/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_GUI_SURFACETEXTURE_H #define ANDROID_GUI_SURFACETEXTURE_H #include #include #include #include #include #include #include #include #include #include #define ANDROID_GRAPHICS_SURFACETEXTURE_JNI_ID "mSurfaceTexture" namespace android { // ---------------------------------------------------------------------------- class String8; class SurfaceTexture : public virtual RefBase, protected BufferQueue::ConsumerListener { public: struct FrameAvailableListener : public virtual RefBase { // onFrameAvailable() is called each time an additional frame becomes // available for consumption. This means that frames that are queued // while in asynchronous mode only trigger the callback if no previous // frames are pending. Frames queued while in synchronous mode always // trigger the callback. // // This is called without any lock held and can be called concurrently // by multiple threads. virtual void onFrameAvailable() = 0; }; // SurfaceTexture constructs a new SurfaceTexture object. tex indicates the // name of the OpenGL ES texture to which images are to be streamed. // allowSynchronousMode specifies whether or not synchronous mode can be // enabled. texTarget specifies the OpenGL ES texture target to which the // texture will be bound in updateTexImage. useFenceSync specifies whether // fences should be used to synchronize access to buffers if that behavior // is enabled at compile-time. A custom bufferQueue can be specified // if behavior for queue/dequeue/connect etc needs to be customized. // Otherwise a default BufferQueue will be created and used. // // For legacy reasons, the SurfaceTexture is created in a state where it is // considered attached to an OpenGL ES context for the purposes of the // attachToContext and detachFromContext methods. However, despite being // considered "attached" to a context, the specific OpenGL ES context // doesn't get latched until the first call to updateTexImage. After that // point, all calls to updateTexImage must be made with the same OpenGL ES // context current. // // A SurfaceTexture may be detached from one OpenGL ES context and then // attached to a different context using the detachFromContext and // attachToContext methods, respectively. The intention of these methods is // purely to allow a SurfaceTexture to be transferred from one consumer // context to another. If such a transfer is not needed there is no // requirement that either of these methods be called. SurfaceTexture(GLuint tex, bool allowSynchronousMode = true, GLenum texTarget = GL_TEXTURE_EXTERNAL_OES, bool useFenceSync = true, const sp &bufferQueue = 0); virtual ~SurfaceTexture(); // updateTexImage sets the image contents of the target texture to that of // the most recently queued buffer. // // This call may only be made while the OpenGL ES context to which the // target texture belongs is bound to the calling thread. status_t updateTexImage(); // setReleaseFence stores a fence file descriptor that will signal when the // current buffer is no longer being read. This fence will be returned to // the producer when the current buffer is released by updateTexImage(). // Multiple fences can be set for a given buffer; they will be merged into // a single union fence. The SurfaceTexture will close the file descriptor // when finished with it. void setReleaseFence(int fenceFd); // setBufferCountServer set the buffer count. If the client has requested // a buffer count using setBufferCount, the server-buffer count will // take effect once the client sets the count back to zero. status_t setBufferCountServer(int bufferCount); // getTransformMatrix retrieves the 4x4 texture coordinate transform matrix // associated with the texture image set by the most recent call to // updateTexImage. // // This transform matrix maps 2D homogeneous texture coordinates of the form // (s, t, 0, 1) with s and t in the inclusive range [0, 1] to the texture // coordinate that should be used to sample that location from the texture. // Sampling the texture outside of the range of this transform is undefined. // // This transform is necessary to compensate for transforms that the stream // content producer may implicitly apply to the content. By forcing users of // a SurfaceTexture to apply this transform we avoid performing an extra // copy of the data that would be needed to hide the transform from the // user. // // The matrix is stored in column-major order so that it may