/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include "clz.h" #include "Client.h" #include "LayerBase.h" #include "Layer.h" #include "SurfaceFlinger.h" #include "DisplayDevice.h" namespace android { // --------------------------------------------------------------------------- int32_t LayerBase::sSequence = 1; LayerBase::LayerBase(SurfaceFlinger* flinger, DisplayID display) : dpy(display), contentDirty(false), sequence(uint32_t(android_atomic_inc(&sSequence))), mFlinger(flinger), mFiltering(false), mNeedsFiltering(false), mTransactionFlags(0), mPremultipliedAlpha(true), mName("unnamed"), mDebug(false) { } LayerBase::~LayerBase() { } void LayerBase::setName(const String8& name) { mName = name; } String8 LayerBase::getName() const { return mName; } void LayerBase::initStates(uint32_t w, uint32_t h, uint32_t flags) { uint32_t layerFlags = 0; if (flags & ISurfaceComposer::eHidden) layerFlags = ISurfaceComposer::eLayerHidden; if (flags & ISurfaceComposer::eNonPremultiplied) mPremultipliedAlpha = false; mCurrentState.active.w = w; mCurrentState.active.h = h; mCurrentState.active.crop.makeInvalid(); mCurrentState.z = 0; mCurrentState.alpha = 0xFF; mCurrentState.layerStack = 0; mCurrentState.flags = layerFlags; mCurrentState.sequence = 0; mCurrentState.transform.set(0, 0); mCurrentState.requested = mCurrentState.active; // drawing state & current state are identical mDrawingState = mCurrentState; } void LayerBase::commitTransaction() { mDrawingState = mCurrentState; } void LayerBase::forceVisibilityTransaction() { // this can be called without SurfaceFlinger.mStateLock, but if we // can atomically increment the sequence number, it doesn't matter. android_atomic_inc(&mCurrentState.sequence); requestTransaction(); } bool LayerBase::requestTransaction() { int32_t old = setTransactionFlags(eTransactionNeeded); return ((old & eTransactionNeeded) == 0); } uint32_t LayerBase::getTransactionFlags(uint32_t flags) { return android_atomic_and(~flags, &mTransactionFlags) & flags; } uint32_t LayerBase::setTransactionFlags(uint32_t flags) { return android_atomic_or(flags, &mTransactionFlags); } bool LayerBase::setPosition(float x, float y) { if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y) return false; mCurrentState.sequence++; mCurrentState.transform.set(x, y); requestTransaction(); return true; } bool LayerBase::setLayer(uint32_t z) { if (mCurrentState.z == z) return false; mCurrentState.sequence++; mCurrentState.z = z; requestTransaction(); return true; } bool LayerBase::setSize(uint32_t w, uint32_t h) { if (mCurrentState.requested.w == w && mCurrentState.requested.h == h) return false; mCurrentState.requested.w = w; mCurrentState.requested.h = h; requestTransaction(); return true; } bool LayerBase::setAlpha(uint8_t alpha) { if (mCurrentState.alpha == alpha) return false; mCurrentState.sequence++; mCurrentState.alpha = alpha; requestTransaction(); return true; } bool LayerBase::setMatrix(const layer_state_t::matrix22_t& matrix) { mCurrentState.sequence++; mCurrentState.transform.set( matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy); requestTransaction(); return true; } bool LayerBase::setTransparentRegionHint(const Region& transparent) { mCurrentState.sequence++; mCurrentState.transparentRegion = transparent; requestTransaction(); return true; } bool LayerBase::setFlags(uint8_t flags, uint8_t mask) { const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); if (mCurrentState.flags == newFlags) return false; mCurrentState.sequence++; mCurrentState.flags = newFlags; requestTransaction(); return true; } bool LayerBase::setCrop(const Rect& crop) { if (mCurrentState.requested.crop == crop) return false; mCurrentState.sequence++; mCurrentState.requested.crop = crop; requestTransaction(); return true; } bool LayerBase::setLayerStack(uint32_t layerStack) { if (mCurrentState.layerStack == layerStack) return false; mCurrentState.sequence++; mCurrentState.layerStack = layerStack; requestTransaction(); return true; } void LayerBase::setVisibleRegion(const Region& visibleRegion) { // always called from main thread this->visibleRegion = visibleRegion; } void LayerBase::setCoveredRegion(const Region& coveredRegion) { // always called from main thread this->coveredRegion = coveredRegion; } uint32_t LayerBase::doTransaction(uint32_t flags) { const Layer::State& front(drawingState()); const