// // Copyright 2010 The Android Open Source Project // // The input dispatcher. // #define LOG_TAG "InputDispatcher" //#define LOG_NDEBUG 0 // Log detailed debug messages about each inbound event notification to the dispatcher. #define DEBUG_INBOUND_EVENT_DETAILS 0 // Log detailed debug messages about each outbound event processed by the dispatcher. #define DEBUG_OUTBOUND_EVENT_DETAILS 0 // Log debug messages about batching. #define DEBUG_BATCHING 0 // Log debug messages about the dispatch cycle. #define DEBUG_DISPATCH_CYCLE 0 // Log debug messages about registrations. #define DEBUG_REGISTRATION 0 // Log debug messages about performance statistics. #define DEBUG_PERFORMANCE_STATISTICS 0 // Log debug messages about input event injection. #define DEBUG_INJECTION 0 // Log debug messages about input event throttling. #define DEBUG_THROTTLING 0 // Log debug messages about input focus tracking. #define DEBUG_FOCUS 0 // Log debug messages about the app switch latency optimization. #define DEBUG_APP_SWITCH 0 #include #include #include #include #include #include #include namespace android { // Delay between reporting long touch events to the power manager. const nsecs_t EVENT_IGNORE_DURATION = 300 * 1000000LL; // 300 ms // Default input dispatching timeout if there is no focused application or paused window // from which to determine an appropriate dispatching timeout. const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec // Amount of time to allow for all pending events to be processed when an app switch // key is on the way. This is used to preempt input dispatch and drop input events // when an application takes too long to respond and the user has pressed an app switch key. const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec static inline nsecs_t now() { return systemTime(SYSTEM_TIME_MONOTONIC); } static inline const char* toString(bool value) { return value ? "true" : "false"; } static inline int32_t getMotionEventActionPointerIndex(int32_t action) { return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK) >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; } static bool isValidKeyAction(int32_t action) { switch (action) { case AKEY_EVENT_ACTION_DOWN: case AKEY_EVENT_ACTION_UP: return true; default: return false; } } static bool validateKeyEvent(int32_t action) { if (! isValidKeyAction(action)) { LOGE("Key event has invalid action code 0x%x", action); return false; } return true; } static bool isValidMotionAction(int32_t action) { switch (action & AMOTION_EVENT_ACTION_MASK) { case AMOTION_EVENT_ACTION_DOWN: case AMOTION_EVENT_ACTION_UP: case AMOTION_EVENT_ACTION_CANCEL: case AMOTION_EVENT_ACTION_MOVE: case AMOTION_EVENT_ACTION_POINTER_DOWN: case AMOTION_EVENT_ACTION_POINTER_UP: case AMOTION_EVENT_ACTION_OUTSIDE: return true; default: return false; } } static bool validateMotionEvent(int32_t action, size_t pointerCount, const int32_t* pointerIds) { if (! isValidMotionAction(action)) { LOGE("Motion event has invalid action code 0x%x", action); return false; } if (pointerCount < 1 || pointerCount > MAX_POINTERS) { LOGE("Motion event has invalid pointer count %d; value must be between 1 and %d.", pointerCount, MAX_POINTERS); return false; } for (size_t i = 0; i < pointerCount; i++) { if (pointerIds[i] < 0 || pointerIds[i] > MAX_POINTER_ID) { LOGE("Motion event has invalid pointer id %d; value must be between 0 and %d", pointerIds[i], MAX_POINTER_ID); return false; } } return true; } // --- InputWindow --- bool InputWindow::visibleFrameIntersects(const InputWindow* other) const { return visibleFrameRight > other->visibleFrameLeft && visibleFrameLeft < other->visibleFrameRight && visibleFrameBottom > other->visibleFrameTop && visibleFrameTop < other->visibleFrameBottom; } bool InputWindow::touchableAreaContainsPoint(int32_t x, int32_t y) const { return x >= touchableAreaLeft && x <= touchableAreaRight && y >= touchableAreaTop && y <= touchableAreaBottom; } // --- InputDispatcher --- InputDispatcher::InputDispatcher(const sp& policy) : mPolicy(policy), mPendingEvent(NULL), mAppSwitchDueTime(LONG_LONG_MAX), mDispatchEnabled(true), mDispatchFrozen(false), mFocusedWindow(NULL), mFocusedApplication(NULL), mCurrentInputTargetsValid(false), mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) { mLooper = new Looper(false); mInboundQueue.headSentinel.refCount = -1; mInboundQueue.headSentinel.type = EventEntry::TYPE_SENTINEL; mInboundQueue.headSentinel.eventTime = LONG_LONG_MIN; mInboundQueue.tailSentinel.refCount = -1; mInboundQueue.tailSentinel.type = EventEntry::TYPE_SENTINEL; mInboundQueue.tailSentinel.eventTime = LONG_LONG_MAX; mKeyRepeatState.lastKeyEntry = NULL; int32_t maxEventsPerSecond = policy->getMaxEventsPerSecond(); mThrottleState.minTimeBetweenEvents = 1000000000LL / maxEventsPerSecond; mThrottleState.lastDeviceId = -1; #if DEBUG_THROTTLING mThrottleState.originalSampleCount = 0; LOGD("Throttling - Max events per second = %d", maxEventsPerSecond); #endif } InputDispatcher::~InputDispatcher() { { // acquire lock AutoMutex _l(mLock); resetKeyRepeatLocked(); releasePendingEventLocked(); drainInboundQueueLocked(); } while (mConnectionsByReceiveFd.size() != 0) { unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel); } } void InputDispatcher::dispatchOnce() { nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout(); nsecs_t keyRepeatDelay = mPolicy->getKeyRepeatDelay(); nsecs_t nextWakeupTime = LONG_LONG_MAX; { // acquire lock AutoMutex _l(mLock); dispatchOnceInnerLocked(keyRepeatTimeout, keyRepeatDelay, & nextWakeupTime); if (runCommandsLockedInterruptible()) { nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately } } // release lock // Wait for callback or timeout or wake. (make sure we round up, not down) nsecs_t currentTime = now(); int32_t timeoutMillis; if (nextWakeupTime > currentTime) { uint64_t timeout = uint64_t(nextWakeupTime - currentTime); timeout = (timeout + 999999LL) / 1000000LL; timeoutMillis = timeout > INT_MAX ? -1 : int32_t(timeout); } else { timeoutMillis = 0; } mLooper->pollOnce(timeoutMillis); } void InputDispatcher::dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, nsecs_t keyRepeatDelay, nsecs_t* nextWakeupTime) { nsecs_t currentTime = now(); // Reset the key repeat timer whenever we disallow key events, even if the next event // is not a key. This is to ensure that we abort a key repeat if the device is just coming // out of sleep. if (keyRepeatTimeout < 0) { resetKeyRepeatLocked(); } // If dispatching is disabled, drop all events in the queue. if (! mDispatchEnabled) { if (mPendingEvent || ! mInboundQueue.isEmpty()) { LOGI("Dropping pending events because input dispatch is disabled."); releasePendingEventLocked(); drainInboundQueueLocked(); } return; } // If dispatching is frozen, do not process timeouts or try to deliver any new events. if (mDispatchFrozen) { #if DEBUG_FOCUS LOGD("Dispatch frozen. Waiting some more."); #endif return; } // Optimize latency of app switches. // Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has // been pressed. When it expires, we preempt dispatch and drop all other pending events. bool isAppSwitchDue = mAppSwitchDueTime <= currentTime; if (mAppSwitchDueTime < *nextWakeupTime) { *nextWakeupTime = mAppSwitchDueTime; } // Ready to start a new event. // If we don't already have a pending event, go grab one. if (! mPendingEvent) { if (mInboundQueue.isEmpty()) { if (isAppSwitchDue) { // The inbound queue is empty so the app switch key we were waiting // for will never arrive. Stop waiting for it. resetPendingAppSwitchLocked(false); isAppSwitchDue = false; } // Synthesize a key repeat if appropriate. if (mKeyRepeatState.lastKeyEntry) { if (currentTime >= mKeyRepeatState.nextRepeatTime) { mPendingEvent = synthesizeKeyRepeatLocked(currentTime, keyRepeatDelay); } else { if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) { *nextWakeupTime = mKeyRepeatState.nextRepeatTime; } } } if (! mPendingEvent) { return; } } else { // Inbound queue has at least one entry. EventEntry* entry = mInboundQueue.headSentinel.next; // Throttle the entry if it is a move event and there are no // other events behind it in the queue. Due to movement batching, additional // samples may be appended to this event by the time the throttling timeout // expires. // TODO Make this smarter and consider throttling per device independently. if (entry->type == EventEntry::TYPE_MOTION) { MotionEntry* motionEntry = static_cast(entry); int32_t deviceId = motionEntry->deviceId; uint32_t source = motionEntry->source; if (! isAppSwitchDue && motionEntry->next == & mInboundQueue.tailSentinel // exactly one event && motionEntry->action == AMOTION_EVENT_ACTION_MOVE && deviceId == mThrottleState.lastDeviceId && source == mThrottleState.lastSource) { nsecs_t nextTime = mThrottleState.lastEventTime + mThrottleState.minTimeBetweenEvents; if (currentTime < nextTime) { // Throttle it! #if DEBUG_THROTTLING LOGD("Throttling - Delaying motion event for " "device 0x%x, source 0x%08x by up to %0.3fms.", deviceId, source, (nextTime - currentTime) * 0.000001); #endif if (nextTime < *nextWakeupTime) { *nextWakeupTime = nextTime; } if (mThrottleState.originalSampleCount == 0) { mThrottleState.originalSampleCount = motionEntry->countSamples(); } return; } } #if DEBUG_THROTTLING if (mThrottleState.originalSampleCount != 0) { uint32_t count = motionEntry->countSamples(); LOGD("Throttling - Motion event sample count grew by %d from %d to %d.", count - mThrottleState.originalSampleCount, mThrottleState.originalSampleCount, count); mThrottleState.originalSampleCount = 0; } #endif mThrottleState.lastEventTime = entry->eventTime < currentTime ? entry->eventTime : currentTime; mThrottleState.lastDeviceId = deviceId; mThrottleState.lastSource = source; } mInboundQueue.dequeue(entry); mPendingEvent = entry; } } // Now we have an event to dispatch. assert(mPendingEvent != NULL); bool done = false; switch (mPendingEvent->type) { case EventEntry::TYPE_CONFIGURATION_CHANGED: { ConfigurationChangedEntry* typedEntry = static_cast(mPendingEvent); done = dispatchConfigurationChangedLocked(currentTime, typedEntry); break; } case EventEntry::TYPE_KEY: { KeyEntry* typedEntry = static_cast(mPendingEvent); bool appSwitchKey = isAppSwitchKey(typedEntry->keyCode); bool dropEvent = isAppSwitchDue && ! appSwitchKey; done = dispatchKeyLocked(currentTime, typedEntry, keyRepeatTimeout, dropEvent, nextWakeupTime); if (done) { if (dropEvent) { LOGI("Dropped key because of pending overdue app switch."); } else if (appSwitchKey) { resetPendingAppSwitchLocked(true); } } break; } case EventEntry::TYPE_MOTION: { MotionEntry* typedEntry = static_cast(mPendingEvent); bool dropEvent = isAppSwitchDue; done = dispatchMotionLocked(currentTime, typedEntry, dropEvent, nextWakeupTime); if (done) { if (dropEvent) { LOGI("Dropped motion because of pending overdue app switch."); } } break; } default: assert(false); break; } if (done) { releasePendingEventLocked(); *nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately } } bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) { bool needWake = mInboundQueue.isEmpty(); mInboundQueue.enqueueAtTail(entry); switch (entry->type) { case EventEntry::TYPE_KEY: needWake |= detectPendingAppSwitchLocked(static_cast(entry)); break; } return needWake; } bool InputDispatcher::isAppSwitchKey(int32_t keyCode) { return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL; } bool InputDispatcher::isAppSwitchPendingLocked() { return mAppSwitchDueTime != LONG_LONG_MAX; } bool InputDispatcher::detectPendingAppSwitchLocked(KeyEntry* inboundKeyEntry) { if (inboundKeyEntry->action == AKEY_EVENT_ACTION_UP && ! (inboundKeyEntry->flags & AKEY_EVENT_FLAG_CANCELED) && isAppSwitchKey(inboundKeyEntry->keyCode) && isEventFromReliableSourceLocked(inboundKeyEntry)) { #if DEBUG_APP_SWITCH LOGD("App switch is pending!"); #endif mAppSwitchDueTime = inboundKeyEntry->eventTime + APP_SWITCH_TIMEOUT; return true; // need wake } return false; } void InputDispatcher::resetPendingAppSwitchLocked(bool handled) { mAppSwitchDueTime = LONG_LONG_MAX; #if DEBUG_APP_SWITCH if (handled) { LOGD("App switch has arrived."); } else { LOGD("App switch was abandoned."); } #endif } bool InputDispatcher::runCommandsLockedInterruptible() { if (mCommandQueue.isEmpty()) { return false; } do { CommandEntry* commandEntry = mCommandQueue.dequeueAtHead(); Command command = commandEntry->command; (this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible' commandEntry->connection.clear(); mAllocator.releaseCommandEntry(commandEntry); } while (! mCommandQueue.isEmpty()); return true; } InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) { CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command); mCommandQueue.enqueueAtTail(commandEntry); return commandEntry; } void InputDispatcher::drainInboundQueueLocked() { while (! mInboundQueue.isEmpty()) { EventEntry* entry = mInboundQueue.dequeueAtHead(); releaseInboundEventLocked(entry); } } void InputDispatcher::releasePendingEventLocked() { if (mPendingEvent) { releaseInboundEventLocked(mPendingEvent); mPendingEvent = NULL; } } void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) { InjectionState* injectionState = entry->injectionState; if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) { #if DEBUG_DISPATCH_CYCLE LOGD("Injected inbound event was dropped."); #endif setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED); } mAllocator.releaseEventEntry(entry); } bool InputDispatcher::isEventFromReliableSourceLocked(EventEntry* entry) { InjectionState* injectionState = entry->injectionState; return ! injectionState || injectionState->injectorUid == 0 || mPolicy->checkInjectEventsPermissionNonReentrant( injectionState->injectorPid, injectionState->injectorUid); } void InputDispatcher::resetKeyRepeatLocked() { if (mKeyRepeatState.lastKeyEntry) { mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry); mKeyRepeatState.lastKeyEntry = NULL; } } InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked( nsecs_t currentTime, nsecs_t keyRepeatDelay) { KeyEntry* entry = mKeyRepeatState.lastKeyEntry; // Reuse the repeated key entry if it is otherwise unreferenced. uint32_t policyFlags = entry->policyFlags & POLICY_FLAG_RAW_MASK; if (entry->refCount == 1) { mAllocator.recycleKeyEntry(entry); entry->eventTime = currentTime; entry->policyFlags = policyFlags; entry->repeatCount += 1; } else { KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime, entry->deviceId, entry->source, policyFlags, entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount + 1, entry->downTime); mKeyRepeatState.lastKeyEntry = newEntry; mAllocator.releaseKeyEntry(entry); entry = newEntry; } entry->syntheticRepeat = true; // Increment reference count since we keep a reference to the event in // mKeyRepeatState.lastKeyEntry in addition to the one we return. entry->refCount += 1; if (entry->repeatCount == 1) { entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS; } mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatDelay; return entry; } bool InputDispatcher::dispatchConfigurationChangedLocked( nsecs_t currentTime, ConfigurationChangedEntry* entry) { #if DEBUG_OUTBOUND_EVENT_DETAILS LOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime); #endif // Reset key repeating in case a keyboard device was added or removed or something. resetKeyRepeatLocked(); // Enqueue a command to run outside the lock to tell the policy that the configuration changed. CommandEntry* commandEntry = postCommandLocked( & InputDispatcher::doNotifyConfigurationChangedInterruptible); commandEntry->eventTime = entry->eventTime; return true; } bool InputDispatcher::dispatchKeyLocked( nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout, bool dropEvent, nsecs_t* nextWakeupTime) { // Give the policy a chance to intercept the key. if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) { bool trusted; if (! dropEvent && mFocusedWindow) { trusted = checkInjectionPermission(mFocusedWindow, entry->injectionState); } else { trusted = isEventFromReliableSourceLocked(entry); } if (trusted) { CommandEntry* commandEntry = postCommandLocked( & InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible); if (! dropEvent && mFocusedWindow) { commandEntry->inputChannel = mFocusedWindow->inputChannel; } commandEntry->keyEntry = entry; entry->refCount += 1; return false; // wait for the command to run } else { entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE; } } else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) { resetTargetsLocked(); setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_SUCCEEDED); return true; } // Clean up if dropping the event. if (dropEvent) { resetTargetsLocked(); setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED); return true; } // Preprocessing. if (! entry->dispatchInProgress) { logOutboundKeyDetailsLocked("dispatchKey - ", entry); if (entry->repeatCount == 0 && entry->action == AKEY_EVENT_ACTION_DOWN && ! entry->isInjected()) { if (mKeyRepeatState.lastKeyEntry && mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) { // We have seen two identical key downs in a row which indicates that the device // driver is automatically generating key repeats itself. We take note of the // repeat here, but we disable our own next key repeat timer since it is clear that // we will not need to synthesize key repeats ourselves. entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1; resetKeyRepeatLocked(); mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves } else { // Not a repeat. Save key down state in case we do see a repeat later. resetKeyRepeatLocked(); mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout; } mKeyRepeatState.lastKeyEntry = entry; entry->refCount += 1; } else if (! entry->syntheticRepeat) { resetKeyRepeatLocked(); } entry->dispatchInProgress = true; resetTargetsLocked(); } // Identify targets. if (! mCurrentInputTargetsValid) { int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime, entry, nextWakeupTime); if (injectionResult == INPUT_EVENT_INJECTION_PENDING) { return false; } setInjectionResultLocked(entry, injectionResult); if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { return true; } addMonitoringTargetsLocked(); commitTargetsLocked(); } // Dispatch the key. dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); // Poke user activity. if (shouldPokeUserActivityForCurrentInputTargetsLocked()) { pokeUserActivityLocked(entry->eventTime, POWER_MANAGER_BUTTON_EVENT); } return true; } void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) { #if DEBUG_OUTBOUND_EVENT_DETAILS LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " "action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, " "downTime=%lld", prefix, entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, entry->downTime); #endif } bool InputDispatcher::dispatchMotionLocked( nsecs_t currentTime, MotionEntry* entry, bool dropEvent, nsecs_t* nextWakeupTime) { // Clean up if dropping the event. if (dropEvent) { resetTargetsLocked(); setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED); return true; } // Preprocessing. if (! entry->dispatchInProgress) { logOutboundMotionDetailsLocked("dispatchMotion - ", entry); entry->dispatchInProgress = true; resetTargetsLocked(); } bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER; // Identify targets. if (! mCurrentInputTargetsValid) { int32_t injectionResult; if (isPointerEvent) { // Pointer event. (eg. touchscreen) injectionResult = findTouchedWindowTargetsLocked(currentTime, entry, nextWakeupTime); } else { // Non touch event. (eg. trackball) injectionResult = findFocusedWindowTargetsLocked(currentTime, entry, nextWakeupTime); } if (injectionResult == INPUT_EVENT_INJECTION_PENDING) { return false; } setInjectionResultLocked(entry, injectionResult); if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { return true; } addMonitoringTargetsLocked(); commitTargetsLocked(); } // Dispatch the motion. dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); // Poke user activity. if (shouldPokeUserActivityForCurrentInputTargetsLocked()) { int32_t eventType; if (isPointerEvent) { switch (entry->action) { case AMOTION_EVENT_ACTION_DOWN: eventType = POWER_MANAGER_TOUCH_EVENT; break; case AMOTION_EVENT_ACTION_UP: eventType = POWER_MANAGER_TOUCH_UP_EVENT; break; default: if (entry->eventTime - entry->downTime >= EVENT_IGNORE_DURATION) { eventType = POWER_MANAGER_TOUCH_EVENT; } else { eventType = POWER_MANAGER_LONG_TOUCH_EVENT; } break; } } else { eventType = POWER_MANAGER_BUTTON_EVENT; } pokeUserActivityLocked(entry->eventTime, eventType); } return true; } void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) { #if DEBUG_OUTBOUND_EVENT_DETAILS LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " "action=0x%x, flags=0x%x, " "metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld", prefix, entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, entry->action, entry->flags, entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision, entry->downTime); // Print the most recent sample that we have available, this may change due to batching. size_t sampleCount = 1; const MotionSample* sample = & entry->firstSample; for (; sample->next != NULL; sample = sample->next) { sampleCount += 1; } for (uint32_t i = 0; i < entry->pointerCount; i++) { LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, " "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " "orientation=%f", i, entry->pointerIds[i], sample->pointerCoords[i].x, sample->pointerCoords[i].y, sample->pointerCoords[i].pressure, sample->pointerCoords[i].size, sample->pointerCoords[i].touchMajor, sample->pointerCoords[i].touchMinor, sample->pointerCoords[i].toolMajor, sample->pointerCoords[i].toolMinor, sample->pointerCoords[i].orientation); } // Keep in mind that due to batching, it is possible for the number of samples actually // dispatched to change before the application finally consumed them. if (entry->action == AMOTION_EVENT_ACTION_MOVE) { LOGD(" ... Total movement samples currently batched %d ...", sampleCount); } #endif } void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime, EventEntry* eventEntry, bool resumeWithAppendedMotionSample) { #if DEBUG_DISPATCH_CYCLE LOGD("dispatchEventToCurrentInputTargets - " "resumeWithAppendedMotionSample=%s", toString(resumeWithAppendedMotionSample)); #endif assert(eventEntry->dispatchInProgress); // should already have been set to true for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i); ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel); if (connectionIndex >= 0) { sp connection = mConnectionsByReceiveFd.valueAt(connectionIndex); prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget, resumeWithAppendedMotionSample); } else { LOGW("Framework requested delivery of an input event to channel '%s' but it " "is not registered with the input dispatcher.", inputTarget.inputChannel->getName().string()); } } } void InputDispatcher::resetTargetsLocked() { mCurrentInputTargetsValid = false; mCurrentInputTargets.clear(); mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE; } void InputDispatcher::commitTargetsLocked() { mCurrentInputTargetsValid = true; } int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry, const InputApplication* application, const InputWindow* window, nsecs_t* nextWakeupTime) { if (application == NULL && window == NULL) { if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) { #if DEBUG_FOCUS LOGD("Waiting for system to become ready for input."); #endif mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY; mInputTargetWaitStartTime = currentTime; mInputTargetWaitTimeoutTime = LONG_LONG_MAX; mInputTargetWaitTimeoutExpired = false; } } else { if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) { #if DEBUG_FOCUS LOGD("Waiting for application to become ready for input: %s", getApplicationWindowLabelLocked(application, window).string()); #endif nsecs_t timeout = window ? window->dispatchingTimeout : application ? application->dispatchingTimeout : DEFAULT_INPUT_DISPATCHING_TIMEOUT; mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY; mInputTargetWaitStartTime = currentTime; mInputTargetWaitTimeoutTime = currentTime + timeout; mInputTargetWaitTimeoutExpired = false; } } if (mInputTargetWaitTimeoutExpired) { return INPUT_EVENT_INJECTION_TIMED_OUT; } if (currentTime >= mInputTargetWaitTimeoutTime) { onANRLocked(currentTime, application, window, entry->eventTime, mInputTargetWaitStartTime); // Force poll loop to wake up immediately on next iteration once we get the // ANR response back from the policy. *nextWakeupTime = LONG_LONG_MIN; return INPUT_EVENT_INJECTION_PENDING; } else { // Force poll loop to wake up when timeout is due. if (mInputTargetWaitTimeoutTime < *nextWakeupTime) { *nextWakeupTime = mInputTargetWaitTimeoutTime; } return INPUT_EVENT_INJECTION_PENDING; } } void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout, const sp& inputChannel) { if (newTimeout > 0) { // Extend the timeout. mInputTargetWaitTimeoutTime = now() + newTimeout; } else { // Give up. mInputTargetWaitTimeoutExpired = true; // Release the touch targets. mTouchState.reset(); // Input state will not