be passed // directly to OpenGL ES via the glLoadMatrixf or glUniformMatrix4fv // functions. void getTransformMatrix(float mtx[16]); // getTimestamp retrieves the timestamp associated with the texture image // set by the most recent call to updateTexImage. // // The timestamp is in nanoseconds, and is monotonically increasing. Its // other semantics (zero point, etc) are source-dependent and should be // documented by the source. int64_t getTimestamp(); // setFrameAvailableListener sets the listener object that will be notified // when a new frame becomes available. void setFrameAvailableListener(const sp& listener); // getAllocator retrieves the binder object that must be referenced as long // as the GraphicBuffers dequeued from this SurfaceTexture are referenced. // Holding this binder reference prevents SurfaceFlinger from freeing the // buffers before the client is done with them. sp getAllocator(); // setDefaultBufferSize is used to set the size of buffers returned by // requestBuffers when a with and height of zero is requested. // A call to setDefaultBufferSize() may trigger requestBuffers() to // be called from the client. // The width and height parameters must be no greater than the minimum of // GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv). // An error due to invalid dimensions might not be reported until // updateTexImage() is called. status_t setDefaultBufferSize(uint32_t width, uint32_t height); // setFilteringEnabled sets whether the transform matrix should be computed // for use with bilinear filtering. void setFilteringEnabled(bool enabled); // getCurrentBuffer returns the buffer associated with the current image. sp getCurrentBuffer() const; // getCurrentTextureTarget returns the texture target of the current // texture as returned by updateTexImage(). GLenum getCurrentTextureTarget() const; // getCurrentCrop returns the cropping rectangle of the current buffer. Rect getCurrentCrop() const; // getCurrentTransform returns the transform of the current buffer. uint32_t getCurrentTransform() const; // getCurrentScalingMode returns the scaling mode of the current buffer. uint32_t getCurrentScalingMode() const; // isSynchronousMode returns whether the SurfaceTexture is currently in // synchronous mode. bool isSynchronousMode() const; // abandon frees all the buffers and puts the SurfaceTexture into the // 'abandoned' state. Once put in this state the SurfaceTexture can never // leave it. When in the 'abandoned' state, all methods of the // ISurfaceTexture interface will fail with the NO_INIT error. // // Note that while calling this method causes all the buffers to be freed // from the perspective of the the SurfaceTexture, if there are additional // references on the buffers (e.g. if a buffer is referenced by a client or // by OpenGL ES as a texture) then those buffer will remain allocated. void abandon(); // set the name of the SurfaceTexture that will be used to identify it in // log messages. void setName(const String8& name); // These functions call the corresponding BufferQueue implementation // so the refactoring can proceed smoothly status_t setDefaultBufferFormat(uint32_t defaultFormat); status_t setConsumerUsageBits(uint32_t usage); status_t setTransformHint(uint32_t hint); virtual status_t setSynchronousMode(bool enabled); // getBufferQueue returns the BufferQueue object to which this // SurfaceTexture is connected. sp getBufferQueue() const; // detachFromContext detaches the SurfaceTexture from the calling thread's // current OpenGL ES context. This context must be the same as the context // that was current for previous calls to updateTexImage. // // Detaching a SurfaceTexture from an OpenGL ES context will result in the // deletion of the OpenGL ES texture object into which the images were being // streamed. After a SurfaceTexture has been detached from the OpenGL ES // context calls to updateTexImage will fail returning INVALID_OPERATION // until the SurfaceTexture is attached to a new OpenGL ES context using the // attachToContext method. status_t detachFromContext(); // attachToContext attaches a SurfaceTexture that is currently in the // 'detached' state to the current OpenGL ES context. A SurfaceTexture is // in the 'detached' state iff detachFromContext has successfully been // called and no calls to attachToContext have succeeded since the last // detachFromContext call. Calls to attachToContext made on a // SurfaceTexture that is not in the 'detached' state