Max 11 chars. // (Could use a table of prefab String8 objects.) static String8 getFormatStr(PixelFormat format) { switch (format) { case PIXEL_FORMAT_RGBA_8888: return String8("RGBA_8888"); case PIXEL_FORMAT_RGBX_8888: return String8("RGBx_8888"); case PIXEL_FORMAT_RGB_888: return String8("RGB_888"); case PIXEL_FORMAT_RGB_565: return String8("RGB_565"); case PIXEL_FORMAT_BGRA_8888: return String8("BGRA_8888"); case HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED: return String8("ImplDef"); default: String8 result; result.appendFormat("? %08x", format); return result; } } void HWComposer::dump(String8& result) const { Mutex::Autolock _l(mDisplayLock); if (mHwc) { result.appendFormat("Hardware Composer state (version %08x):\n", hwcApiVersion(mHwc)); result.appendFormat(" mDebugForceFakeVSync=%d\n", mDebugForceFakeVSync); for (size_t i=0 ; i >& visibleLayersSortedByZ = mFlinger->getLayerSortedByZForHwcDisplay(i); result.appendFormat(" Display[%zd] configurations (* current):\n", i); for (size_t c = 0; c < disp.configs.size(); ++c) { const DisplayConfig& config(disp.configs[c]); result.appendFormat(" %s%zd: %ux%u, xdpi=%f, ydpi=%f" ", refresh=%" PRId64 ", colorTransform=%d\n", c == disp.currentConfig ? "* " : "", c, config.width, config.height, config.xdpi, config.ydpi, config.refresh, config.colorTransform); } if (disp.list) { result.appendFormat( " numHwLayers=%zu, flags=%08x\n", disp.list->numHwLayers, disp.list->flags); result.append( " type | handle | hint | flag | tr | blnd | format | source crop (l,t,r,b) | frame | name \n" "-----------+----------+------+------+----+------+-------------+--------------------------------+------------------------+------\n"); // " _________ | ________ | ____ | ____ | __ | ____ | ___________ |_____._,_____._,_____._,_____._ |_____,_____,_____,_____ | ___... for (size_t i=0 ; inumHwLayers ; i++) { const hwc_layer_1_t&l = disp.list->hwLayers[i]; int32_t format = -1; String8 name("unknown"); if (i < visibleLayersSortedByZ.size()) { const sp& layer(visibleLayersSortedByZ[i]); const sp& buffer( layer->getActiveBuffer()); if (buffer != NULL) { format = buffer->getPixelFormat(); } name = layer->getName(); } int type = l.compositionType; if (type == HWC_FRAMEBUFFER_TARGET) { name = "HWC_FRAMEBUFFER_TARGET"; format = disp.format; } static char const* compositionTypeName[] = { "GLES", "HWC", "BKGND", "FB TARGET", "SIDEBAND", "HWC_CURSOR", "UNKNOWN"}; if (type >= NELEM(compositionTypeName)) type = NELEM(compositionTypeName) - 1; String8 formatStr = getFormatStr(format); if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) { result.appendFormat( " %9s | %08" PRIxPTR " | %04x | %04x | %02x | %04x | %-11s |%7.1f,%7.1f,%7.1f,%7.1f |%5d,%5d,%5d,%5d | %s\n", compositionTypeName[type], intptr_t(l.handle), l.hints, l.flags, l.transform, l.blending, formatStr.string(), l.sourceCropf.left, l.sourceCropf.top, l.sourceCropf.right, l.sourceCropf.bottom, l.displayFrame.left, l.displayFrame.top, l.displayFrame.right, l.displayFrame.bottom, name.string()); } else { result.appendFormat( " %9s | %08" PRIxPTR " | %04x | %04x | %02x | %04x | %-11s |%7d,%7d,%7d,%7d |%5d,%5d,%5d,%5d | %s\n", compositionTypeName[type], intptr_t(l.handle), l.hints, l.flags, l.transform, l.blending, formatStr.string(), l.sourceCrop.left, l.sourceCrop.top, l.sourceCrop.right, l.sourceCrop.bottom, l.displayFrame.left, l.displayFrame.top, l.displayFrame.right, l.displayFrame.bottom, name.string()); } } } } } if (mHwc && mHwc->dump) { const size_t SIZE = 4096; char buffer[SIZE]; mHwc->dump(mHwc, buffer, SIZE); result.append(buffer); } } // --------------------------------------------------------------------------- HWComposer::VSyncThread::VSyncThread(HWComposer& hwc) : mHwc(hwc), mEnabled(false), mNextFakeVSync(0), mRefreshPeriod(hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY)) { } void HWComposer::VSyncThread::setEnabled(bool enabled) { Mutex::Autolock _l(mLock); if (mEnabled != enabled) { mEnabled = enabled; mCondition.signal(); } } void HWComposer::VSyncThread::onFirstRef() { run("VSyncThread", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE); } bool HWComposer::VSyncThread::threadLoop() { { // scope for lock Mutex::Autolock _l(mLock); while (!mEnabled) { mCondition.wait(mLock); } } const nsecs_t period = mRefreshPeriod; const nsecs_t now = systemTime(CLOCK_MONOTONIC); nsecs_t next_vsync = mNextFakeVSync; nsecs_t sleep = next_vsync - now; if (sleep < 0) { // we missed, find where the next vsync should be sleep = (period - ((now - next_vsync) % period)); next_vsync = now + sleep; } mNextFakeVSync = next_vsync + period; struct timespec spec; spec.tv_sec = next_vsync / 1000000000; spec.tv_nsec = next_vsync % 1000000000; int err; do { err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, NULL); } while (err<0 && errno == EINTR); if (err == 0) { mHwc.mEventHandler.onVSyncReceived(0, next_vsync); } return true; } HWComposer::DisplayData::DisplayData() : configs(), currentConfig(0), format(HAL_PIXEL_FORMAT_RGBA_8888), connected(false), hasFbComp(false), hasOvComp(false), capacity(0), list(NULL), framebufferTarget(NULL), fbTargetHandle(0), lastRetireFence(Fence::NO_FENCE), lastDisplayFence(Fence::NO_FENCE), outbufHandle(NULL), outbufAcquireFence(Fence::NO_FENCE), events(0) {} HWComposer::DisplayData::~DisplayData() { free(list); } // --------------------------------------------------------------------------- }; // namespace android