// // Copyright 2010 The Android Open Source Project // // The input reader. // #define LOG_TAG "InputDevice" //#define LOG_NDEBUG 0 // Log debug messages for each raw event received from the EventHub. #define DEBUG_RAW_EVENTS 0 // Log debug messages about touch screen filtering hacks. #define DEBUG_HACKS 0 // Log debug messages about virtual key processing. #define DEBUG_VIRTUAL_KEYS 0 // Log debug messages about pointers. #define DEBUG_POINTERS 0 // Log debug messages about pointer assignment calculations. #define DEBUG_POINTER_ASSIGNMENT 0 #include #include #include #include #include #include /* Slop distance for jumpy pointer detection. * The vertical range of the screen divided by this is our epsilon value. */ #define JUMPY_EPSILON_DIVISOR 212 /* Number of jumpy points to drop for touchscreens that need it. */ #define JUMPY_TRANSITION_DROPS 3 #define JUMPY_DROP_LIMIT 3 /* Maximum squared distance for averaging. * If moving farther than this, turn of averaging to avoid lag in response. */ #define AVERAGING_DISTANCE_LIMIT (75 * 75) namespace android { // --- Static Functions --- template inline static T abs(const T& value) { return value < 0 ? - value : value; } template inline static T min(const T& a, const T& b) { return a < b ? a : b; } template inline static void swap(T& a, T& b) { T temp = a; a = b; b = temp; } // --- InputDevice --- InputDevice::InputDevice(int32_t id, uint32_t classes, String8 name) : id(id), classes(classes), name(name), ignored(false) { } void InputDevice::reset() { if (isKeyboard()) { keyboard.reset(); } if (isTrackball()) { trackball.reset(); } if (isMultiTouchScreen()) { multiTouchScreen.reset(); } else if (isSingleTouchScreen()) { singleTouchScreen.reset(); } if (isTouchScreen()) { touchScreen.reset(); } } // --- InputDevice::TouchData --- void InputDevice::TouchData::copyFrom(const TouchData& other) { pointerCount = other.pointerCount; idBits = other.idBits; for (uint32_t i = 0; i < pointerCount; i++) { pointers[i] = other.pointers[i]; idToIndex[i] = other.idToIndex[i]; } } // --- InputDevice::KeyboardState --- void InputDevice::KeyboardState::reset() { current.metaState = AMETA_NONE; current.downTime = 0; } // --- InputDevice::TrackballState --- void InputDevice::TrackballState::reset() { accumulator.clear(); current.down = false; current.downTime = 0; } // --- InputDevice::TouchScreenState --- void InputDevice::TouchScreenState::reset() { lastTouch.clear(); downTime = 0; currentVirtualKey.status = CurrentVirtualKeyState::STATUS_UP; for (uint32_t i = 0; i < MAX_POINTERS; i++) { averagingTouchFilter.historyStart[i] = 0; averagingTouchFilter.historyEnd[i] = 0; } jumpyTouchFilter.jumpyPointsDropped = 0; } struct PointerDistanceHeapElement { uint32_t currentPointerIndex : 8; uint32_t lastPointerIndex : 8; uint64_t distance : 48; // squared distance }; void InputDevice::TouchScreenState::calculatePointerIds() { uint32_t currentPointerCount = currentTouch.pointerCount; uint32_t lastPointerCount = lastTouch.pointerCount; if (currentPointerCount == 0) { // No pointers to assign. currentTouch.idBits.clear(); } else if (lastPointerCount == 0) { // All pointers are new. currentTouch.idBits.clear(); for (uint32_t i = 0; i < currentPointerCount; i++) { currentTouch.pointers[i].id = i; currentTouch.idToIndex[i] = i; currentTouch.idBits.markBit(i); } } else if (currentPointerCount == 1 && lastPointerCount == 1) { // Only one pointer and no change in count so it must have the same id as before. uint32_t id = lastTouch.pointers[0].id; currentTouch.pointers[0].id = id; currentTouch.idToIndex[id] = 0; currentTouch.idBits.value = BitSet32::valueForBit(id); } else { // General case. // We build a heap of squared euclidean distances between current and last pointers // associated with the current and last pointer indices. Then, we find the best // match (by distance) for each current pointer. PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; uint32_t heapSize = 