will result in an // INVALID_OPERATION error. // // The tex argument specifies the OpenGL ES texture object name in the // new context into which the image contents will be streamed. A successful // call to attachToContext will result in this texture object being bound to // the texture target and populated with the image contents that were // current at the time of the last call to detachFromContext. status_t attachToContext(GLuint tex); // dump our state in a String virtual void dump(String8& result) const; virtual void dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const; protected: // Implementation of the BufferQueue::ConsumerListener interface. These // calls are used to notify the SurfaceTexture of asynchronous events in the // BufferQueue. virtual void onFrameAvailable(); virtual void onBuffersReleased(); static bool isExternalFormat(uint32_t format); private: // this version of updateTexImage() takes a functor used to reject or not // the newly acquired buffer. // this API is TEMPORARY and intended to be used by SurfaceFlinger only, // which is why class Layer is made a friend of SurfaceTexture below. class BufferRejecter { friend class SurfaceTexture; virtual bool reject(const sp& buf, const BufferQueue::BufferItem& item) = 0; protected: virtual ~BufferRejecter() { } }; friend class Layer; status_t updateTexImage(BufferRejecter* rejecter); // createImage creates a new EGLImage from a GraphicBuffer. EGLImageKHR createImage(EGLDisplay dpy, const sp& graphicBuffer); // freeBufferLocked frees up the given buffer slot. If the slot has been // initialized this will release the reference to the GraphicBuffer in that // slot and destroy the EGLImage in that slot. Otherwise it has no effect. // // This method must be called with mMutex locked. void freeBufferLocked(int slotIndex); // computeCurrentTransformMatrix computes the transform matrix for the // current texture. It uses mCurrentTransform and the current GraphicBuffer // to compute this matrix and stores it in mCurrentTransformMatrix. void computeCurrentTransformMatrix(); // syncForReleaseLocked performs the synchronization needed to release the // current slot from an OpenGL ES context. If needed it will set the // current slot's fence to guard against a producer accessing the buffer // before the outstanding accesses have completed. status_t syncForReleaseLocked(EGLDisplay dpy); // The default consumer usage flags that SurfaceTexture always sets on its // BufferQueue instance; these will be OR:d with any additional flags passed // from the SurfaceTexture user. In particular, SurfaceTexture will always // consume buffers as hardware textures. static const uint32_t DEFAULT_USAGE_FLAGS = GraphicBuffer::USAGE_HW_TEXTURE; // mCurrentTextureBuf is the graphic buffer of the current texture. It's // possible that this buffer is not associated with any buffer slot, so we // must track it separately in order to support the getCurrentBuffer method. sp mCurrentTextureBuf; // mCurrentCrop is the crop rectangle that applies to the current texture. // It gets set each time updateTexImage is called. Rect mCurrentCrop; // mCurrentTransform is the transform identifier for the current texture. It // gets set each time updateTexImage is called. uint32_t mCurrentTransform; // mCurrentScalingMode is the scaling mode for the current texture. It gets // set to each time updateTexImage is called. uint32_t mCurrentScalingMode; // mCurrentTransformMatrix is the transform matrix for the current texture. // It gets computed by computeTransformMatrix each time updateTexImage is // called. float mCurrentTransformMatrix[16]; // mCurrentTimestamp is the timestamp for the current texture. It // gets set each time updateTexImage is called. int64_t mCurrentTimestamp; uint32_t mDefaultWidth, mDefaultHeight; // mFilteringEnabled indicates whether the transform matrix is computed for // use with bilinear filtering. It defaults to true and is changed by // setFilteringEnabled(). bool mFilteringEnabled; // mTexName is the name of the OpenGL texture to which streamed images will // be bound when updateTexImage is called. It is set at construction time // and can be changed with a call to attachToContext. GLuint mTexName; // mUseFenceSync indicates whether creation of the EGL_KHR_fence_sync // extension should be used to prevent buffers from being dequeued before // it's safe for them to be written. It gets set at construction time and // never changes. const bool