be realistic. Mark it out of sync. if (inputChannel.get()) { ssize_t connectionIndex = getConnectionIndexLocked(inputChannel); if (connectionIndex >= 0) { sp connection = mConnectionsByReceiveFd.valueAt(connectionIndex); connection->inputState.setOutOfSync(); } } } } nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationLocked( nsecs_t currentTime) { if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) { return currentTime - mInputTargetWaitStartTime; } return 0; } void InputDispatcher::resetANRTimeoutsLocked() { #if DEBUG_FOCUS LOGD("Resetting ANR timeouts."); #endif // Reset input target wait timeout. mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE; } int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry, nsecs_t* nextWakeupTime) { mCurrentInputTargets.clear(); int32_t injectionResult; // If there is no currently focused window and no focused application // then drop the event. if (! mFocusedWindow) { if (mFocusedApplication) { #if DEBUG_FOCUS LOGD("Waiting because there is no focused window but there is a " "focused application that may eventually add a window: %s.", getApplicationWindowLabelLocked(mFocusedApplication, NULL).string()); #endif injectionResult = handleTargetsNotReadyLocked(currentTime, entry, mFocusedApplication, NULL, nextWakeupTime); goto Unresponsive; } LOGI("Dropping event because there is no focused window or focused application."); injectionResult = INPUT_EVENT_INJECTION_FAILED; goto Failed; } // Check permissions. if (! checkInjectionPermission(mFocusedWindow, entry->injectionState)) { injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; goto Failed; } // If the currently focused window is paused then keep waiting. if (mFocusedWindow->paused) { #if DEBUG_FOCUS LOGD("Waiting because focused window is paused."); #endif injectionResult = handleTargetsNotReadyLocked(currentTime, entry, mFocusedApplication, mFocusedWindow, nextWakeupTime); goto Unresponsive; } // If the currently focused window is still working on previous events then keep waiting. if (! isWindowFinishedWithPreviousInputLocked(mFocusedWindow)) { #if DEBUG_FOCUS LOGD("Waiting because focused window still processing previous input."); #endif injectionResult = handleTargetsNotReadyLocked(currentTime, entry, mFocusedApplication, mFocusedWindow, nextWakeupTime); goto Unresponsive; } // Success! Output targets. injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; addWindowTargetLocked(mFocusedWindow, InputTarget::FLAG_FOREGROUND, BitSet32(0)); // Done. Failed: Unresponsive: nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime); updateDispatchStatisticsLocked(currentTime, entry, injectionResult, timeSpentWaitingForApplication); #if DEBUG_FOCUS LOGD("findFocusedWindow finished: injectionResult=%d, " "timeSpendWaitingForApplication=%0.1fms", injectionResult, timeSpentWaitingForApplication / 1000000.0); #endif return injectionResult; } int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry, nsecs_t* nextWakeupTime) { enum InjectionPermission { INJECTION_PERMISSION_UNKNOWN, INJECTION_PERMISSION_GRANTED, INJECTION_PERMISSION_DENIED }; mCurrentInputTargets.clear(); nsecs_t startTime = now(); // For security reasons, we defer updating the touch state until we are sure that // event injection will be allowed. // // FIXME In the original code, screenWasOff could never be set to true. // The reason is that the POLICY_FLAG_WOKE_HERE // and POLICY_FLAG_BRIGHT_HERE flags were set only when preprocessing raw // EV_KEY, EV_REL and EV_ABS events. As it happens, the touch event was // actually enqueued using the policyFlags that appeared in the final EV_SYN // events upon which no preprocessing took place. So policyFlags was always 0. // In the new native input dispatcher we're a bit more careful about event // preprocessing so the touches we receive can actually have non-zero policyFlags. // Unfortunately we obtain undesirable behavior. // // Here's what happens: // // When the device dims in anticipation of going to sleep, touches // in windows which have FLAG_TOUCHABLE_WHEN_WAKING cause // the device to brighten and reset the user activity timer. // Touches on other windows (such as the launcher window) // are dropped. Then after a moment, the device goes to sleep. Oops. // // Also notice how screenWasOff was being initialized using POLICY_FLAG_BRIGHT_HERE // instead of POLICY_FLAG_WOKE_HERE... // bool screenWasOff = false; // original policy: policyFlags & POLICY_FLAG_BRIGHT_HERE; int32_t action = entry->action; int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK; // Update the touch state as needed based on the properties of the touch event. int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING; InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN; if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { mTempTouchState.reset(); mTempTouchState.down = true; } else { mTempTouchState.copyFrom(mTouchState); } bool isSplit = mTempTouchState.split && mTempTouchState.down; if (maskedAction == AMOTION_EVENT_ACTION_DOWN || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) { /* Case 1: New splittable pointer going down. */ int32_t pointerIndex = getMotionEventActionPointerIndex(action); int32_t x = int32_t(entry->firstSample.pointerCoords[pointerIndex].x); int32_t y = int32_t(entry->firstSample.pointerCoords[pointerIndex].y); const InputWindow* newTouchedWindow = NULL; const InputWindow* topErrorWindow = NULL; // Traverse windows from front to back to find touched window and outside targets. size_t numWindows = mWindows.size(); for (size_t i = 0; i < numWindows; i++) { const InputWindow* window = & mWindows.editItemAt(i); int32_t flags = window->layoutParamsFlags; if (flags & InputWindow::FLAG_SYSTEM_ERROR) { if (! topErrorWindow) { topErrorWindow = window; } } if (window->visible) { if (! (flags & InputWindow::FLAG_NOT_TOUCHABLE)) { bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE | InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0; if (isTouchModal || window->touchableAreaContainsPoint(x, y)) { if (! screenWasOff || flags & InputWindow::FLAG_TOUCHABLE_WHEN_WAKING) { newTouchedWindow = window; } break; // found touched window, exit window loop } } if (maskedAction == AMOTION_EVENT_ACTION_DOWN && (flags & InputWindow::FLAG_WATCH_OUTSIDE_TOUCH)) { mTempTouchState.addOrUpdateWindow(window, InputTarget::FLAG_OUTSIDE, BitSet32(0)); } } } // If there is an error window but it is not taking focus (typically because // it is invisible) then wait for it. Any other focused window may in // fact be in ANR state. if (topErrorWindow && newTouchedWindow != topErrorWindow) { #if DEBUG_FOCUS LOGD("Waiting because system error window is pending."); #endif injectionResult = handleTargetsNotReadyLocked(currentTime, entry, NULL, NULL, nextWakeupTime); injectionPermission = INJECTION_PERMISSION_UNKNOWN; goto Unresponsive; } // Figure out whether splitting will be allowed for this window. if (newTouchedWindow->layoutParamsFlags & InputWindow::FLAG_SPLIT_TOUCH) { // New window supports splitting. isSplit = true; } else if (isSplit) { // New window does not support splitting but we have already split events. // Assign the pointer to the first foreground window we find. // (May be NULL which is why we put this code block before the next check.) newTouchedWindow = mTempTouchState.getFirstForegroundWindow(); } int32_t targetFlags = InputTarget::FLAG_FOREGROUND; if (isSplit) { targetFlags |= InputTarget::FLAG_SPLIT; } // If we did not find a touched window then fail. if (! newTouchedWindow) { if (mFocusedApplication) { #if DEBUG_FOCUS LOGD("Waiting because there is no touched window but there is a " "focused application that may eventually add a new window: %s.", getApplicationWindowLabelLocked(mFocusedApplication, NULL).string()); #endif injectionResult = handleTargetsNotReadyLocked(currentTime, entry, mFocusedApplication, NULL, nextWakeupTime); goto Unresponsive; } LOGI("Dropping event because there is no touched window or focused application."); injectionResult = INPUT_EVENT_INJECTION_FAILED; goto Failed; } // Update the temporary touch state. BitSet32 pointerIds; if (isSplit) { uint32_t pointerId = entry->pointerIds[pointerIndex]; pointerIds.markBit(pointerId); } mTempTouchState.addOrUpdateWindow(newTouchedWindow, targetFlags, pointerIds); } else { /* Case 2: Pointer move, up, cancel or non-splittable pointer down. */ // If the pointer is not currently down, then ignore the event. if (! mTempTouchState.down) { LOGI("Dropping event because the pointer is not down."); injectionResult = INPUT_EVENT_INJECTION_FAILED; goto Failed; } } // Check permission to inject into all touched foreground windows and ensure there // is at least one touched foreground window. { bool haveForegroundWindow = false; for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { const TouchedWindow& touchedWindow = mTempTouchState.windows[i]; if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) { haveForegroundWindow = true; if (! checkInjectionPermission(touchedWindow.window, entry->injectionState)) { injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; injectionPermission = INJECTION_PERMISSION_DENIED; goto Failed; } } } if (! haveForegroundWindow) { #if DEBUG_INPUT_DISPATCHER_POLICY LOGD("Dropping event because there is no touched foreground window to receive it."); #endif injectionResult = INPUT_EVENT_INJECTION_FAILED; goto Failed; } // Permission granted to injection into all touched foreground windows. injectionPermission = INJECTION_PERMISSION_GRANTED; } // Ensure all touched foreground windows are ready for new input. for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { const TouchedWindow& touchedWindow = mTempTouchState.windows[i]; if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) { // If the touched window is paused then keep waiting. if (touchedWindow.window->paused) { #if DEBUG_INPUT_DISPATCHER_POLICY LOGD("Waiting because touched window is paused."); #endif injectionResult = handleTargetsNotReadyLocked(currentTime, entry, NULL, touchedWindow.window, nextWakeupTime); goto Unresponsive; } // If the touched window is still working on previous events then keep waiting. if (! isWindowFinishedWithPreviousInputLocked(touchedWindow.window)) { #if DEBUG_FOCUS LOGD("Waiting because touched window still processing previous input."); #endif injectionResult = handleTargetsNotReadyLocked(currentTime, entry, NULL, touchedWindow.window, nextWakeupTime); goto Unresponsive; } } } // If this is the first pointer going down and the touched window has a wallpaper // then also add the touched wallpaper windows so they are locked in for the duration // of the touch gesture. if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { const InputWindow* foregroundWindow = mTempTouchState.getFirstForegroundWindow(); if (foregroundWindow->hasWallpaper) { for (size_t i = 0; i < mWindows.size(); i++) { const InputWindow* window = & mWindows[i]; if (window->layoutParamsType == InputWindow::TYPE_WALLPAPER) { mTempTouchState.addOrUpdateWindow(window, 0, BitSet32(0)); } } } } // If a touched window has been obscured at any point during the touch gesture, set // the appropriate flag so we remember it for the entire gesture. for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i); if ((touchedWindow.targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) == 0) { if (isWindowObscuredLocked(touchedWindow.window)) { touchedWindow.targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED; } } } // Success! Output targets. injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { const TouchedWindow& touchedWindow = mTempTouchState.windows.itemAt(i); addWindowTargetLocked(touchedWindow.window, touchedWindow.targetFlags, touchedWindow.pointerIds); } // Drop the outside touch window since we will not care about them in the next iteration. mTempTouchState.removeOutsideTouchWindows(); Failed: // Check injection permission once and for all. if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) { if (checkInjectionPermission(NULL, entry->injectionState)) { injectionPermission = INJECTION_PERMISSION_GRANTED; } else { injectionPermission = INJECTION_PERMISSION_DENIED; } } // Update final pieces of touch state if the injector had permission. if (injectionPermission == INJECTION_PERMISSION_GRANTED) { if (maskedAction == AMOTION_EVENT_ACTION_UP || maskedAction == AMOTION_EVENT_ACTION_CANCEL) { // All pointers up or canceled. mTempTouchState.reset(); } else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { // First pointer went down. if (mTouchState.down) { LOGW("Pointer down received while