/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "AudioResampler.h" #include "AudioResamplerSinc.h" #include "AudioResamplerCubic.h" namespace android { // ---------------------------------------------------------------------------- class AudioResamplerOrder1 : public AudioResampler { public: AudioResamplerOrder1(int bitDepth, int inChannelCount, int32_t sampleRate) : AudioResampler(bitDepth, inChannelCount, sampleRate), mX0L(0), mX0R(0) { } virtual void resample(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); private: // number of bits used in interpolation multiply - 15 bits avoids overflow static const int kNumInterpBits = 15; // bits to shift the phase fraction down to avoid overflow static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits; void init() {} void resampleMono16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); void resampleStereo16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider); static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) { return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits); } static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) { *frac += inc; *index += (size_t)(*frac >> kNumPhaseBits); *frac &= kPhaseMask; } int mX0L; int mX0R; }; // ---------------------------------------------------------------------------- AudioResampler* AudioResampler::create(int bitDepth, int inChannelCount, int32_t sampleRate, int quality) { // can only create low quality resample now AudioResampler* resampler; char value[PROPERTY_VALUE_MAX]; if (property_get("af.resampler.quality", value, 0)) { quality = atoi(value); LOGD("forcing AudioResampler quality to %d", quality); } if (quality == DEFAULT) quality = LOW_QUALITY; switch (quality) { default: case LOW_QUALITY: resampler = new AudioResamplerOrder1(bitDepth, inChannelCount, sampleRate); break; case MED_QUALITY: resampler = new AudioResamplerCubic(bitDepth, inChannelCount, sampleRate); break; case HIGH_QUALITY: resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate); break; } // initialize resampler resampler->init(); return resampler; } AudioResampler::AudioResampler(int bitDepth, int inChannelCount, int32_t sampleRate) : mBitDepth(bitDepth), mChannelCount(inChannelCount), mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0), mPhaseFraction(0) { // sanity check on format if ((bitDepth != 16) ||(inChannelCount < 1) || (inChannelCount > 2)) { LOGE("Unsupported sample format, %d bits, %d channels", bitDepth, inChannelCount); // LOG_ASSERT(0); } // initialize common members mVolume[0] = mVolume[1] = 0; mBuffer.raw = NULL; // save format for quick lookup if (inChannelCount == 1) { mFormat = MONO_16_BIT; } else { mFormat = STEREO_16_BIT; } } AudioResampler::~AudioResampler() { } void AudioResampler::setSampleRate(int32_t inSampleRate) { mInSampleRate = inSampleRate; mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate); } void AudioResampler::setVolume(int16_t left, int16_t right) { // TODO: Implement anti-zipper filter mVolume[0] = left; mVolume[1] = right; } // ---------------------------------------------------------------------------- void AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { // should never happen, but we overflow if it does // LOG_ASSERT(outFrameCount < 32767); // select the appropriate resampler switch (mChannelCount) { case 1: resampleMono16(out, outFrameCount, provider); break; case 2: resampleStereo16(out, outFrameCount, provider); break; } } void AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { int32_t vl = mVolume[0]; int32_t vr = mVolume[1]; size_t inputIndex = mInputIndex; uint32_t phaseFraction = mPhaseFraction; uint32_t phaseIncrement = mPhaseIncrement; size_t outputIndex = 0; size_t outputSampleCount = outFrameCount * 2; // LOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d\n", // outFrameCount, inputIndex, phaseFraction, phaseIncrement); while (outputIndex < outputSampleCount) { // buffer is empty, fetch a new one if (mBuffer.raw == NULL) { provider->getNextBuffer(&mBuffer); if (mBuffer.raw == NULL) break; // LOGE("New buffer fetched: %d frames\n", mBuffer.frameCount); } int16_t *in = mBuffer.i16; // handle boundary case while (inputIndex == 0) { // LOGE("boundary case\n"); out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction); out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction); Advance(&inputIndex, &phaseFraction, phaseIncrement); if (outputIndex == outputSampleCount) break; } // process input samples // LOGE("general case\n"); while (outputIndex < outputSampleCount) { out[outputIndex++] += vl * Interp(in[inputIndex*2-2], in[inputIndex*2], phaseFraction); out[outputIndex++] += vr * Interp(in[inputIndex*2-1], in[inputIndex*2+1], phaseFraction); Advance(&inputIndex, &phaseFraction, phaseIncrement); if (inputIndex >= mBuffer.frameCount) break; } // LOGE("loop done - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex); // if done with buffer, save samples if (inputIndex >= mBuffer.frameCount) { inputIndex -= mBuffer.frameCount; // LOGE("buffer done, new input index", inputIndex); mX0L = mBuffer.i16[mBuffer.frameCount*2-2]; mX0R = mBuffer.i16[mBuffer.frameCount*2-1]; provider->releaseBuffer(&mBuffer); // verify that the releaseBuffer NULLS the buffer pointer // LOG_ASSERT(mBuffer.raw == NULL); } } // LOGE("output buffer full - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex); // save state mInputIndex = inputIndex; mPhaseFraction = phaseFraction; } void AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount, AudioBufferProvider* provider) { int32_t vl = mVolume[0]; int32_t vr = mVolume[1]; size_t inputIndex = mInputIndex; uint32_t phaseFraction = mPhaseFraction; uint32_t phaseIncrement = mPhaseIncrement; size_t outputIndex = 0; size_t outputSampleCount = outFrameCount * 2; // LOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d\n", // outFrameCount, inputIndex, phaseFraction, phaseIncrement); while (outputIndex < outputSampleCount) { // buffer is empty, fetch a new one if (mBuffer.raw == NULL) { provider->getNextBuffer(&mBuffer); if (mBuffer.raw == NULL) break; // LOGE("New buffer fetched: %d frames\n", mBuffer.frameCount); } int16_t *in = mBuffer.i16; // handle boundary case while (inputIndex == 0) { // LOGE("boundary case\n"); int32_t sample = Interp(mX0L, in[0], phaseFraction); out[outputIndex++] += vl * sample; out[outputIndex++] += vr * sample; Advance(&inputIndex, &phaseFraction, phaseIncrement); if (outputIndex == outputSampleCount) break; } // process input samples // LOGE("general case\n"); while (outputIndex < outputSampleCount) { int32_t sample = Interp(in[inputIndex-1], in[inputIndex], phaseFraction); out[outputIndex++] += vl * sample; out[outputIndex++] += vr * sample; Advance(&inputIndex, &phaseFraction, phaseIncrement); if (inputIndex >= mBuffer.frameCount) break; } // LOGE("loop done - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex); // if done with buffer, save samples if (inputIndex >= mBuffer.frameCount) { inputIndex -= mBuffer.frameCount; // LOGE("buffer done, new input index", inputIndex); mX0L = mBuffer.i16[mBuffer.frameCount-1]; provider->releaseBuffer(&mBuffer); // verify that the releaseBuffer NULLS the buffer pointer // LOG_ASSERT(mBuffer.raw == NULL); } } // LOGE("output buffer full - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex); // save state mInputIndex = inputIndex; mPhaseFraction = phaseFraction; } // ---------------------------------------------------------------------------- } ; // namespace android