0; for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; currentPointerIndex++) { for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; lastPointerIndex++) { int64_t deltaX = currentTouch.pointers[currentPointerIndex].x - lastTouch.pointers[lastPointerIndex].x; int64_t deltaY = currentTouch.pointers[currentPointerIndex].y - lastTouch.pointers[lastPointerIndex].y; uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); // Insert new element into the heap (sift up). heap[heapSize].currentPointerIndex = currentPointerIndex; heap[heapSize].lastPointerIndex = lastPointerIndex; heap[heapSize].distance = distance; heapSize += 1; } } // Heapify for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { startIndex -= 1; for (uint32_t parentIndex = startIndex; ;) { uint32_t childIndex = parentIndex * 2 + 1; if (childIndex >= heapSize) { break; } if (childIndex + 1 < heapSize && heap[childIndex + 1].distance < heap[childIndex].distance) { childIndex += 1; } if (heap[parentIndex].distance <= heap[childIndex].distance) { break; } swap(heap[parentIndex], heap[childIndex]); parentIndex = childIndex; } } #if DEBUG_POINTER_ASSIGNMENT LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize); for (size_t i = 0; i < heapSize; i++) { LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); } #endif // Pull matches out by increasing order of distance. // To avoid reassigning pointers that have already been matched, the loop keeps track // of which last and current pointers have been matched using the matchedXXXBits variables. // It also tracks the used pointer id bits. BitSet32 matchedLastBits(0); BitSet32 matchedCurrentBits(0); BitSet32 usedIdBits(0); bool first = true; for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) { for (;;) { if (first) { // The first time through the loop, we just consume the root element of // the heap (the one with smallest distance). first = false; } else { // Previous iterations consumed the root element of the heap. // Pop root element off of the heap (sift down). heapSize -= 1; assert(heapSize > 0); // Sift down. heap[0] = heap[heapSize]; for (uint32_t parentIndex = 0; ;) { uint32_t childIndex = parentIndex * 2 + 1; if (childIndex >= heapSize) { break; } if (childIndex + 1 < heapSize && heap[childIndex + 1].distance < heap[childIndex].distance) { childIndex += 1; } if (heap[parentIndex].distance <= heap[childIndex].distance) { break; } swap(heap[parentIndex], heap[childIndex]); parentIndex = childIndex; } #if DEBUG_POINTER_ASSIGNMENT LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize); for (size_t i = 0; i < heapSize; i++) { LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); } #endif } uint32_t currentPointerIndex = heap[0].currentPointerIndex; if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched uint32_t lastPointerIndex = heap[0].lastPointerIndex; if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched matchedCurrentBits.markBit(currentPointerIndex); matchedLastBits.markBit(lastPointerIndex); uint32_t id = lastTouch.pointers[lastPointerIndex].id; currentTouch.pointers[currentPointerIndex].id = id; currentTouch.idToIndex[id] = currentPointerIndex; usedIdBits.markBit(id); #if DEBUG_POINTER_ASSIGNMENT LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld", lastPointerIndex, currentPointerIndex, id, heap[0].distance); #endif break; } } // Assign fresh ids to new pointers. if (currentPointerCount > lastPointerCount) { for (uint32_t i = currentPointerCount - lastPointerCount; ;) { uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit(); uint32_t id = usedIdBits.firstUnmarkedBit(); currentTouch.pointers[currentPointerIndex].id = id; currentTouch.idToIndex[id] = currentPointerIndex; usedIdBits.markBit(id); #if DEBUG_POINTER_ASSIGNMENT LOGD("calculatePointerIds - assigned: cur=%d, id=%d", currentPointerIndex, id); #endif if (--i == 0) break; // done matchedCurrentBits.markBit(currentPointerIndex); } } // Fix id bits. currentTouch.idBits = usedIdBits; } } /* Special hack for devices that have bad screen data: if one of the * points has moved more than a screen height from the last position, * then drop it. */ bool InputDevice::TouchScreenState::applyBadTouchFilter() { // This hack requires valid axis parameters. if (! parameters.yAxis.valid) { return false; } uint32_t pointerCount = currentTouch.pointerCount; // Nothing to do if there are no points. if (pointerCount == 0) { return false; } // Don't do anything if a finger is going down or up. We run // here before assigning pointer IDs, so there isn't a good // way to do per-finger matching. if (pointerCount != lastTouch.pointerCount) { return false; } // We consider a single movement across more than a 7/16 of // the long size of the screen to be bad. This was a magic value // determined by looking at the maximum distance it is feasible // to actually move in one sample. int32_t maxDeltaY = parameters.yAxis.range * 7 / 16; // XXX The original code in InputDevice.java included commented out // code for testing the X axis. Note that when we drop a point // we don't actually restore the old X either. Strange. // The old code also tries to track when bad points were previously // detected but it turns out that due to the placement of a "break" // at the end of the loop, we never set mDroppedBadPoint to true // so it is effectively dead code. // Need to figure out if the old code is busted or just overcomplicated // but working as intended. // Look through all new points and see if any are farther than // acceptable from all previous points. for (uint32_t i = pointerCount; i-- > 0; ) { int32_t y = currentTouch.pointers[i].y; int32_t closestY = INT_MAX; int32_t closestDeltaY = 0; #if DEBUG_HACKS LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y); #endif for (uint32_t j = pointerCount; j-- > 0; ) { int32_t lastY = lastTouch.pointers[j].y; int32_t deltaY = abs(y - lastY); #if DEBUG_HACKS LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d", j, lastY, deltaY); #endif if (deltaY < maxDeltaY) { goto SkipSufficientlyClosePoint; } if (deltaY < closestDeltaY) { closestDeltaY = deltaY; closestY = lastY; } } // Must not have found a close enough match. #if DEBUG_HACKS LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d", i, y, closestY, closestDeltaY, maxDeltaY); #endif currentTouch.pointers[i].y = closestY; return true; // XXX original code only corrects one point SkipSufficientlyClosePoint: ; } // No change. return false; } /* Special hack for devices that have bad screen data: drop points where * the coordinate value for one axis has jumped to the other pointer's location. */ bool InputDevice::TouchScreenState::applyJumpyTouchFilter() { // This hack requires valid axis parameters. if (! parameters.yAxis.valid) { return false; } uint32_t pointerCount = currentTouch.pointerCount; if (lastTouch.pointerCount != pointerCount) { #if DEBUG_HACKS LOGD("JumpyTouchFilter: Different pointer count %d -> %d", lastTouch.pointerCount, pointerCount); for (uint32_t i = 0; i < pointerCount; i++) { LOGD(" Pointer %d (%d, %d)", i, currentTouch.pointers[i].x, currentTouch.pointers[i].y); } #endif if (jumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) { if (lastTouch.pointerCount == 1 && pointerCount == 2) { // Just drop the first few events going from 1 to 2 pointers. // They're bad often enough that they're not worth considering. currentTouch.pointerCount = 1; jumpyTouchFilter.jumpyPointsDropped += 1; #if DEBUG_HACKS LOGD("JumpyTouchFilter: Pointer 2 dropped"); #endif return true; } else if (lastTouch.pointerCount == 2 && pointerCount == 1) { // The event when we go from 2 -> 1 tends to be messed up too currentTouch.pointerCount = 2; currentTouch.pointers[0] = lastTouch.pointers[0]; currentTouch.pointers[1] = lastTouch.pointers[1]; jumpyTouchFilter.jumpyPointsDropped += 1; #if DEBUG_HACKS for (int32_t i = 0; i < 