already down."); } } else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) { // One pointer went up. if (isSplit) { int32_t pointerIndex = getMotionEventActionPointerIndex(action); uint32_t pointerId = entry->pointerIds[pointerIndex]; for (size_t i = 0; i < mTempTouchState.windows.size(); ) { TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i); if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) { touchedWindow.pointerIds.clearBit(pointerId); if (touchedWindow.pointerIds.isEmpty()) { mTempTouchState.windows.removeAt(i); continue; } } i += 1; } } } // Save changes to touch state. mTouchState.copyFrom(mTempTouchState); } else { #if DEBUG_FOCUS LOGD("Not updating touch focus because injection was denied."); #endif } Unresponsive: nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime); updateDispatchStatisticsLocked(currentTime, entry, injectionResult, timeSpentWaitingForApplication); #if DEBUG_FOCUS LOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d, " "timeSpentWaitingForApplication=%0.1fms", injectionResult, injectionPermission, timeSpentWaitingForApplication / 1000000.0); #endif return injectionResult; } void InputDispatcher::addWindowTargetLocked(const InputWindow* window, int32_t targetFlags, BitSet32 pointerIds) { mCurrentInputTargets.push(); InputTarget& target = mCurrentInputTargets.editTop(); target.inputChannel = window->inputChannel; target.flags = targetFlags; target.xOffset = - window->frameLeft; target.yOffset = - window->frameTop; target.windowType = window->layoutParamsType; target.pointerIds = pointerIds; } void InputDispatcher::addMonitoringTargetsLocked() { for (size_t i = 0; i < mMonitoringChannels.size(); i++) { mCurrentInputTargets.push(); InputTarget& target = mCurrentInputTargets.editTop(); target.inputChannel = mMonitoringChannels[i]; target.flags = 0; target.xOffset = 0; target.yOffset = 0; target.windowType = InputWindow::TYPE_SYSTEM_OVERLAY; } } bool InputDispatcher::checkInjectionPermission(const InputWindow* window, const InjectionState* injectionState) { if (injectionState && injectionState->injectorUid > 0 && (window == NULL || window->ownerUid != injectionState->injectorUid)) { bool result = mPolicy->checkInjectEventsPermissionNonReentrant( injectionState->injectorPid, injectionState->injectorUid); if (! result) { if (window) { LOGW("Permission denied: injecting event from pid %d uid %d to window " "with input channel %s owned by uid %d", injectionState->injectorPid, injectionState->injectorUid, window->inputChannel->getName().string(), window->ownerUid); } else { LOGW("Permission denied: injecting event from pid %d uid %d", injectionState->injectorPid, injectionState->injectorUid); } return false; } } return true; } bool InputDispatcher::isWindowObscuredLocked(const InputWindow* window) { size_t numWindows = mWindows.size(); for (size_t i = 0; i < numWindows; i++) { const InputWindow* other = & mWindows.itemAt(i); if (other == window) { break; } if (other->visible && window->visibleFrameIntersects(other)) { return true; } } return false; } bool InputDispatcher::isWindowFinishedWithPreviousInputLocked(const InputWindow* window) { ssize_t connectionIndex = getConnectionIndexLocked(window->inputChannel); if (connectionIndex >= 0) { sp connection = mConnectionsByReceiveFd.valueAt(connectionIndex); return connection->outboundQueue.isEmpty(); } else { return true; } } String8 InputDispatcher::getApplicationWindowLabelLocked(const InputApplication* application, const InputWindow* window) { if (application) { if (window) { String8 label(application->name); label.append(" - "); label.append(window->name); return label; } else { return application->name; } } else if (window) { return window->name; } else { return String8(""); } } bool InputDispatcher::shouldPokeUserActivityForCurrentInputTargetsLocked() { for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { if (mCurrentInputTargets[i].windowType == InputWindow::TYPE_KEYGUARD) { return false; } } return true; } void InputDispatcher::pokeUserActivityLocked(nsecs_t eventTime, int32_t eventType) { CommandEntry* commandEntry = postCommandLocked( & InputDispatcher::doPokeUserActivityLockedInterruptible); commandEntry->eventTime = eventTime; commandEntry->userActivityEventType = eventType; } void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime, const sp& connection, EventEntry* eventEntry, const InputTarget* inputTarget, bool resumeWithAppendedMotionSample) { #if DEBUG_DISPATCH_CYCLE LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, " "xOffset=%f, yOffset=%f, " "windowType=%d, pointerIds=0x%x, " "resumeWithAppendedMotionSample=%s", connection->getInputChannelName(), inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset, inputTarget->windowType, inputTarget->pointerIds.value, toString(resumeWithAppendedMotionSample)); #endif // Make sure we are never called for streaming when splitting across multiple windows. bool isSplit = inputTarget->flags & InputTarget::FLAG_SPLIT; assert(! (resumeWithAppendedMotionSample && isSplit)); // Skip this event if the connection status is not normal. // We don't want to enqueue additional outbound events if the connection is broken. if (connection->status != Connection::STATUS_NORMAL) { LOGW("channel '%s' ~ Dropping event because the channel status is %s", connection->getInputChannelName(), connection->getStatusLabel()); return; } // Split a motion event if needed. if (isSplit) { assert(eventEntry->type == EventEntry::TYPE_MOTION); MotionEntry* originalMotionEntry = static_cast(eventEntry); if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) { MotionEntry* splitMotionEntry = splitMotionEvent( originalMotionEntry, inputTarget->pointerIds); #if DEBUG_FOCUS LOGD("channel '%s' ~ Split motion event.", connection->getInputChannelName()); logOutboundMotionDetailsLocked(" ", splitMotionEntry); #endif eventEntry = splitMotionEntry; } } // Resume the dispatch cycle with a freshly appended motion sample. // First we check that the last dispatch entry in the outbound queue is for the same // motion event to which we appended the motion sample. If we find such a dispatch // entry, and if it is currently in progress then we try to stream the new sample. bool wasEmpty = connection->outboundQueue.isEmpty(); if (! wasEmpty && resumeWithAppendedMotionSample) { DispatchEntry* motionEventDispatchEntry = connection->findQueuedDispatchEntryForEvent(eventEntry); if (motionEventDispatchEntry) { // If the dispatch entry is not in progress, then we must be busy dispatching an // earlier event. Not a problem, the motion event is on the outbound queue and will // be dispatched later. if (! motionEventDispatchEntry->inProgress) { #if DEBUG_BATCHING LOGD("channel '%s' ~ Not streaming because the motion event has " "not yet been dispatched. " "(Waiting for earlier events to be consumed.)", connection->getInputChannelName()); #endif return; } // If the dispatch entry is in progress but it already has a tail of pending // motion samples, then it must mean that the shared memory buffer filled up. // Not a problem, when this dispatch cycle is finished, we will eventually start // a new dispatch cycle to process the tail and that tail includes the newly // appended motion sample. if (motionEventDispatchEntry->tailMotionSample) { #if DEBUG_BATCHING LOGD("channel '%s' ~ Not streaming because no new samples can " "be appended to the motion event in this dispatch cycle. " "(Waiting for next dispatch cycle to start.)", connection->getInputChannelName()); #endif return; } // The dispatch entry is in progress and is still potentially open for streaming. // Try to stream the new motion sample. This might fail if the consumer has already // consumed the motion event (or if the channel is broken). MotionEntry* motionEntry = static_cast(eventEntry); MotionSample* appendedMotionSample = motionEntry->lastSample; status_t status = connection->inputPublisher.appendMotionSample( appendedMotionSample->eventTime, appendedMotionSample->pointerCoords); if (status == OK) { #if DEBUG_BATCHING LOGD("channel '%s' ~ Successfully streamed new motion sample.", connection->getInputChannelName()); #endif return; } #if DEBUG_BATCHING if (status == NO_MEMORY) { LOGD("channel '%s' ~ Could not append motion sample to currently " "dispatched move event because the shared memory buffer is full. " "(Waiting for next dispatch cycle to start.)", connection->getInputChannelName()); } else if (status == status_t(FAILED_TRANSACTION)) { LOGD("channel '%s' ~ Could not append motion sample to currently " "dispatched move event because the event has already been consumed. " "(Waiting for next dispatch cycle to start.)", connection->getInputChannelName()); } else { LOGD("channel '%s' ~ Could not append motion sample to currently " "dispatched move event due to an error, status=%d. " "(Waiting for next dispatch cycle to start.)", connection->getInputChannelName(), status); } #endif // Failed to stream. Start a new tail of pending motion samples to dispatch // in the next cycle. motionEventDispatchEntry->tailMotionSample = appendedMotionSample; return; } } // Bring the input state back in line with reality in case it drifted off during an ANR. if (connection->inputState.isOutOfSync()) { mTempCancelationEvents.clear(); connection->inputState.synthesizeCancelationEvents(& mAllocator, mTempCancelationEvents); connection->inputState.resetOutOfSync(); if (! mTempCancelationEvents.isEmpty()) { LOGI("channel '%s' ~ Generated %d cancelation events to bring channel back in sync " "with reality.", connection->getInputChannelName(), mTempCancelationEvents.size()); for (size_t i = 0; i < mTempCancelationEvents.size(); i++) { EventEntry* cancelationEventEntry = mTempCancelationEvents.itemAt(i); switch (cancelationEventEntry->type) { case EventEntry::TYPE_KEY: logOutboundKeyDetailsLocked(" ", static_cast(cancelationEventEntry)); break; case EventEntry::TYPE_MOTION: logOutboundMotionDetailsLocked(" ", static_cast(cancelationEventEntry)); break; } DispatchEntry* cancelationDispatchEntry = mAllocator.obtainDispatchEntry(cancelationEventEntry, 0, inputTarget->xOffset, inputTarget->yOffset); // increments ref connection->outboundQueue.enqueueAtTail(cancelationDispatchEntry); mAllocator.releaseEventEntry(cancelationEventEntry); } } } // This is a new event. // Enqueue a new dispatch entry onto the outbound queue for this connection. DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry, // increments ref inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset); if (dispatchEntry->hasForegroundTarget()) { incrementPendingForegroundDispatchesLocked(eventEntry); } // Handle the case where we could not stream a new motion sample because the consumer has // already consumed the motion event (otherwise the corresponding dispatch entry would // still be in the outbound queue for this connection). We set the head motion sample // to the list starting with the newly appended motion sample. if (resumeWithAppendedMotionSample) { #if DEBUG_BATCHING LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples " "that cannot be streamed because the motion event has already been consumed.", connection->getInputChannelName()); #endif MotionSample* appendedMotionSample = static_cast(eventEntry)->lastSample; dispatchEntry->headMotionSample = appendedMotionSample; } // Enqueue the dispatch entry. connection->outboundQueue.enqueueAtTail(dispatchEntry); // If the outbound queue was previously empty, start the dispatch cycle going. if (wasEmpty) { activateConnectionLocked(connection.get()); startDispatchCycleLocked(currentTime, connection); } } void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime, const sp& connection) { #if DEBUG_DISPATCH_CYCLE LOGD("channel '%s' ~ startDispatchCycle", connection->getInputChannelName()); #endif assert(connection->status == Connection::STATUS_NORMAL); assert(! connection->outboundQueue.isEmpty()); DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; assert(! dispatchEntry->inProgress); // Mark the dispatch entry as in progress. dispatchEntry->inProgress = true; // Update the connection's input state. EventEntry* eventEntry = dispatchEntry->eventEntry; InputState::Consistency consistency = connection->inputState.trackEvent(eventEntry); #if FILTER_INPUT_EVENTS // Filter out inconsistent sequences of input events. // The input system may drop or inject events in a way that could violate implicit // invariants on input state and potentially cause an application to crash // or think that a key or pointer is stuck down. Technically we make no guarantees // of consistency but it would be nice to improve