/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clz.h" #include "DisplayHardware/DisplayHardware.h" #include "DisplayHardware/HWComposer.h" #include "GLExtensions.h" #include "Layer.h" #include "SurfaceFlinger.h" #include "SurfaceTextureLayer.h" #define DEBUG_RESIZE 0 namespace android { // --------------------------------------------------------------------------- Layer::Layer(SurfaceFlinger* flinger, DisplayID display, const sp& client) : LayerBaseClient(flinger, display, client), mTextureName(-1U), mQueuedFrames(0), mCurrentTransform(0), mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), mCurrentOpacity(true), mRefreshPending(false), mFrameLatencyNeeded(false), mFrameLatencyOffset(0), mFormat(PIXEL_FORMAT_NONE), mGLExtensions(GLExtensions::getInstance()), mOpaqueLayer(true), mNeedsDithering(false), mSecure(false), mProtectedByApp(false) { mCurrentCrop.makeInvalid(); glGenTextures(1, &mTextureName); } void Layer::onLayerDisplayed() { if (mFrameLatencyNeeded) { const DisplayHardware& hw(graphicPlane(0).displayHardware()); mFrameStats[mFrameLatencyOffset].timestamp = mSurfaceTexture->getTimestamp(); mFrameStats[mFrameLatencyOffset].set = systemTime(); mFrameStats[mFrameLatencyOffset].vsync = hw.getRefreshTimestamp(); mFrameLatencyOffset = (mFrameLatencyOffset + 1) % 128; mFrameLatencyNeeded = false; } } void Layer::onFirstRef() { LayerBaseClient::onFirstRef(); struct FrameQueuedListener : public SurfaceTexture::FrameAvailableListener { FrameQueuedListener(Layer* layer) : mLayer(layer) { } private: wp mLayer; virtual void onFrameAvailable() { sp that(mLayer.promote()); if (that != 0) { that->onFrameQueued(); } } }; // Creates a custom BufferQueue for SurfaceTexture to use sp bq = new SurfaceTextureLayer(); mSurfaceTexture = new SurfaceTexture(mTextureName, true, GL_TEXTURE_EXTERNAL_OES, false, bq); mSurfaceTexture->setConsumerUsageBits(getEffectiveUsage(0)); mSurfaceTexture->setFrameAvailableListener(new FrameQueuedListener(this)); mSurfaceTexture->setSynchronousMode(true); #ifdef TARGET_DISABLE_TRIPLE_BUFFERING #warning "disabling triple buffering" mSurfaceTexture->setBufferCountServer(2); #else mSurfaceTexture->setBufferCountServer(3); #endif } Layer::~Layer() { mFlinger->postMessageAsync( new SurfaceFlinger::MessageDestroyGLTexture(mTextureName) ); } void Layer::onFrameQueued() { android_atomic_inc(&mQueuedFrames); mFlinger->signalLayerUpdate(); } // called with SurfaceFlinger::mStateLock as soon as the layer is entered // in the purgatory list void Layer::onRemoved() { mSurfaceTexture->abandon(); } void Layer::setName(const String8& name) { LayerBase::setName(name); mSurfaceTexture->setName(name); } void Layer::validateVisibility(const Transform& globalTransform) { LayerBase::validateVisibility(globalTransform); // This optimization allows the SurfaceTexture to bake in // the rotation so hardware overlays can be used mSurfaceTexture->setTransformHint(getTransformHint()); } sp Layer::createSurface() { class BSurface : public BnSurface, public LayerCleaner { wp mOwner; virtual sp getSurfaceTexture() const { sp res; sp that( mOwner.promote() ); if (that != NULL) { res = that->mSurfaceTexture->getBufferQueue(); } return res; } public: BSurface(const sp& flinger, const sp& layer) : LayerCleaner(flinger, layer), mOwner(layer) { } }; sp sur(new BSurface(mFlinger, this)); return sur; } wp Layer::getSurfaceTextureBinder() const { return mSurfaceTexture->getBufferQueue()->asBinder(); } status_t Layer::setBuffers( uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) { // this surfaces pixel format PixelFormatInfo info; status_t err = getPixelFormatInfo(format, &info); if (err) { ALOGE("unsupported pixelformat %d", format); return err; } // the display's pixel format const DisplayHardware& hw(graphicPlane(0).displayHardware()); uint32_t const maxSurfaceDims = min( hw.getMaxTextureSize(), hw.getMaxViewportDims()); // never allow a surface larger than what our underlying GL implementation // can handle. if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) { ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h)); return