2; i++) { LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i, currentTouch.pointers[i].x, currentTouch.pointers[i].y); } #endif return true; } } // Reset jumpy points dropped on other transitions or if limit exceeded. jumpyTouchFilter.jumpyPointsDropped = 0; #if DEBUG_HACKS LOGD("JumpyTouchFilter: Transition - drop limit reset"); #endif return false; } // We have the same number of pointers as last time. // A 'jumpy' point is one where the coordinate value for one axis // has jumped to the other pointer's location. No need to do anything // else if we only have one pointer. if (pointerCount < 2) { return false; } if (jumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) { int jumpyEpsilon = parameters.yAxis.range / JUMPY_EPSILON_DIVISOR; // We only replace the single worst jumpy point as characterized by pointer distance // in a single axis. int32_t badPointerIndex = -1; int32_t badPointerReplacementIndex = -1; int32_t badPointerDistance = INT_MIN; // distance to be corrected for (uint32_t i = pointerCount; i-- > 0; ) { int32_t x = currentTouch.pointers[i].x; int32_t y = currentTouch.pointers[i].y; #if DEBUG_HACKS LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y); #endif // Check if a touch point is too close to another's coordinates bool dropX = false, dropY = false; for (uint32_t j = 0; j < pointerCount; j++) { if (i == j) { continue; } if (abs(x - currentTouch.pointers[j].x) <= jumpyEpsilon) { dropX = true; break; } if (abs(y - currentTouch.pointers[j].y) <= jumpyEpsilon) { dropY = true; break; } } if (! dropX && ! dropY) { continue; // not jumpy } // Find a replacement candidate by comparing with older points on the // complementary (non-jumpy) axis. int32_t distance = INT_MIN; // distance to be corrected int32_t replacementIndex = -1; if (dropX) { // X looks too close. Find an older replacement point with a close Y. int32_t smallestDeltaY = INT_MAX; for (uint32_t j = 0; j < pointerCount; j++) { int32_t deltaY = abs(y - lastTouch.pointers[j].y); if (deltaY < smallestDeltaY) { smallestDeltaY = deltaY; replacementIndex = j; } } distance = abs(x - lastTouch.pointers[replacementIndex].x); } else { // Y looks too close. Find an older replacement point with a close X. int32_t smallestDeltaX = INT_MAX; for (uint32_t j = 0; j < pointerCount; j++) { int32_t deltaX = abs(x - lastTouch.pointers[j].x); if (deltaX < smallestDeltaX) { smallestDeltaX = deltaX; replacementIndex = j; } } distance = abs(y - lastTouch.pointers[replacementIndex].y); } // If replacing this pointer would correct a worse error than the previous ones // considered, then use this replacement instead. if (distance > badPointerDistance) { badPointerIndex = i; badPointerReplacementIndex = replacementIndex; badPointerDistance = distance; } } // Correct the jumpy pointer if one was found. if (badPointerIndex >= 0) { #if DEBUG_HACKS LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)", badPointerIndex, lastTouch.pointers[badPointerReplacementIndex].x, lastTouch.pointers[badPointerReplacementIndex].y); #endif currentTouch.pointers[badPointerIndex].x = lastTouch.pointers[badPointerReplacementIndex].x; currentTouch.pointers[badPointerIndex].y = lastTouch.pointers[badPointerReplacementIndex].y; jumpyTouchFilter.jumpyPointsDropped += 1; return true; } } jumpyTouchFilter.jumpyPointsDropped = 0; return false; } /* Special hack for devices that have bad screen data: aggregate and * compute averages of the coordinate data, to reduce the amount of * jitter seen by applications. */ void InputDevice::TouchScreenState::applyAveragingTouchFilter() { for (uint32_t currentIndex = 0; currentIndex < currentTouch.pointerCount; currentIndex++) { uint32_t id = currentTouch.pointers[currentIndex].id; int32_t x = currentTouch.pointers[currentIndex].x; int32_t y = currentTouch.pointers[currentIndex].y; int32_t pressure = currentTouch.pointers[currentIndex].pressure; if (lastTouch.idBits.hasBit(id)) { // Pointer was down before and is still down now. // Compute average over history trace. uint32_t