on this where possible. // XXX: This code is a proof of concept only. Not ready for prime time. if (consistency == InputState::TOLERABLE) { #if DEBUG_DISPATCH_CYCLE LOGD("channel '%s' ~ Sending an event that is inconsistent with the connection's " "current input state but that is likely to be tolerated by the application.", connection->getInputChannelName()); #endif } else if (consistency == InputState::BROKEN) { LOGI("channel '%s' ~ Dropping an event that is inconsistent with the connection's " "current input state and that is likely to cause the application to crash.", connection->getInputChannelName()); startNextDispatchCycleLocked(currentTime, connection); return; } #endif // Publish the event. status_t status; switch (eventEntry->type) { case EventEntry::TYPE_KEY: { KeyEntry* keyEntry = static_cast(eventEntry); // Apply target flags. int32_t action = keyEntry->action; int32_t flags = keyEntry->flags; // Publish the key event. status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source, action, flags, keyEntry->keyCode, keyEntry->scanCode, keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime, keyEntry->eventTime); if (status) { LOGE("channel '%s' ~ Could not publish key event, " "status=%d", connection->getInputChannelName(), status); abortDispatchCycleLocked(currentTime, connection, true /*broken*/); return; } break; } case EventEntry::TYPE_MOTION: { MotionEntry* motionEntry = static_cast(eventEntry); // Apply target flags. int32_t action = motionEntry->action; int32_t flags = motionEntry->flags; if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) { action = AMOTION_EVENT_ACTION_OUTSIDE; } if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) { flags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED; } // If headMotionSample is non-NULL, then it points to the first new sample that we // were unable to dispatch during the previous cycle so we resume dispatching from // that point in the list of motion samples. // Otherwise, we just start from the first sample of the motion event. MotionSample* firstMotionSample = dispatchEntry->headMotionSample; if (! firstMotionSample) { firstMotionSample = & motionEntry->firstSample; } // Set the X and Y offset depending on the input source. float xOffset, yOffset; if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { xOffset = dispatchEntry->xOffset; yOffset = dispatchEntry->yOffset; } else { xOffset = 0.0f; yOffset = 0.0f; } // Publish the motion event and the first motion sample. status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId, motionEntry->source, action, flags, motionEntry->edgeFlags, motionEntry->metaState, xOffset, yOffset, motionEntry->xPrecision, motionEntry->yPrecision, motionEntry->downTime, firstMotionSample->eventTime, motionEntry->pointerCount, motionEntry->pointerIds, firstMotionSample->pointerCoords); if (status) { LOGE("channel '%s' ~ Could not publish motion event, " "status=%d", connection->getInputChannelName(), status); abortDispatchCycleLocked(currentTime, connection, true /*broken*/); return; } // Append additional motion samples. MotionSample* nextMotionSample = firstMotionSample->next; for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) { status = connection->inputPublisher.appendMotionSample( nextMotionSample->eventTime, nextMotionSample->pointerCoords); if (status == NO_MEMORY) { #if DEBUG_DISPATCH_CYCLE LOGD("channel '%s' ~ Shared memory buffer full. Some motion samples will " "be sent in the next dispatch cycle.", connection->getInputChannelName()); #endif break; } if (status != OK) { LOGE("channel '%s' ~ Could not append motion sample " "for a reason other than out of memory, status=%d", connection->getInputChannelName(), status); abortDispatchCycleLocked(currentTime, connection, true /*broken*/); return; } } // Remember the next motion sample that we could not dispatch, in case we ran out // of space in the shared memory buffer. dispatchEntry->tailMotionSample = nextMotionSample; break; } default: { assert(false); } } // Send the dispatch signal. status = connection->inputPublisher.sendDispatchSignal(); if (status) { LOGE("channel '%s' ~ Could not send dispatch signal, status=%d", connection->getInputChannelName(), status); abortDispatchCycleLocked(currentTime, connection, true /*broken*/); return; } // Record information about the newly started dispatch cycle. connection->lastEventTime = eventEntry->eventTime; connection->lastDispatchTime = currentTime; // Notify other system components. onDispatchCycleStartedLocked(currentTime, connection); } void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime, const sp& connection) { #if DEBUG_DISPATCH_CYCLE LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, " "%01.1fms since dispatch", connection->getInputChannelName(), connection->getEventLatencyMillis(currentTime), connection->getDispatchLatencyMillis(currentTime)); #endif if (connection->status == Connection::STATUS_BROKEN || connection->status == Connection::STATUS_ZOMBIE) { return; } // Notify other system components. onDispatchCycleFinishedLocked(currentTime, connection); // Reset the publisher since the event has been consumed. // We do this now so that the publisher can release some of its internal resources // while waiting for the next dispatch cycle to begin. status_t status = connection->inputPublisher.reset(); if (status) { LOGE("channel '%s' ~ Could not reset publisher, status=%d", connection->getInputChannelName(), status); abortDispatchCycleLocked(currentTime, connection, true /*broken*/); return; } startNextDispatchCycleLocked(currentTime, connection); } void InputDispatcher::startNextDispatchCycleLocked(nsecs_t currentTime, const sp& connection) { // Start the next dispatch cycle for this connection. while (! connection->outboundQueue.isEmpty()) { DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; if (dispatchEntry->inProgress) { // Finish or resume current event in progress. if (dispatchEntry->tailMotionSample) { // We have a tail of undispatched motion samples. // Reuse the same DispatchEntry and start a new cycle. dispatchEntry->inProgress = false; dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample; dispatchEntry->tailMotionSample = NULL; startDispatchCycleLocked(currentTime, connection); return; } // Finished. connection->outboundQueue.dequeueAtHead(); if (dispatchEntry->hasForegroundTarget()) { decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry); } mAllocator.releaseDispatchEntry(dispatchEntry); } else { // If the head is not in progress, then we must have already dequeued the in // progress event, which means we actually aborted it. // So just start the next event for this connection. startDispatchCycleLocked(currentTime, connection); return; } } // Outbound queue is empty, deactivate the connection. deactivateConnectionLocked(connection.get()); } void InputDispatcher::abortDispatchCycleLocked(nsecs_t currentTime, const sp& connection, bool broken) { #if DEBUG_DISPATCH_CYCLE LOGD("channel '%s' ~ abortDispatchCycle - broken=%s", connection->getInputChannelName(), toString(broken)); #endif // Input state will no longer be realistic. connection->inputState.setOutOfSync(); // Clear the outbound queue. drainOutboundQueueLocked(connection.get()); // Handle the case where the connection appears to be unrecoverably broken. // Ignore already broken or zombie connections. if (broken) { if (connection->status == Connection::STATUS_NORMAL) { connection->status = Connection::STATUS_BROKEN; // Notify other system components. onDispatchCycleBrokenLocked(currentTime, connection); } } } void InputDispatcher::drainOutboundQueueLocked(Connection* connection) { while (! connection->outboundQueue.isEmpty()) { DispatchEntry* dispatchEntry = connection->outboundQueue.dequeueAtHead(); if (dispatchEntry->hasForegroundTarget()) { decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry); } mAllocator.releaseDispatchEntry(dispatchEntry); } deactivateConnectionLocked(connection); } int InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) { InputDispatcher* d = static_cast(data); { // acquire lock AutoMutex _l(d->mLock); ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd); if (connectionIndex < 0) { LOGE("Received spurious receive callback for unknown input channel. " "fd=%d, events=0x%x", receiveFd, events); return 0; // remove the callback } nsecs_t currentTime = now(); sp connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex); if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) { LOGE("channel '%s' ~ Consumer closed input channel or an error occurred. " "events=0x%x", connection->getInputChannelName(), events); d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/); d->runCommandsLockedInterruptible(); return 0; // remove the callback } if (! (events & ALOOPER_EVENT_INPUT)) { LOGW("channel '%s' ~ Received spurious callback for unhandled poll event. " "events=0x%x", connection->getInputChannelName(), events); return 1; } status_t status = connection->inputPublisher.receiveFinishedSignal(); if (status) { LOGE("channel '%s' ~ Failed to receive finished signal. status=%d", connection->getInputChannelName(), status); d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/); d->runCommandsLockedInterruptible(); return 0; // remove the callback } d->finishDispatchCycleLocked(currentTime, connection); d->runCommandsLockedInterruptible(); return 1; } // release lock } InputDispatcher::MotionEntry* InputDispatcher::splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds) { assert(pointerIds.value != 0); uint32_t splitPointerIndexMap[MAX_POINTERS]; int32_t splitPointerIds[MAX_POINTERS]; PointerCoords splitPointerCoords[MAX_POINTERS]; uint32_t originalPointerCount = originalMotionEntry->pointerCount; uint32_t splitPointerCount = 0; for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount; originalPointerIndex++) { int32_t pointerId = uint32_t(originalMotionEntry->pointerIds[originalPointerIndex]); if (pointerIds.hasBit(pointerId)) { splitPointerIndexMap[splitPointerCount] = originalPointerIndex; splitPointerIds[splitPointerCount] = pointerId; splitPointerCoords[splitPointerCount] = originalMotionEntry->firstSample.pointerCoords[originalPointerIndex]; splitPointerCount += 1; } } assert(splitPointerCount == pointerIds.count()); int32_t action = originalMotionEntry->action; int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK; if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN || maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) { int32_t originalPointerIndex = getMotionEventActionPointerIndex(action); int32_t pointerId = originalMotionEntry->pointerIds[originalPointerIndex]; if (pointerIds.hasBit(pointerId)) { if (pointerIds.count() == 1) { // The first/last pointer went down/up. action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; } } else { // An unrelated pointer changed. action = AMOTION_EVENT_ACTION_MOVE; } } MotionEntry* splitMotionEntry = mAllocator.obtainMotionEntry( originalMotionEntry->eventTime, originalMotionEntry->deviceId, originalMotionEntry->source, originalMotionEntry->policyFlags, action, originalMotionEntry->flags, originalMotionEntry->metaState, originalMotionEntry->edgeFlags, originalMotionEntry->xPrecision, originalMotionEntry->yPrecision, originalMotionEntry->downTime, splitPointerCount, splitPointerIds, splitPointerCoords); for (MotionSample* originalMotionSample = originalMotionEntry->firstSample.next; originalMotionSample != NULL; originalMotionSample = originalMotionSample->next) { for (uint32_t splitPointerIndex = 0; splitPointerIndex < splitPointerCount; splitPointerIndex++) { uint32_t originalPointerIndex = splitPointerIndexMap[splitPointerIndex]; splitPointerCoords[splitPointerIndex] = originalMotionSample->pointerCoords[originalPointerIndex]; } mAllocator.appendMotionSample(splitMotionEntry, originalMotionSample->eventTime, splitPointerCoords); } return splitMotionEntry; } void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) { #if DEBUG_INBOUND_EVENT_DETAILS LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime); #endif bool needWake; { // acquire lock AutoMutex _l(mLock); ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime); needWake = enqueueInboundEventLocked(newEntry); } // release lock if (needWake) { mLooper->wake(); } } void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) { #if DEBUG_INBOUND_EVENT_DETAILS LOGD("notifyKey - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, " "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld", eventTime, deviceId, source, policyFlags, action, flags, keyCode, scanCode, metaState, downTime); #endif