Layer::State& temp(currentState()); // always set active to requested, unless we're asked not to // this is used by Layer, which special cases resizes. if (flags & eDontUpdateGeometryState) { } else { Layer::State& editTemp(currentState()); editTemp.active = temp.requested; } if (front.active != temp.active) { // invalidate and recompute the visible regions if needed flags |= Layer::eVisibleRegion; } if (temp.sequence != front.sequence) { // invalidate and recompute the visible regions if needed flags |= eVisibleRegion; this->contentDirty = true; // we may use linear filtering, if the matrix scales us const uint8_t type = temp.transform.getType(); mNeedsFiltering = (!temp.transform.preserveRects() || (type >= Transform::SCALE)); } // Commit the transaction commitTransaction(); return flags; } void LayerBase::computeGeometry(const DisplayDevice& hw, LayerMesh* mesh) const { const Layer::State& s(drawingState()); const Transform tr(hw.getTransform() * s.transform); const uint32_t hw_h = hw.getHeight(); const Rect& crop(s.active.crop); Rect win(s.active.w, s.active.h); if (!crop.isEmpty()) { win.intersect(crop, &win); } if (mesh) { tr.transform(mesh->mVertices[0], win.left, win.top); tr.transform(mesh->mVertices[1], win.left, win.bottom); tr.transform(mesh->mVertices[2], win.right, win.bottom); tr.transform(mesh->mVertices[3], win.right, win.top); for (size_t i=0 ; i<4 ; i++) { mesh->mVertices[i][1] = hw_h - mesh->mVertices[i][1]; } } } Rect LayerBase::computeBounds() const { const Layer::State& s(drawingState()); const Rect& crop(s.active.crop); Rect win(s.active.w, s.active.h); if (!crop.isEmpty()) { win.intersect(crop, &win); } return s.transform.transform(win); } Region LayerBase::latchBuffer(bool& recomputeVisibleRegions) { Region result; return result; } void LayerBase::setGeometry( const DisplayDevice& hw, HWComposer::HWCLayerInterface& layer) { layer.setDefaultState(); // this gives us only the "orientation" component of the transform const State& s(drawingState()); const uint32_t finalTransform = s.transform.getOrientation(); // we can only handle simple transformation if (finalTransform & Transform::ROT_INVALID) { layer.setTransform(0); } else { layer.setTransform(finalTransform); } if (!isOpaque()) { layer.setBlending(mPremultipliedAlpha ? HWC_BLENDING_PREMULT : HWC_BLENDING_COVERAGE); } const Transform& tr = hw.getTransform(); Rect transformedBounds(computeBounds()); transformedBounds = tr.transform(transformedBounds); // scaling is already applied in transformedBounds layer.setFrame(transformedBounds); layer.setCrop(transformedBounds.getBounds()); layer.setVisibleRegionScreen(tr.transform(visibleRegion)); } void LayerBase::setPerFrameData(const DisplayDevice& hw, HWComposer::HWCLayerInterface& layer) { layer.setBuffer(0); } void LayerBase::setAcquireFence(const DisplayDevice& hw, HWComposer::HWCLayerInterface& layer) { layer.setAcquireFenceFd(-1); } void LayerBase::setFiltering(bool filtering) { mFiltering = filtering; } bool LayerBase::getFiltering() const { return mFiltering; } void LayerBase::draw(const DisplayDevice& hw, const Region& clip) const { onDraw(hw, clip); } void LayerBase::draw(const DisplayDevice& hw) { onDraw( hw, Region(hw.bounds()) ); } void LayerBase::clearWithOpenGL(const DisplayDevice& hw, const Region& clip, GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha) const { const uint32_t fbHeight = hw.getHeight(); glColor4f(red,green,blue,alpha); glDisable(GL_TEXTURE_EXTERNAL_OES); glDisable(GL_TEXTURE_2D); glDisable(GL_BLEND); LayerMesh mesh; computeGeometry(hw, &mesh); glVertexPointer(2, GL_FLOAT, 0, mesh.getVertices()); glDrawArrays(GL_TRIANGLE_FAN, 0, mesh.getVertexCount()); } void LayerBase::clearWithOpenGL(const DisplayDevice& hw, const Region& clip) const { clearWithOpenGL(hw, clip, 0,0,0,0); } void LayerBase::drawWithOpenGL(const DisplayDevice& hw, const Region& clip) const { const uint32_t fbHeight = hw.getHeight(); const State& s(drawingState()); GLenum src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA; if (CC_UNLIKELY(s.alpha < 0xFF)) { const GLfloat alpha = s.alpha * (1.0f/255.0f); if (mPremultipliedAlpha) { glColor4f(alpha, alpha, alpha, alpha); } else { glColor4f(1, 1, 1, alpha); } glEnable(GL_BLEND); glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA); glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { glColor4f(1, 