start = averagingTouchFilter.historyStart[id]; uint32_t end = averagingTouchFilter.historyEnd[id]; int64_t deltaX = x - averagingTouchFilter.historyData[end].pointers[id].x; int64_t deltaY = y - averagingTouchFilter.historyData[end].pointers[id].y; uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); #if DEBUG_HACKS LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld", id, distance); #endif if (distance < AVERAGING_DISTANCE_LIMIT) { // Increment end index in preparation for recording new historical data. end += 1; if (end > AVERAGING_HISTORY_SIZE) { end = 0; } // If the end index has looped back to the start index then we have filled // the historical trace up to the desired size so we drop the historical // data at the start of the trace. if (end == start) { start += 1; if (start > AVERAGING_HISTORY_SIZE) { start = 0; } } // Add the raw data to the historical trace. averagingTouchFilter.historyStart[id] = start; averagingTouchFilter.historyEnd[id] = end; averagingTouchFilter.historyData[end].pointers[id].x = x; averagingTouchFilter.historyData[end].pointers[id].y = y; averagingTouchFilter.historyData[end].pointers[id].pressure = pressure; // Average over all historical positions in the trace by total pressure. int32_t averagedX = 0; int32_t averagedY = 0; int32_t totalPressure = 0; for (;;) { int32_t historicalX = averagingTouchFilter.historyData[start].pointers[id].x; int32_t historicalY = averagingTouchFilter.historyData[start].pointers[id].y; int32_t historicalPressure = averagingTouchFilter.historyData[start] .pointers[id].pressure; averagedX += historicalX * historicalPressure; averagedY += historicalY * historicalPressure; totalPressure += historicalPressure; if (start == end) { break; } start += 1; if (start > AVERAGING_HISTORY_SIZE) { start = 0; } } averagedX /= totalPressure; averagedY /= totalPressure; #if DEBUG_HACKS LOGD("AveragingTouchFilter: Pointer id %d - " "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure, averagedX, averagedY); #endif currentTouch.pointers[currentIndex].x = averagedX; currentTouch.pointers[currentIndex].y = averagedY; } else { #if DEBUG_HACKS LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id); #endif } } else { #if DEBUG_HACKS LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id); #endif } // Reset pointer history. averagingTouchFilter.historyStart[id] = 0; averagingTouchFilter.historyEnd[id] = 0; averagingTouchFilter.historyData[0].pointers[id].x = x; averagingTouchFilter.historyData[0].pointers[id].y = y; averagingTouchFilter.historyData[0].pointers[id].pressure = pressure; } } bool InputDevice::TouchScreenState::isPointInsideDisplay(int32_t x, int32_t y) const { if (! parameters.xAxis.valid || ! parameters.yAxis.valid) { // Assume all points on a touch screen without valid axis parameters are // inside the display. return true; } return x >= parameters.xAxis.minValue && x <= parameters.xAxis.maxValue && y >= parameters.yAxis.minValue && y <= parameters.yAxis.maxValue; } const InputDevice::VirtualKey* InputDevice::TouchScreenState::findVirtualKeyHit() const { int32_t x = currentTouch.pointers[0].x; int32_t y = currentTouch.pointers[0].y; for (size_t i = 0; i < virtualKeys.size(); i++) { const InputDevice::VirtualKey& virtualKey = virtualKeys[i]; #if DEBUG_VIRTUAL_KEYS LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " "left=%d, top=%d, right=%d, bottom=%d", x, y, virtualKey.keyCode, virtualKey.scanCode, virtualKey.hitLeft, virtualKey.hitTop, virtualKey.hitRight, virtualKey.hitBottom); #endif if (virtualKey.isHit(x, y)) { return & virtualKey; } } return NULL; } // --- InputDevice::SingleTouchScreenState --- void InputDevice::SingleTouchScreenState::reset() { accumulator.clear(); current.down = false; current.x = 0; current.y = 0; current.pressure = 0; current.size = 0; } // --- InputDevice::MultiTouchScreenState --- void InputDevice::MultiTouchScreenState::reset() { accumulator.clear(); } } // namespace android