if (! validateKeyEvent(action)) { return; } bool needWake; { // acquire lock AutoMutex _l(mLock); int32_t repeatCount = 0; KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime, deviceId, source, policyFlags, action, flags, keyCode, scanCode, metaState, repeatCount, downTime); needWake = enqueueInboundEventLocked(newEntry); } // release lock if (needWake) { mLooper->wake(); } } void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags, uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords, float xPrecision, float yPrecision, nsecs_t downTime) { #if DEBUG_INBOUND_EVENT_DETAILS LOGD("notifyMotion - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, " "action=0x%x, flags=0x%x, metaState=0x%x, edgeFlags=0x%x, " "xPrecision=%f, yPrecision=%f, downTime=%lld", eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags, xPrecision, yPrecision, downTime); for (uint32_t i = 0; i < pointerCount; i++) { LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, " "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " "orientation=%f", i, pointerIds[i], pointerCoords[i].x, pointerCoords[i].y, pointerCoords[i].pressure, pointerCoords[i].size, pointerCoords[i].touchMajor, pointerCoords[i].touchMinor, pointerCoords[i].toolMajor, pointerCoords[i].toolMinor, pointerCoords[i].orientation); } #endif if (! validateMotionEvent(action, pointerCount, pointerIds)) { return; } bool needWake; { // acquire lock AutoMutex _l(mLock); // Attempt batching and streaming of move events. if (action == AMOTION_EVENT_ACTION_MOVE) { // BATCHING CASE // // Try to append a move sample to the tail of the inbound queue for this device. // Give up if we encounter a non-move motion event for this device since that // means we cannot append any new samples until a new motion event has started. for (EventEntry* entry = mInboundQueue.tailSentinel.prev; entry != & mInboundQueue.headSentinel; entry = entry->prev) { if (entry->type != EventEntry::TYPE_MOTION) { // Keep looking for motion events. continue; } MotionEntry* motionEntry = static_cast(entry); if (motionEntry->deviceId != deviceId) { // Keep looking for this device. continue; } if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE || motionEntry->pointerCount != pointerCount || motionEntry->isInjected()) { // Last motion event in the queue for this device is not compatible for // appending new samples. Stop here. goto NoBatchingOrStreaming; } // The last motion event is a move and is compatible for appending. // Do the batching magic. mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords); #if DEBUG_BATCHING LOGD("Appended motion sample onto batch for most recent " "motion event for this device in the inbound queue."); #endif return; // done! } // STREAMING CASE // // There is no pending motion event (of any kind) for this device in the inbound queue. // Search the outbound queue for the current foreground targets to find a dispatched // motion event that is still in progress. If found, then, appen the new sample to // that event and push it out to all current targets. The logic in // prepareDispatchCycleLocked takes care of the case where some targets may // already have consumed the motion event by starting a new dispatch cycle if needed. if (mCurrentInputTargetsValid) { for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { const InputTarget& inputTarget = mCurrentInputTargets[i]; if ((inputTarget.flags & InputTarget::FLAG_FOREGROUND) == 0) { // Skip non-foreground targets. We only want to stream if there is at // least one foreground target whose dispatch is still in progress. continue; } ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel); if (connectionIndex < 0) { // Connection must no longer be valid. continue; } sp connection = mConnectionsByReceiveFd.valueAt(connectionIndex); if (connection->outboundQueue.isEmpty()) { // This foreground target has an empty outbound queue. continue; } DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; if (! dispatchEntry->inProgress || dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION || dispatchEntry->isSplit()) { // No motion event is being dispatched, or it is being split across // windows in which case we cannot stream. continue; } MotionEntry* motionEntry = static_cast( dispatchEntry->eventEntry); if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE || motionEntry->deviceId != deviceId || motionEntry->pointerCount != pointerCount || motionEntry->isInjected()) { // The motion event is not compatible with this move. continue; } // Hurray! This foreground target is currently dispatching a move event // that we can stream onto. Append the motion sample and resume dispatch. mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords); #if DEBUG_BATCHING LOGD("Appended motion sample onto batch for most recently dispatched " "motion event for this device in the outbound queues. " "Attempting to stream the motion sample."); #endif nsecs_t currentTime = now(); dispatchEventToCurrentInputTargetsLocked(currentTime, motionEntry, true /*resumeWithAppendedMotionSample*/); runCommandsLockedInterruptible(); return; // done! } } NoBatchingOrStreaming:; } // Just enqueue a new motion event. MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags, xPrecision, yPrecision, downTime, pointerCount, pointerIds, pointerCoords); needWake = enqueueInboundEventLocked(newEntry); } // release lock if (needWake) { mLooper->wake(); } } int32_t InputDispatcher::injectInputEvent(const InputEvent* event, int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) { #if DEBUG_INBOUND_EVENT_DETAILS LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, " "syncMode=%d, timeoutMillis=%d", event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis); #endif nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis); InjectionState* injectionState; bool needWake; { // acquire lock AutoMutex _l(mLock); EventEntry* injectedEntry = createEntryFromInjectedInputEventLocked(event); if (! injectedEntry) { return INPUT_EVENT_INJECTION_FAILED; } injectionState = mAllocator.obtainInjectionState(injectorPid, injectorUid); if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) { injectionState->injectionIsAsync = true; } injectionState->refCount += 1; injectedEntry->injectionState = injectionState; needWake = enqueueInboundEventLocked(injectedEntry); } // release lock if (needWake) { mLooper->wake(); } int32_t injectionResult; { // acquire lock AutoMutex _l(mLock); if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) { injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; } else { for (;;) { injectionResult = injectionState->injectionResult; if (injectionResult != INPUT_EVENT_INJECTION_PENDING) { break; } nsecs_t remainingTimeout = endTime - now(); if (remainingTimeout <= 0) { #if DEBUG_INJECTION LOGD("injectInputEvent - Timed out waiting for injection result " "to become available."); #endif injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; break; } mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout); } if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED && syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) { while (injectionState->pendingForegroundDispatches != 0) { #if DEBUG_INJECTION LOGD("injectInputEvent - Waiting for %d pending foreground dispatches.", injectionState->pendingForegroundDispatches); #endif nsecs_t remainingTimeout = endTime - now(); if (remainingTimeout <= 0) { #if DEBUG_INJECTION LOGD("injectInputEvent - Timed out waiting for pending foreground " "dispatches to finish."); #endif injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; break; } mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout); } } } mAllocator.releaseInjectionState(injectionState); } // release lock #if DEBUG_INJECTION LOGD("injectInputEvent - Finished with result %d. " "injectorPid=%d, injectorUid=%d", injectionResult, injectorPid, injectorUid); #endif return injectionResult; } void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) { InjectionState* injectionState = entry->injectionState; if (injectionState) { #if DEBUG_INJECTION LOGD("Setting input event injection result to %d. " "injectorPid=%d, injectorUid=%d", injectionResult, injectionState->injectorPid, injectionState->injectorUid); #endif if (injectionState->injectionIsAsync) { // Log the outcome since the injector did not wait for the injection result. switch (injectionResult) { case INPUT_EVENT_INJECTION_SUCCEEDED: LOGV("Asynchronous input event injection succeeded."); break; case INPUT_EVENT_INJECTION_FAILED: LOGW("Asynchronous input event injection failed."); break; case INPUT_EVENT_INJECTION_PERMISSION_DENIED: LOGW("Asynchronous input event injection permission denied."); break; case INPUT_EVENT_INJECTION_TIMED_OUT: LOGW("Asynchronous input event injection timed out."); break; } } injectionState->injectionResult = injectionResult; mInjectionResultAvailableCondition.broadcast(); } } void InputDispatcher::incrementPendingForegroundDispatchesLocked(EventEntry* entry) { InjectionState* injectionState = entry->injectionState; if (injectionState) { injectionState->pendingForegroundDispatches += 1; } } void InputDispatcher::decrementPendingForegroundDispatchesLocked(EventEntry* entry) { InjectionState* injectionState = entry->injectionState; if (injectionState) { injectionState->pendingForegroundDispatches -= 1; if (injectionState->pendingForegroundDispatches == 0) { mInjectionSyncFinishedCondition.broadcast(); } } } InputDispatcher::EventEntry* InputDispatcher::createEntryFromInjectedInputEventLocked( const InputEvent* event) { switch (event->getType()) { case AINPUT_EVENT_TYPE_KEY: { const KeyEvent* keyEvent = static_cast(event); if (! validateKeyEvent(keyEvent->getAction())) { return NULL; } uint32_t policyFlags = POLICY_FLAG_INJECTED; KeyEntry* keyEntry = mAllocator.obtainKeyEntry(keyEvent->getEventTime(), keyEvent->getDeviceId(), keyEvent->getSource(), policyFlags, keyEvent->getAction(), keyEvent->getFlags(), keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(), keyEvent->getRepeatCount(), keyEvent->getDownTime()); return keyEntry; } case AINPUT_EVENT_TYPE_MOTION: { const MotionEvent* motionEvent = static_cast(event); if (! validateMotionEvent(motionEvent->getAction(), motionEvent->getPointerCount(), motionEvent->getPointerIds())) { return NULL; } uint32_t policyFlags = POLICY_FLAG_INJECTED; const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes(); const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords(); size_t pointerCount = motionEvent->getPointerCount(); MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes, motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags, motionEvent->getAction(), motionEvent->getFlags(), motionEvent->getMetaState(), motionEvent->getEdgeFlags(), motionEvent->getXPrecision(), motionEvent->getYPrecision(), motionEvent->getDownTime(), uint32_t(pointerCount), motionEvent->getPointerIds(), samplePointerCoords); for (size_t i = motionEvent->getHistorySize(); i > 0; i--) { sampleEventTimes += 1; samplePointerCoords += pointerCount; mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords); } return motionEntry; } default: assert(false); return NULL; } } const InputWindow* InputDispatcher::getWindowLocked(const sp& inputChannel) { for (size_t i = 0; i < mWindows.size(); i++) { const InputWindow* window = & mWindows[i]; if (window->inputChannel == inputChannel) { return window; } } return NULL; } void InputDispatcher::setInputWindows(const Vector& inputWindows) { #if DEBUG_FOCUS LOGD("setInputWindows"); #endif { // acquire lock AutoMutex _l(mLock); // Clear old window pointers. mFocusedWindow = NULL; mWindows.clear(); // Loop over new windows and rebuild the necessary window pointers for // tracking focus and touch. mWindows.appendVector(inputWindows); size_t numWindows = mWindows.size(); for (size_t i = 0; i < numWindows; i++) { const InputWindow* window = & mWindows.itemAt(i); if (window->hasFocus) { mFocusedWindow = window; break; } } for (size_t i = 0; i < mTouchState.windows.size(); ) { TouchedWindow& touchedWindow = mTouchState.windows.editItemAt(i); const InputWindow* window = getWindowLocked(touchedWindow.channel); if (window) { touchedWindow.window = window; i += 1; } else { mTouchState.windows.removeAt(i); } } #if DEBUG_FOCUS logDispatchStateLocked(); #endif } // release lock // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } void InputDispatcher::setFocusedApplication(const InputApplication* inputApplication) { #if DEBUG_FOCUS LOGD("setFocusedApplication"); #endif { // acquire lock AutoMutex _l(mLock); releaseFocusedApplicationLocked(); if (inputApplication) { mFocusedApplicationStorage = *inputApplication; mFocusedApplication = & mFocusedApplicationStorage; } #if DEBUG_FOCUS logDispatchStateLocked(); #endif } // release lock // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } void InputDispatcher::releaseFocusedApplicationLocked() { if (mFocusedApplication) { mFocusedApplication = NULL; mFocusedApplicationStorage.handle.clear(); } } void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) { #if DEBUG_FOCUS LOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen); #endif bool changed; { // acquire lock AutoMutex _l(mLock); if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) { if (mDispatchFrozen && ! frozen) { resetANRTimeoutsLocked(); } mDispatchEnabled = enabled; mDispatchFrozen = frozen; changed = true; } else { changed = false; } #if DEBUG_FOCUS logDispatchStateLocked(); #endif } // release lock if (changed) { // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); } } bool InputDispatcher::transferTouchFocus(const sp& fromChannel, const sp& toChannel) { #if DEBUG_FOCUS LOGD("transferTouchFocus: fromChannel=%s, toChannel=%s", fromChannel->getName().string(), toChannel->getName().string()); #endif { // acquire lock AutoMutex _l(mLock); const InputWindow* fromWindow = getWindowLocked(fromChannel); const InputWindow* toWindow = getWindowLocked(toChannel); if (! fromWindow || ! toWindow) { #if DEBUG_FOCUS LOGD("Cannot transfer focus because from or to window not found."); #endif return false; } if (fromWindow == toWindow) { #if DEBUG_FOCUS LOGD("Trivial transfer to same window."); #endif return true; } bool found = false; for (size_t i = 0; i < mTouchState.windows.size(); i++) { const TouchedWindow& touchedWindow = mTouchState.windows[i]; if (touchedWindow.window == fromWindow) { int32_t oldTargetFlags = touchedWindow.targetFlags; BitSet32 pointerIds = touchedWindow.pointerIds; mTouchState.windows.removeAt(i); int32_t newTargetFlags = 0; if (oldTargetFlags & InputTarget::FLAG_FOREGROUND) { newTargetFlags |= InputTarget::FLAG_FOREGROUND; if (toWindow->layoutParamsFlags & InputWindow::FLAG_SPLIT_TOUCH) { newTargetFlags |= InputTarget::FLAG_SPLIT; } } mTouchState.addOrUpdateWindow(toWindow, newTargetFlags, pointerIds); found = true; break; } } if (! found) { #if DEBUG_FOCUS LOGD("Focus transfer failed because from window did not have focus."); #endif return false; } #if DEBUG_FOCUS logDispatchStateLocked(); #endif } // release lock // Wake up poll loop since it may need to make new input dispatching choices. mLooper->wake(); return true; } void InputDispatcher::logDispatchStateLocked() { String8 dump; dumpDispatchStateLocked(dump); char* text = dump.lockBuffer(dump.size()); char* start = text; while (*start != '\0') { char* end = strchr(start, '\n'); if (*end == '\n') { *(end++) = '\0'; } LOGD("%s", start); start = end; } } void InputDispatcher::dumpDispatchStateLocked(String8& dump) { dump.appendFormat(" dispatchEnabled: %d\n", mDispatchEnabled); dump.appendFormat(" dispatchFrozen: %d\n", mDispatchFrozen); if (mFocusedApplication) { dump.appendFormat(" focusedApplication: name='%s', dispatchingTimeout=%0.3fms\n", mFocusedApplication->name.string(), mFocusedApplication->dispatchingTimeout / 1000000.0); } else { dump.append(" focusedApplication: \n"); } dump.appendFormat(" focusedWindow: name='%s'\n", mFocusedWindow != NULL ? mFocusedWindow->name.string() : ""); dump.appendFormat(" touchState: down=%s, split=%s\n", toString(mTouchState.down), toString(mTouchState.split)); for (size_t i = 0; i < mTouchState.windows.size(); i++) { const TouchedWindow& touchedWindow = mTouchState.windows[i]; dump.appendFormat(" touchedWindow[%d]: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n", i, touchedWindow.window->name.string(), touchedWindow.pointerIds.value, touchedWindow.targetFlags); } for (size_t i = 0; i < mWindows.size(); i++) { dump.appendFormat(" windows[%d]: name='%s', paused=%s, hasFocus=%s, hasWallpaper=%s, " "visible=%s, canReceiveKeys=%s, flags=0x%08x, type=0x%08x, layer=%d, " "frame=[%d,%d][%d,%d], " "visibleFrame=[%d,%d][%d,%d], " "touchableArea=[%d,%d][%d,%d], " "ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n", i, mWindows[i].name.string(), toString(mWindows[i].paused), toString(mWindows[i].hasFocus), toString(mWindows[i].hasWallpaper), toString(mWindows[i].visible), toString(mWindows[i].canReceiveKeys), mWindows[i].layoutParamsFlags, mWindows[i].layoutParamsType, mWindows[i].layer, mWindows[i].frameLeft, mWindows[i].frameTop, mWindows[i].frameRight, mWindows[i].frameBottom, mWindows[i].visibleFrameLeft, mWindows[i].visibleFrameTop, mWindows[i].visibleFrameRight, mWindows[i].visibleFrameBottom, mWindows[i].touchableAreaLeft, mWindows[i].touchableAreaTop, mWindows[i].touchableAreaRight, mWindows[i].touchableAreaBottom, mWindows[i].ownerPid, mWindows[i].ownerUid, mWindows[i].dispatchingTimeout / 1000000.0); } for (size_t i = 0; i < mMonitoringChannels.size(); i++) { const sp& channel = mMonitoringChannels[i]; dump.appendFormat(" monitoringChannel[%d]: '%s'\n", i, channel->getName().string()); } dump.appendFormat(" inboundQueue: length=%u", mInboundQueue.count()); for (size_t i = 0; i < mActiveConnections.size(); i++) { const Connection* connection = mActiveConnections[i]; dump.appendFormat(" activeConnection[%d]: '%s', status=%s, outboundQueueLength=%u" "inputState.isNeutral=%s, inputState.isOutOfSync=%s\n", i, connection->getInputChannelName(), connection->getStatusLabel(), connection->outboundQueue.count(), toString(connection->inputState.isNeutral()), toString(connection->inputState.isOutOfSync())); } if (isAppSwitchPendingLocked()) { dump.appendFormat(" appSwitch: pending, due in %01.1fms\n", (mAppSwitchDueTime - now()) / 1000000.0); } else { dump.append(" appSwitch: not pending\n"); } } status_t InputDispatcher::registerInputChannel(const sp& inputChannel, bool monitor) { #if DEBUG_REGISTRATION LOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(), toString(monitor)); #endif { // acquire lock AutoMutex _l(mLock); if (getConnectionIndexLocked(inputChannel) >= 0) { LOGW("Attempted to register already registered input channel '%s'", inputChannel->getName().string()); return BAD_VALUE; } sp connection = new Connection(inputChannel); status_t status = connection->initialize(); if (status) { LOGE("Failed to initialize input publisher for input channel '%s', status=%d", inputChannel->getName().string(), status); return status; } int32_t receiveFd = inputChannel->getReceivePipeFd(); mConnectionsByReceiveFd.add(receiveFd, connection); if (monitor) { mMonitoringChannels.push(inputChannel); } mLooper->addFd(receiveFd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this); runCommandsLockedInterruptible(); } // release lock return OK; } status_t InputDispatcher::unregisterInputChannel(const sp& inputChannel) { #if DEBUG_REGISTRATION LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string()); #endif { // acquire lock AutoMutex _l(mLock); ssize_t connectionIndex = getConnectionIndexLocked(inputChannel); if (connectionIndex < 0) { LOGW("Attempted to unregister already unregistered input channel '%s'", inputChannel->getName().string()); return BAD_VALUE; } sp connection = mConnectionsByReceiveFd.valueAt(connectionIndex); mConnectionsByReceiveFd.removeItemsAt(connectionIndex); connection->status = Connection::STATUS_ZOMBIE; for (size_t i = 0; i < mMonitoringChannels.size(); i++) { if (mMonitoringChannels[i] == inputChannel) { mMonitoringChannels.removeAt(i); break; } } mLooper->removeFd(inputChannel->getReceivePipeFd()); nsecs_t currentTime = now(); abortDispatchCycleLocked(currentTime, connection, true /*broken*/); runCommandsLockedInterruptible(); } // release lock // Wake the poll loop because removing the connection may have changed the current // synchronization state. mLooper->wake(); return OK; } ssize_t InputDispatcher::getConnectionIndexLocked(const sp& inputChannel) { ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(inputChannel->getReceivePipeFd()); if (connectionIndex >= 0) { sp connection = mConnectionsByReceiveFd.valueAt(connectionIndex); if (connection->inputChannel.get() == inputChannel.get()) { return connectionIndex; } } return -1; } void InputDispatcher::activateConnectionLocked(Connection* connection) { for (size_t i = 0; i < mActiveConnections.size(); i++) { if (mActiveConnections.itemAt(i) == connection) { return; } } mActiveConnections.add(connection); } void InputDispatcher::deactivateConnectionLocked(Connection* connection) { for (size_t i = 0; i < mActiveConnections.size(); i++) { if (mActiveConnections.itemAt(i) == connection) { mActiveConnections.removeAt(i); return; } } } void InputDispatcher::onDispatchCycleStartedLocked( nsecs_t currentTime, const sp& connection) { } void InputDispatcher::onDispatchCycleFinishedLocked( nsecs_t currentTime, const sp& connection) { } void InputDispatcher::onDispatchCycleBrokenLocked( nsecs_t currentTime, const sp& connection) { LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!", connection->getInputChannelName()); CommandEntry* commandEntry = postCommandLocked( & InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible); commandEntry->connection = connection; } void InputDispatcher::onANRLocked( nsecs_t currentTime, const InputApplication* application, const InputWindow* window, nsecs_t eventTime, nsecs_t waitStartTime) { LOGI("Application is not responding: %s. " "%01.1fms since event, %01.1fms since wait started", getApplicationWindowLabelLocked(application, window).string(), (currentTime - eventTime) / 1000000.0, (currentTime - waitStartTime) / 1000000.0); CommandEntry* commandEntry = postCommandLocked( & InputDispatcher::doNotifyANRLockedInterruptible); if (application) { commandEntry->inputApplicationHandle = application->handle; } if (window) { commandEntry->inputChannel = window->inputChannel; } } void InputDispatcher::doNotifyConfigurationChangedInterruptible( CommandEntry* commandEntry) { mLock.unlock(); mPolicy->notifyConfigurationChanged(commandEntry->eventTime); mLock.lock(); } void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible( CommandEntry* commandEntry) { sp connection = commandEntry->connection; if (connection->status != Connection::STATUS_ZOMBIE) { mLock.unlock(); mPolicy->notifyInputChannelBroken(connection->inputChannel); mLock.lock(); } } void InputDispatcher::doNotifyANRLockedInterruptible( CommandEntry* commandEntry) { mLock.unlock(); nsecs_t newTimeout = mPolicy->notifyANR( commandEntry->inputApplicationHandle, commandEntry->inputChannel); mLock.lock(); resumeAfterTargetsNotReadyTimeoutLocked(newTimeout, commandEntry->inputChannel); } void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible( CommandEntry* commandEntry) { KeyEntry* entry = commandEntry->keyEntry; mReusableKeyEvent.initialize(entry->deviceId, entry->source, entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount, entry->downTime, entry->eventTime); mLock.unlock(); bool consumed = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputChannel, & mReusableKeyEvent, entry->policyFlags); mLock.lock(); entry->interceptKeyResult = consumed ? KeyEntry::INTERCEPT_KEY_RESULT_SKIP : KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE; mAllocator.releaseKeyEntry(entry); } void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) { mLock.unlock(); mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->userActivityEventType); mLock.lock(); } void InputDispatcher::updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry, int32_t injectionResult, nsecs_t timeSpentWaitingForApplication) { // TODO Write some statistics about how long we spend waiting. } void InputDispatcher::dump(String8& dump) { dumpDispatchStateLocked(dump); } // --- InputDispatcher::Queue --- template uint32_t InputDispatcher::Queue::count() const { uint32_t result = 0; for (const T* entry = headSentinel.next; entry != & tailSentinel; entry = entry->next) { result += 1; } return result; } // --- InputDispatcher::Allocator --- InputDispatcher::Allocator::Allocator() { } InputDispatcher::InjectionState* InputDispatcher::Allocator::obtainInjectionState(int32_t injectorPid, int32_t injectorUid) { InjectionState* injectionState = mInjectionStatePool.alloc(); injectionState->refCount = 1; injectionState->injectorPid = injectorPid; injectionState->injectorUid = injectorUid; injectionState->injectionIsAsync = false; injectionState->injectionResult = INPUT_EVENT_INJECTION_PENDING; injectionState->pendingForegroundDispatches = 0; return injectionState; } void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime) { entry->type = type; entry->refCount = 1; entry->dispatchInProgress = false; entry->eventTime = eventTime; entry->injectionState = NULL; } void InputDispatcher::Allocator::releaseEventEntryInjectionState(EventEntry* entry) { if (entry->injectionState) { releaseInjectionState(entry->injectionState); entry->injectionState = NULL; } } InputDispatcher::ConfigurationChangedEntry* InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) { ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc(); initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime); return entry; } InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime, int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, int32_t repeatCount, nsecs_t downTime) { KeyEntry* entry = mKeyEntryPool.alloc(); initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime); entry->deviceId = deviceId; entry->source = source; entry->policyFlags = policyFlags; entry->action = action; entry->flags = flags; entry->keyCode = keyCode; entry->scanCode = scanCode; entry->metaState = metaState; entry->repeatCount = repeatCount; entry->downTime = downTime; entry->syntheticRepeat = false; entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN; return entry; } InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime, int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision, nsecs_t downTime, uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords) { MotionEntry* entry = mMotionEntryPool.alloc(); initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime); entry->eventTime = eventTime; entry->deviceId = deviceId; entry->source = source; entry->policyFlags = policyFlags; entry->action = action; entry->flags = flags; entry->metaState = metaState; entry->edgeFlags = edgeFlags; entry->xPrecision = xPrecision; entry->yPrecision = yPrecision; entry->downTime = downTime; entry->pointerCount = pointerCount; entry->firstSample.eventTime = eventTime; entry->firstSample.next = NULL; entry->lastSample = & entry->firstSample; for (uint32_t i = 0; i < pointerCount; i++) { entry->pointerIds[i] = pointerIds[i]; entry->firstSample.pointerCoords[i] = pointerCoords[i]; } return entry; } InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry( EventEntry* eventEntry, int32_t targetFlags, float xOffset, float yOffset) { DispatchEntry* entry = mDispatchEntryPool.alloc(); entry->eventEntry = eventEntry; eventEntry->refCount += 1; entry->targetFlags = targetFlags; entry->xOffset = xOffset; entry->yOffset = yOffset; entry->inProgress = false; entry->headMotionSample = NULL; entry->tailMotionSample = NULL; return entry; } InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) { CommandEntry* entry = mCommandEntryPool.alloc(); entry->command = command; return entry; } void InputDispatcher::Allocator::releaseInjectionState(InjectionState* injectionState) { injectionState->refCount -= 1; if (injectionState->refCount == 0) { mInjectionStatePool.free(injectionState); } else { assert(injectionState->refCount > 0); } } void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) { switch (entry->type) { case EventEntry::TYPE_CONFIGURATION_CHANGED: releaseConfigurationChangedEntry(static_cast(entry)); break; case EventEntry::TYPE_KEY: releaseKeyEntry(static_cast(entry)); break; case EventEntry::TYPE_MOTION: releaseMotionEntry(static_cast(entry)); break; default: assert(false); break; } } void InputDispatcher::Allocator::releaseConfigurationChangedEntry( ConfigurationChangedEntry* entry) { entry->refCount -= 1; if (entry->refCount == 0) { releaseEventEntryInjectionState(entry); mConfigurationChangeEntryPool.free(entry); } else { assert(entry->refCount > 0); } } void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) { entry->refCount -= 1; if (entry->refCount == 0) { releaseEventEntryInjectionState(entry); mKeyEntryPool.free(entry); } else { assert(entry->refCount > 0); } } void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) { entry->refCount -= 1; if (entry->refCount == 0) { releaseEventEntryInjectionState(entry); for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) { MotionSample* next = sample->next; mMotionSamplePool.free(sample); sample = next; } mMotionEntryPool.free(entry); } else { assert(entry->refCount > 0); } } void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) { releaseEventEntry(entry->eventEntry); mDispatchEntryPool.free(entry); } void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) { mCommandEntryPool.free(entry); } void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry, nsecs_t eventTime, const PointerCoords* pointerCoords) { MotionSample* sample = mMotionSamplePool.alloc(); sample->eventTime = eventTime; uint32_t pointerCount = motionEntry->pointerCount; for (uint32_t i = 0; i < pointerCount; i++) { sample->pointerCoords[i] = pointerCoords[i]; } sample->next = NULL; motionEntry->lastSample->next = sample; motionEntry->lastSample = sample; } void InputDispatcher::Allocator::recycleKeyEntry(KeyEntry* keyEntry) { releaseEventEntryInjectionState(keyEntry); keyEntry->dispatchInProgress = false; keyEntry->syntheticRepeat = false; keyEntry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN; } // --- InputDispatcher::MotionEntry --- uint32_t InputDispatcher::MotionEntry::countSamples() const { uint32_t count = 1; for (MotionSample* sample = firstSample.next; sample != NULL; sample = sample->next) { count += 1; } return count; } // --- InputDispatcher::InputState --- InputDispatcher::InputState::InputState() : mIsOutOfSync(false) { } InputDispatcher::InputState::~InputState() { } bool InputDispatcher::InputState::isNeutral() const { return mKeyMementos.isEmpty() && mMotionMementos.isEmpty(); } bool InputDispatcher::InputState::isOutOfSync() const { return mIsOutOfSync; } void InputDispatcher::InputState::setOutOfSync() { if (! isNeutral()) { mIsOutOfSync = true; } } void InputDispatcher::InputState::resetOutOfSync() { mIsOutOfSync = false; } InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackEvent( const EventEntry* entry) { switch (entry->type) { case EventEntry::TYPE_KEY: return trackKey(static_cast(entry)); case EventEntry::TYPE_MOTION: return trackMotion(static_cast(entry)); default: return CONSISTENT; } } InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackKey( const KeyEntry* entry) { int32_t action = entry->action; for (size_t i = 0; i < mKeyMementos.size(); i++) { KeyMemento& memento = mKeyMementos.editItemAt(i); if (memento.deviceId == entry->deviceId && memento.source == entry->source && memento.keyCode == entry->keyCode && memento.scanCode == entry->scanCode) { switch (action) { case AKEY_EVENT_ACTION_UP: mKeyMementos.removeAt(i); if (isNeutral()) { mIsOutOfSync = false; } return CONSISTENT; case AKEY_EVENT_ACTION_DOWN: return TOLERABLE; default: return BROKEN; } } } switch (action) { case AKEY_EVENT_ACTION_DOWN: { mKeyMementos.push(); KeyMemento& memento = mKeyMementos.editTop(); memento.deviceId = entry->deviceId; memento.source = entry->source; memento.keyCode = entry->keyCode; memento.scanCode = entry->scanCode; memento.downTime = entry->downTime; return CONSISTENT; } default: return BROKEN; } } InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackMotion( const MotionEntry* entry) { int32_t action = entry->action & AMOTION_EVENT_ACTION_MASK; for (size_t i = 0; i < mMotionMementos.size(); i++) { MotionMemento& memento = mMotionMementos.editItemAt(i); if (memento.deviceId == entry->deviceId && memento.source == entry->source) { switch (action) { case AMOTION_EVENT_ACTION_UP: case AMOTION_EVENT_ACTION_CANCEL: mMotionMementos.removeAt(i); if (isNeutral()) { mIsOutOfSync = false; } return CONSISTENT; case AMOTION_EVENT_ACTION_DOWN: return TOLERABLE; case AMOTION_EVENT_ACTION_POINTER_DOWN: if (entry->pointerCount == memento.pointerCount + 1) { memento.setPointers(entry); return CONSISTENT; } return BROKEN; case AMOTION_EVENT_ACTION_POINTER_UP: if (entry->pointerCount == memento.pointerCount - 1) { memento.setPointers(entry); return CONSISTENT; } return BROKEN; case AMOTION_EVENT_ACTION_MOVE: if (entry->pointerCount == memento.pointerCount) { return CONSISTENT; } return BROKEN; default: return BROKEN; } } } switch (action) { case AMOTION_EVENT_ACTION_DOWN: { mMotionMementos.push(); MotionMemento& memento = mMotionMementos.editTop(); memento.deviceId = entry->deviceId; memento.source = entry->source; memento.xPrecision = entry->xPrecision; memento.yPrecision = entry->yPrecision; memento.downTime = entry->downTime; memento.setPointers(entry); return CONSISTENT; } default: return BROKEN; } } void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) { pointerCount = entry->pointerCount; for (uint32_t i = 0; i < entry->pointerCount; i++) { pointerIds[i] = entry->pointerIds[i]; pointerCoords[i] = entry->lastSample->pointerCoords[i]; } } void InputDispatcher::InputState::synthesizeCancelationEvents( Allocator* allocator, Vector& outEvents) const { for (size_t i = 0; i < mKeyMementos.size(); i++) { const KeyMemento& memento = mKeyMementos.itemAt(i); outEvents.push(allocator->obtainKeyEntry(now(), memento.deviceId, memento.source, 0, AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_CANCELED, memento.keyCode, memento.scanCode, 0, 0, memento.downTime)); } for (size_t i = 0; i < mMotionMementos.size(); i++) { const MotionMemento& memento = mMotionMementos.itemAt(i); outEvents.push(allocator->obtainMotionEntry(now(), memento.deviceId, memento.source, 0, AMOTION_EVENT_ACTION_CANCEL, 0, 0, 0, memento.xPrecision, memento.yPrecision, memento.downTime, memento.pointerCount, memento.pointerIds, memento.pointerCoords)); } } void InputDispatcher::InputState::clear() { mKeyMementos.clear(); mMotionMementos.clear(); mIsOutOfSync = false; } // --- InputDispatcher::Connection --- InputDispatcher::Connection::Connection(const sp& inputChannel) : status(STATUS_NORMAL), inputChannel(inputChannel), inputPublisher(inputChannel), lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX) { } InputDispatcher::Connection::~Connection() { } status_t InputDispatcher::Connection::initialize() { return inputPublisher.initialize(); } const char* InputDispatcher::Connection::getStatusLabel() const { switch (status) { case STATUS_NORMAL: return "NORMAL"; case STATUS_BROKEN: return "BROKEN"; case STATUS_ZOMBIE: return "ZOMBIE"; default: return "UNKNOWN"; } } InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent( const EventEntry* eventEntry) const { for (DispatchEntry* dispatchEntry = outboundQueue.tailSentinel.prev; dispatchEntry != & outboundQueue.headSentinel; dispatchEntry = dispatchEntry->prev) { if (dispatchEntry->eventEntry == eventEntry) { return dispatchEntry; } } return NULL; } // --- InputDispatcher::CommandEntry --- InputDispatcher::CommandEntry::CommandEntry() : keyEntry(NULL) { } InputDispatcher::CommandEntry::~CommandEntry() { } // --- InputDispatcher::TouchState --- InputDispatcher::TouchState::TouchState() : down(false), split(false) { } InputDispatcher::TouchState::~TouchState() { } void InputDispatcher::TouchState::reset() { down = false; split = false; windows.clear(); } void InputDispatcher::TouchState::copyFrom(const TouchState& other) { down = other.down; split = other.split; windows.clear(); windows.appendVector(other.windows); } void InputDispatcher::TouchState::addOrUpdateWindow(const InputWindow* window, int32_t targetFlags, BitSet32 pointerIds) { if (targetFlags & InputTarget::FLAG_SPLIT) { split = true; } for (size_t i = 0; i < windows.size(); i++) { TouchedWindow& touchedWindow = windows.editItemAt(i); if (touchedWindow.window == window) { touchedWindow.targetFlags |= targetFlags; touchedWindow.pointerIds.value |= pointerIds.value; return; } } windows.push(); TouchedWindow& touchedWindow = windows.editTop(); touchedWindow.window = window; touchedWindow.targetFlags = targetFlags; touchedWindow.pointerIds = pointerIds; touchedWindow.channel = window->inputChannel; } void InputDispatcher::TouchState::removeOutsideTouchWindows() { for (size_t i = 0 ; i < windows.size(); ) { if (windows[i].targetFlags & InputTarget::FLAG_OUTSIDE) { windows.removeAt(i); } else { i += 1; } } } const InputWindow* InputDispatcher::TouchState::getFirstForegroundWindow() { for (size_t i = 0; i < windows.size(); i++) { if (windows[i].targetFlags & InputTarget::FLAG_FOREGROUND) { return windows[i].window; } } return NULL; } // --- InputDispatcherThread --- InputDispatcherThread::InputDispatcherThread(const sp& dispatcher) : Thread(/*canCallJava*/ true), mDispatcher(dispatcher) { } InputDispatcherThread::~InputDispatcherThread() { } bool InputDispatcherThread::threadLoop() { mDispatcher->dispatchOnce(); return true; } } // namespace android