1, 1, 1); glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); if (!isOpaque()) { glEnable(GL_BLEND); glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA); } else { glDisable(GL_BLEND); } } LayerMesh mesh; computeGeometry(hw, &mesh); // TODO: we probably want to generate the texture coords with the mesh // here we assume that we only have 4 vertices struct TexCoords { GLfloat u; GLfloat v; }; Rect crop(s.active.w, s.active.h); if (!s.active.crop.isEmpty()) { crop = s.active.crop; } GLfloat left = GLfloat(crop.left) / GLfloat(s.active.w); GLfloat top = GLfloat(crop.top) / GLfloat(s.active.h); GLfloat right = GLfloat(crop.right) / GLfloat(s.active.w); GLfloat bottom = GLfloat(crop.bottom) / GLfloat(s.active.h); TexCoords texCoords[4]; texCoords[0].u = left; texCoords[0].v = top; texCoords[1].u = left; texCoords[1].v = bottom; texCoords[2].u = right; texCoords[2].v = bottom; texCoords[3].u = right; texCoords[3].v = top; for (int i = 0; i < 4; i++) { texCoords[i].v = 1.0f - texCoords[i].v; } glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 0, texCoords); glVertexPointer(2, GL_FLOAT, 0, mesh.getVertices()); glDrawArrays(GL_TRIANGLE_FAN, 0, mesh.getVertexCount()); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisable(GL_BLEND); } void LayerBase::dump(String8& result, char* buffer, size_t SIZE) const { const Layer::State& s(drawingState()); snprintf(buffer, SIZE, "+ %s %p (%s)\n", getTypeId(), this, getName().string()); result.append(buffer); s.transparentRegion.dump(result, "transparentRegion"); visibleRegion.dump(result, "visibleRegion"); snprintf(buffer, SIZE, " " "z=%9d, pos=(%g,%g), size=(%4d,%4d), crop=(%4d,%4d,%4d,%4d), " "isOpaque=%1d, needsDithering=%1d, invalidate=%1d, " "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n", s.z, s.transform.tx(), s.transform.ty(), s.active.w, s.active.h, s.active.crop.left, s.active.crop.top, s.active.crop.right, s.active.crop.bottom, isOpaque(), needsDithering(), contentDirty, s.alpha, s.flags, s.transform[0][0], s.transform[0][1], s.transform[1][0], s.transform[1][1]); result.append(buffer); } void LayerBase::shortDump(String8& result, char* scratch, size_t size) const { LayerBase::dump(result, scratch, size); } void LayerBase::dumpStats(String8& result, char* scratch, size_t SIZE) const { } void LayerBase::clearStats() { } sp LayerBase::getLayerBaseClient() const { return 0; } sp LayerBase::getLayer() const { return 0; } // --------------------------------------------------------------------------- int32_t LayerBaseClient::sIdentity = 1; LayerBaseClient::LayerBaseClient(SurfaceFlinger* flinger, DisplayID display, const sp& client) : LayerBase(flinger, display), mHasSurface(false), mClientRef(client), mIdentity(uint32_t(android_atomic_inc(&sIdentity))) { } LayerBaseClient::~LayerBaseClient() { sp c(mClientRef.promote()); if (c != 0) { c->detachLayer(this); } } sp LayerBaseClient::createSurface() { class BSurface : public BnSurface, public LayerCleaner { virtual sp getSurfaceTexture() const { return 0; } public: BSurface(const sp& flinger, const sp& layer) : LayerCleaner(flinger, layer) { } }; sp sur(new BSurface(mFlinger, this)); return sur; } sp LayerBaseClient::getSurface() { sp s; Mutex::Autolock _l(mLock); LOG_ALWAYS_FATAL_IF(mHasSurface, "LayerBaseClient::getSurface() has already been called"); mHasSurface = true; s = createSurface(); mClientSurfaceBinder = s->asBinder(); return s; } wp LayerBaseClient::getSurfaceBinder() const { return mClientSurfaceBinder; } wp LayerBaseClient::getSurfaceTextureBinder() const { return 0; } void LayerBaseClient::dump(String8& result, char* buffer, size_t SIZE) const { LayerBase::dump(result, buffer, SIZE); sp client(mClientRef.promote()); snprintf(buffer, SIZE, " client=%p, identity=%u\n", client.get(), getIdentity()); result.append(buffer); } void LayerBaseClient::shortDump(String8& result, char* scratch, size_t size) const { LayerBaseClient::dump(result, scratch, size); } // --------------------------------------------------------------------------- LayerBaseClient::LayerCleaner::LayerCleaner(const sp& flinger, const sp& layer) : mFlinger(flinger), mLayer(layer) { } LayerBaseClient::LayerCleaner::~LayerCleaner() { // destroy client resources mFlinger->onLayerDestroyed(mLayer); } // --------------------------------------------------------------------------- }; // namespace android