BAD_VALUE; } PixelFormatInfo displayInfo; getPixelFormatInfo(hw.getFormat(), &displayInfo); const uint32_t hwFlags = hw.getFlags(); mFormat = format; mSecure = (flags & ISurfaceComposer::eSecure) ? true : false; mProtectedByApp = (flags & ISurfaceComposer::eProtectedByApp) ? true : false; mOpaqueLayer = (flags & ISurfaceComposer::eOpaque); mCurrentOpacity = getOpacityForFormat(format); mSurfaceTexture->setDefaultBufferSize(w, h); mSurfaceTexture->setDefaultBufferFormat(format); mSurfaceTexture->setConsumerUsageBits(getEffectiveUsage(0)); // we use the red index int displayRedSize = displayInfo.getSize(PixelFormatInfo::INDEX_RED); int layerRedsize = info.getSize(PixelFormatInfo::INDEX_RED); mNeedsDithering = layerRedsize > displayRedSize; return NO_ERROR; } Rect Layer::computeBufferCrop() const { // Start with the SurfaceTexture's buffer crop... Rect crop; if (!mCurrentCrop.isEmpty()) { crop = mCurrentCrop; } else if (mActiveBuffer != NULL){ crop = Rect(mActiveBuffer->getWidth(), mActiveBuffer->getHeight()); } else { crop = Rect(mTransformedBounds.width(), mTransformedBounds.height()); } // ... then reduce that in the same proportions as the window crop reduces // the window size. const State& s(drawingState()); if (!s.active.crop.isEmpty()) { // Transform the window crop to match the buffer coordinate system, // which means using the inverse of the current transform set on the // SurfaceTexture. uint32_t invTransform = mCurrentTransform; int winWidth = s.active.w; int winHeight = s.active.h; if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | NATIVE_WINDOW_TRANSFORM_FLIP_H; winWidth = s.active.h; winHeight = s.active.w; } Rect winCrop = s.active.crop.transform(invTransform, s.active.w, s.active.h); float xScale = float(crop.width()) / float(winWidth); float yScale = float(crop.height()) / float(winHeight); crop.left += int(ceilf(float(winCrop.left) * xScale)); crop.top += int(ceilf(float(winCrop.top) * yScale)); crop.right -= int(ceilf(float(winWidth - winCrop.right) * xScale)); crop.bottom -= int(ceilf(float(winHeight - winCrop.bottom) * yScale)); } return crop; } void Layer::setGeometry(hwc_layer_t* hwcl) { LayerBaseClient::setGeometry(hwcl); hwcl->flags &= ~HWC_SKIP_LAYER; // we can't do alpha-fade with the hwc HAL const State& s(drawingState()); if (s.alpha < 0xFF) { hwcl->flags = HWC_SKIP_LAYER; } /* * Transformations are applied in this order: * 1) buffer orientation/flip/mirror * 2) state transformation (window manager) * 3) layer orientation (screen orientation) * mTransform is already the composition of (2) and (3) * (NOTE: the matrices are multiplied in reverse order) */ const Transform bufferOrientation(mCurrentTransform); const Transform tr(mTransform * bufferOrientation); // this gives us only the "orientation" component of the transform const uint32_t finalTransform = tr.getOrientation(); // we can only handle simple transformation if (finalTransform & Transform::ROT_INVALID) { hwcl->flags = HWC_SKIP_LAYER; } else { hwcl->transform = finalTransform; } Rect crop = computeBufferCrop(); hwcl->sourceCrop.left = crop.left; hwcl->sourceCrop.top = crop.top; hwcl->sourceCrop.right = crop.right; hwcl->sourceCrop.bottom = crop.bottom; } void Layer::setPerFrameData(hwc_layer_t* hwcl) { const sp& buffer(mActiveBuffer); if (buffer == NULL) { // this can happen if the client never drew into this layer yet, // or if we ran out of memory. In that case, don't let // HWC handle it. hwcl->flags |= HWC_SKIP_LAYER; hwcl->handle = NULL; } else { hwcl->handle = buffer->handle; } } void Layer::onDraw(const Region& clip) const { ATRACE_CALL(); if (CC_UNLIKELY(mActiveBuffer == 0)) { // the texture has not been created yet, this Layer has // in fact never been drawn into. This happens frequently with // SurfaceView because the WindowManager can't know when the client // has drawn the first time. // If there is nothing under us, we paint the screen in black, otherwise // we just skip this update. // figure out if there is something below us Region under; const