mUseFenceSync; // mTexTarget is the GL texture target with which the GL texture object is // associated. It is set in the constructor and never changed. It is // almost always GL_TEXTURE_EXTERNAL_OES except for one use case in Android // Browser. In that case it is set to GL_TEXTURE_2D to allow // glCopyTexSubImage to read from the texture. This is a hack to work // around a GL driver limitation on the number of FBO attachments, which the // browser's tile cache exceeds. const GLenum mTexTarget; // EGLSlot contains the information and object references that // SurfaceTexture maintains about a BufferQueue buffer slot. struct EGLSlot { EGLSlot() : mEglImage(EGL_NO_IMAGE_KHR), mFence(EGL_NO_SYNC_KHR) { } sp mGraphicBuffer; // mEglImage is the EGLImage created from mGraphicBuffer. EGLImageKHR mEglImage; // mFence is the EGL sync object that must signal before the buffer // associated with this buffer slot may be dequeued. It is initialized // to EGL_NO_SYNC_KHR when the buffer is created and (optionally, based // on a compile-time option) set to a new sync object in updateTexImage. EGLSyncKHR mFence; // mReleaseFence is a fence which will signal when the buffer // associated with this buffer slot is no longer being used by the // consumer and can be overwritten. The buffer can be dequeued before // the fence signals; the producer is responsible for delaying writes // until it signals. sp mReleaseFence; }; // mEglDisplay is the EGLDisplay with which this SurfaceTexture is currently // associated. It is intialized to EGL_NO_DISPLAY and gets set to the // current display when updateTexImage is called for the first time and when // attachToContext is called. EGLDisplay mEglDisplay; // mEglContext is the OpenGL ES context with which this SurfaceTexture is // currently associated. It is initialized to EGL_NO_CONTEXT and gets set // to the current GL context when updateTexImage is called for the first // time and when attachToContext is called. EGLContext mEglContext; // mEGLSlots stores the buffers that have been allocated by the BufferQueue // for each buffer slot. It is initialized to null pointers, and gets // filled in with the result of BufferQueue::acquire when the // client dequeues a buffer from a // slot that has not yet been used. The buffer allocated to a slot will also // be replaced if the requested buffer usage or geometry differs from that // of the buffer allocated to a slot. EGLSlot mEGLSlots[BufferQueue::NUM_BUFFER_SLOTS]; // mAbandoned indicates that the BufferQueue will no longer be used to // consume images buffers pushed to it using the ISurfaceTexture interface. // It is initialized to false, and set to true in the abandon method. A // BufferQueue that has been abandoned will return the NO_INIT error from // all ISurfaceTexture methods capable of returning an error. bool mAbandoned; // mName is a string used to identify the SurfaceTexture in log messages. // It can be set by the setName method. String8 mName; // mFrameAvailableListener is the listener object that will be called when a // new frame becomes available. If it is not NULL it will be called from // queueBuffer. sp mFrameAvailableListener; // mCurrentTexture is the buffer slot index of the buffer that is currently // bound to the OpenGL texture. It is initialized to INVALID_BUFFER_SLOT, // indicating that no buffer slot is currently bound to the texture. Note, // however, that a value of INVALID_BUFFER_SLOT does not necessarily mean // that no buffer is bound to the texture. A call to setBufferCount will // reset mCurrentTexture to INVALID_BUFFER_SLOT. int mCurrentTexture; // The SurfaceTexture has-a BufferQueue and is responsible for creating this object // if none is supplied sp mBufferQueue; // mAttached indicates whether the SurfaceTexture is currently attached to // an OpenGL ES context. For legacy reasons, this is initialized to true, // indicating that the SurfaceTexture is considered to be attached to // whatever context is current at the time of the first updateTexImage call. // It is set to false by detachFromContext, and then set to true again by // attachToContext. bool mAttached; // mMutex is the mutex used to prevent concurrent access to the member // variables of SurfaceTexture objects. It must be locked whenever the // member variables are accessed. mutable Mutex mMutex; }; // ---------------------------------------------------------------------------- }; // namespace android #endif // ANDROID_GUI_SURFACETEXTURE_H