/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_GRAPHICS //#define LOG_NDEBUG 0 #include "SurfaceFlingerConsumer.h" #include #include #include #include namespace android { // --------------------------------------------------------------------------- status_t SurfaceFlingerConsumer::updateTexImage(BufferRejecter* rejecter) { ATRACE_CALL(); ALOGV("updateTexImage"); Mutex::Autolock lock(mMutex); if (mAbandoned) { ALOGE("updateTexImage: GLConsumer is abandoned!"); return NO_INIT; } // Make sure the EGL state is the same as in previous calls. status_t err = checkAndUpdateEglStateLocked(); if (err != NO_ERROR) { return err; } BufferQueue::BufferItem item; // Acquire the next buffer. // In asynchronous mode the list is guaranteed to be one buffer // deep, while in synchronous mode we use the oldest buffer. err = acquireBufferLocked(&item, computeExpectedPresent()); if (err != NO_ERROR) { if (err == BufferQueue::NO_BUFFER_AVAILABLE) { err = NO_ERROR; } else if (err == BufferQueue::PRESENT_LATER) { // return the error, without logging } else { ALOGE("updateTexImage: acquire failed: %s (%d)", strerror(-err), err); } return err; } // We call the rejecter here, in case the caller has a reason to // not accept this buffer. This is used by SurfaceFlinger to // reject buffers which have the wrong size int buf = item.mBuf; if (rejecter && rejecter->reject(mSlots[buf].mGraphicBuffer, item)) { releaseBufferLocked(buf, mSlots[buf].mGraphicBuffer, EGL_NO_SYNC_KHR); return NO_ERROR; } // Release the previous buffer. err = updateAndReleaseLocked(item); if (err != NO_ERROR) { return err; } if (!SyncFeatures::getInstance().useNativeFenceSync()) { // Bind the new buffer to the GL texture. // // Older devices require the "implicit" synchronization provided // by glEGLImageTargetTexture2DOES, which this method calls. Newer // devices will either call this in Layer::onDraw, or (if it's not // a GL-composited layer) not at all. err = bindTextureImageLocked(); } return err; } status_t SurfaceFlingerConsumer::bindTextureImage() { Mutex::Autolock lock(mMutex); return bindTextureImageLocked(); } status_t SurfaceFlingerConsumer::acquireBufferLocked( BufferQueue::BufferItem *item, nsecs_t presentWhen) { status_t result = GLConsumer::acquireBufferLocked(item, presentWhen); if (result == NO_ERROR) { mTransformToDisplayInverse = item->mTransformToDisplayInverse; } return result; } bool SurfaceFlingerConsumer::getTransformToDisplayInverse() const { return mTransformToDisplayInverse; } sp SurfaceFlingerConsumer::getSidebandStream() const { return mConsumer->getSidebandStream(); } // We need to determine the time when a buffer acquired now will be // displayed. This can be calculated: // time when previous buffer's actual-present fence was signaled // + current display refresh rate * HWC latency // + a little extra padding // // Buffer producers are expected to set their desired presentation time // based on choreographer time stamps, which (coming from vsync events) // will be slightly later then the actual-present timing. If we get a // desired-present time that is unintentionally a hair after the next // vsync, we'll hold the frame when we really want to display it. We // want to use an expected-presentation time that is slightly late to // avoid this sort of edge case. nsecs_t SurfaceFlingerConsumer::computeExpectedPresent() { // Don't yet have an easy way to get actual buffer flip time for // the specific display, so use the current time. This is typically // 1.3ms past the vsync event time. const nsecs_t prevVsync = systemTime(CLOCK_MONOTONIC); // Given a SurfaceFlinger reference, and information about what display // we're destined for, we could query the HWC for the refresh rate. This // could change over time, e.g. we could switch to 24fps for a movie. // For now, assume 60fps. //const nsecs_t vsyncPeriod = // getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY); const nsecs_t vsyncPeriod = 16700000; // The HWC doesn't currently have a way to report additional latency. // Assume that whatever we submit now will appear on the next flip, // i.e. 1 frame of latency w.r.t. the previous flip. const uint32_t hwcLatency = 1; // A little extra padding to compensate for slack between actual vsync // time and vsync event receipt. Currently not needed since we're // using "now" instead of a vsync time. const nsecs_t extraPadding = 0; // Total it up. return prevVsync + hwcLatency * vsyncPeriod + extraPadding; } void SurfaceFlingerConsumer::setContentsChangedListener( const wp& listener) { setFrameAvailableListener(listener); Mutex::Autolock lock(mMutex); mContentsChangedListener = listener; } void SurfaceFlingerConsumer::onSidebandStreamChanged() { sp listener; { // scope for the lock Mutex::Autolock lock(mMutex); ALOG_ASSERT(mFrameAvailableListener.unsafe_get() == mContentsChangedListener.unsafe_get()); listener = mContentsChangedListener.promote(); } if (listener != NULL) { listener->onSidebandStreamChanged(); } } // --------------------------------------------------------------------------- }; // namespace android