SurfaceFlinger::LayerVector& drawingLayers( mFlinger->mDrawingState.layersSortedByZ); const size_t count = drawingLayers.size(); for (size_t i=0 ; i& layer(drawingLayers[i]); if (layer.get() == static_cast(this)) break; under.orSelf(layer->visibleRegionScreen); } // if not everything below us is covered, we plug the holes! Region holes(clip.subtract(under)); if (!holes.isEmpty()) { clearWithOpenGL(holes, 0, 0, 0, 1); } return; } if (!isProtected()) { // TODO: we could be more subtle with isFixedSize() const bool useFiltering = getFiltering() || needsFiltering() || isFixedSize(); // Query the texture matrix given our current filtering mode. float textureMatrix[16]; mSurfaceTexture->setFilteringEnabled(useFiltering); mSurfaceTexture->getTransformMatrix(textureMatrix); // Set things up for texturing. glBindTexture(GL_TEXTURE_EXTERNAL_OES, mTextureName); GLenum filter = GL_NEAREST; if (useFiltering) { filter = GL_LINEAR; } glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MAG_FILTER, filter); glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MIN_FILTER, filter); glMatrixMode(GL_TEXTURE); glLoadMatrixf(textureMatrix); glMatrixMode(GL_MODELVIEW); glDisable(GL_TEXTURE_2D); glEnable(GL_TEXTURE_EXTERNAL_OES); } else { glBindTexture(GL_TEXTURE_2D, mFlinger->getProtectedTexName()); glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glDisable(GL_TEXTURE_EXTERNAL_OES); glEnable(GL_TEXTURE_2D); } drawWithOpenGL(clip); glDisable(GL_TEXTURE_EXTERNAL_OES); glDisable(GL_TEXTURE_2D); } // As documented in libhardware header, formats in the range // 0x100 - 0x1FF are specific to the HAL implementation, and // are known to have no alpha channel // TODO: move definition for device-specific range into // hardware.h, instead of using hard-coded values here. #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) bool Layer::getOpacityForFormat(uint32_t format) { if (HARDWARE_IS_DEVICE_FORMAT(format)) { return true; } PixelFormatInfo info; status_t err = getPixelFormatInfo(PixelFormat(format), &info); // in case of error (unknown format), we assume no blending return (err || info.h_alpha <= info.l_alpha); } bool Layer::isOpaque() const { // if we don't have a buffer yet, we're translucent regardless of the // layer's opaque flag. if (mActiveBuffer == 0) { return false; } // if the layer has the opaque flag, then we're always opaque, // otherwise we use the current buffer's format. return mOpaqueLayer || mCurrentOpacity; } bool Layer::isProtected() const { const sp& activeBuffer(mActiveBuffer); return (activeBuffer != 0) && (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED); } uint32_t Layer::doTransaction(uint32_t flags) { ATRACE_CALL(); const Layer::State& front(drawingState()); const Layer::State& temp(currentState()); const bool sizeChanged = (temp.requested.w != front.requested.w) || (temp.requested.h != front.requested.h); if (sizeChanged) { // the size changed, we need to ask our client to request a new buffer ALOGD_IF(DEBUG_RESIZE, "doTransaction: geometry (layer=%p), scalingMode=%d\n" " current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" " requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n" " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" " requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n", this, mCurrentScalingMode, temp.active.w, temp.active.h, temp.active.crop.left, temp.active.crop.top, temp.active.crop.right, temp.active.crop.bottom, temp.active.crop.getWidth(), temp.active.crop.getHeight(), temp.requested.w, temp.requested.h, temp.requested.crop.left, temp.requested.crop.top, temp.requested.crop.right, temp.requested.crop.bottom, temp.requested.crop.getWidth(), temp.requested.crop.getHeight(), front.active.w, front.active.h, front.active.crop.left, front.active.crop.top, front.active.crop.right, front.active.crop.bottom, front.active.crop.getWidth(), front.active.crop.getHeight(), front.requested.w, front.requested.h, front.requested.crop.left, front.requested.crop.top, front.requested.crop.right, front.requested.crop.bottom, front.requested.crop.getWidth(), front.requested.crop.getHeight()); if (!isFixedSize()) { // this will make sure LayerBase::doTransaction doesn't update // the drawing state's geometry flags |= eDontUpdateGeometryState; } // record the new size, form this point on, when the client request // a buffer, it'll get the new size. mSurfaceTexture->setDefaultBufferSize( temp.requested.w, temp.requested.h); } return LayerBase::doTransaction(flags); } bool Layer::isFixedSize() const { return mCurrentScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE; } bool Layer::isCropped() const { return !mCurrentCrop.isEmpty(); } // ---------------------------------------------------------------------------- // pageflip handling... // ---------------------------------------------------------------------------- bool Layer::onPreComposition() { mRefreshPending = false; return mQueuedFrames > 0; } void Layer::lockPageFlip(bool& recomputeVisibleRegions) { ATRACE_CALL(); if (mQueuedFrames > 0) { // if we've already called updateTexImage() without going through // a composition step, we have to skip this layer at this point // because we cannot call updateTeximage() without a corresponding // compositionComplete() call. // we'll trigger an update in onPreComposition(). if (mRefreshPending) { mPostedDirtyRegion.clear(); return; } // Capture the old state of the layer for comparisons later const bool oldOpacity = isOpaque(); sp oldActiveBuffer = mActiveBuffer; // signal another event if we have more frames pending if (android_atomic_dec(&mQueuedFrames) > 1) { mFlinger->signalLayerUpdate(); } struct Reject : public SurfaceTexture::BufferRejecter { Layer::State& front; Layer::State& current; bool& recomputeVisibleRegions; Reject(Layer::State& front, Layer::State& current, bool& recomputeVisibleRegions) : front(front), current(current), recomputeVisibleRegions(recomputeVisibleRegions) { } virtual bool reject(const sp& buf, const BufferQueue::BufferItem& item) { if (buf == NULL) { return false; } uint32_t bufWidth = buf->getWidth(); uint32_t bufHeight = buf->getHeight(); // check that we received a buffer of the right size // (Take the buffer's orientation into account) if (item.mTransform & Transform::ROT_90) { swap(bufWidth, bufHeight); } bool isFixedSize = item.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE; if (front.active != front.requested) { if (isFixedSize || (bufWidth == front.requested.w && bufHeight == front.requested.h)) { // Here we pretend the transaction happened by updating the // current and drawing states. Drawing state is only accessed // in this thread, no need to have it locked front.active = front.requested; // We also need to update the current state so that // we don't end-up overwriting the drawing state with // this stale current state during the next transaction // // NOTE: We don't need to hold the transaction lock here // because State::active is only accessed from this thread. current.active = front.active; // recompute visible region recomputeVisibleRegions = true; } ALOGD_IF(DEBUG_RESIZE, "lockPageFlip: (layer=%p), buffer (%ux%u, tr=%02x), scalingMode=%d\n" " drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" " requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n", this, bufWidth, bufHeight, item.mTransform, item.mScalingMode, front.active.w, front.active.h, front.active.crop.left, front.active.crop.top, front.active.crop.right, front.active.crop.bottom, front.active.crop.getWidth(), front.active.crop.getHeight(), front.requested.w, front.requested.h, front.requested.crop.left, front.requested.crop.top, front.requested.crop.right, front.requested.crop.bottom, front.requested.crop.getWidth(), front.requested.crop.getHeight()); } if (!isFixedSize) { if (front.active.w != bufWidth || front.active.h != bufHeight) { // reject this buffer return true; } } return false; } }; Reject r(mDrawingState, currentState(), recomputeVisibleRegions); if (mSurfaceTexture->updateTexImage(&r) < NO_ERROR) { // something happened! recomputeVisibleRegions = true; return; } // update the active buffer mActiveBuffer = mSurfaceTexture->getCurrentBuffer(); if (mActiveBuffer == NULL) { // this can only happen if the very first buffer was rejected. return; } mRefreshPending = true; mFrameLatencyNeeded = true; if (oldActiveBuffer == NULL) { // the first time we receive a buffer, we need to trigger a // geometry invalidation. mFlinger->invalidateHwcGeometry(); } Rect crop(mSurfaceTexture->getCurrentCrop()); const uint32_t transform(mSurfaceTexture->getCurrentTransform()); const uint32_t scalingMode(mSurfaceTexture->getCurrentScalingMode()); if ((crop != mCurrentCrop) || (transform != mCurrentTransform) || (scalingMode != mCurrentScalingMode)) { mCurrentCrop = crop; mCurrentTransform = transform; mCurrentScalingMode = scalingMode; mFlinger->invalidateHwcGeometry(); } if (oldActiveBuffer != NULL) { uint32_t bufWidth = mActiveBuffer->getWidth(); uint32_t bufHeight = mActiveBuffer->getHeight(); if (bufWidth != uint32_t(oldActiveBuffer->width) || bufHeight != uint32_t(oldActiveBuffer->height)) { mFlinger->invalidateHwcGeometry(); } } mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format); if (oldOpacity != isOpaque()) { recomputeVisibleRegions = true; } // FIXME: mPostedDirtyRegion = dirty & bounds const Layer::State& front(drawingState()); mPostedDirtyRegion.set(front.active.w, front.active.h); glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } } void Layer::unlockPageFlip( const Transform& planeTransform, Region& outDirtyRegion) { ATRACE_CALL(); Region postedRegion(mPostedDirtyRegion); if (!postedRegion.isEmpty()) { mPostedDirtyRegion.clear(); if (!visibleRegionScreen.isEmpty()) { // The dirty region is given in the layer's coordinate space // transform the dirty region by the surface's transformation // and the global transformation. const Layer::State& s(drawingState()); const Transform tr(planeTransform * s.transform); postedRegion = tr.transform(postedRegion); // At this point, the dirty region is in screen space. // Make sure it's constrained by the visible region (which // is in screen space as well). postedRegion.andSelf(visibleRegionScreen); outDirtyRegion.orSelf(postedRegion); } } } void Layer::dump(String8& result, char* buffer, size_t SIZE) const { LayerBaseClient::dump(result, buffer, SIZE); sp buf0(mActiveBuffer); uint32_t w0=0, h0=0, s0=0, f0=0; if (buf0 != 0) { w0 = buf0->getWidth(); h0 = buf0->getHeight(); s0 = buf0->getStride(); f0 = buf0->format; } snprintf(buffer, SIZE, " " "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X]," " transform-hint=0x%02x, queued-frames=%d, mRefreshPending=%d\n", mFormat, w0, h0, s0,f0, getTransformHint(), mQueuedFrames, mRefreshPending); result.append(buffer); if (mSurfaceTexture != 0) { mSurfaceTexture->dump(result, " ", buffer, SIZE); } } void Layer::dumpStats(String8& result, char* buffer, size_t SIZE) const { LayerBaseClient::dumpStats(result, buffer, SIZE); const size_t o = mFrameLatencyOffset; const DisplayHardware& hw(graphicPlane(0).displayHardware()); const nsecs_t period = hw.getRefreshPeriod(); result.appendFormat("%lld\n", period); for (size_t i=0 ; i<128 ; i++) { const size_t index = (o+i) % 128; const nsecs_t time_app = mFrameStats[index].timestamp; const nsecs_t time_set = mFrameStats[index].set; const nsecs_t time_vsync = mFrameStats[index].vsync; result.appendFormat("%lld\t%lld\t%lld\n", time_app, time_vsync, time_set); } result.append("\n"); } void Layer::clearStats() { LayerBaseClient::clearStats(); memset(mFrameStats, 0, sizeof(mFrameStats)); } uint32_t Layer::getEffectiveUsage(uint32_t usage) const { // TODO: should we do something special if mSecure is set? if (mProtectedByApp) { // need a hardware-protected path to external video sink usage |= GraphicBuffer::USAGE_PROTECTED; } usage |= GraphicBuffer::USAGE_HW_COMPOSER; return usage; } uint32_t Layer::getTransformHint() const { uint32_t orientation = 0; if (!mFlinger->mDebugDisableTransformHint) { orientation = getPlaneOrientation(); if (orientation & Transform::ROT_INVALID) { orientation = 0; } } return orientation; } // --------------------------------------------------------------------------- }; // namespace android