/* //device/include/server/AudioFlinger/AudioMixer.cpp ** ** Copyright 2007, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioMixer" #include #include #include #include #include #include #include "AudioMixer.h" namespace android { // ---------------------------------------------------------------------------- static inline int16_t clamp16(int32_t sample) { if ((sample>>15) ^ (sample>>31)) sample = 0x7FFF ^ (sample>>31); return sample; } // ---------------------------------------------------------------------------- AudioMixer::AudioMixer(size_t frameCount, uint32_t sampleRate) : mActiveTrack(0), mTrackNames(0), mSampleRate(sampleRate) { mState.enabledTracks= 0; mState.needsChanged = 0; mState.frameCount = frameCount; mState.outputTemp = 0; mState.resampleTemp = 0; mState.hook = process__nop; track_t* t = mState.tracks; for (int i=0 ; i<32 ; i++) { t->needs = 0; t->volume[0] = UNITY_GAIN; t->volume[1] = UNITY_GAIN; t->volumeInc[0] = 0; t->volumeInc[1] = 0; t->channelCount = 2; t->enabled = 0; t->format = 16; t->buffer.raw = 0; t->bufferProvider = 0; t->hook = 0; t->resampler = 0; t->sampleRate = mSampleRate; t->in = 0; t++; } } AudioMixer::~AudioMixer() { track_t* t = mState.tracks; for (int i=0 ; i<32 ; i++) { delete t->resampler; t++; } delete [] mState.outputTemp; delete [] mState.resampleTemp; } int AudioMixer::getTrackName() { uint32_t names = mTrackNames; uint32_t mask = 1; int n = 0; while (names & mask) { mask <<= 1; n++; } if (mask) { LOGV("add track (%d)", n); mTrackNames |= mask; return TRACK0 + n; } return -1; } void AudioMixer::invalidateState(uint32_t mask) { if (mask) { mState.needsChanged |= mask; mState.hook = process__validate; } } void AudioMixer::deleteTrackName(int name) { name -= TRACK0; if (uint32_t(name) < MAX_NUM_TRACKS) { LOGV("deleteTrackName(%d)", name); track_t& track(mState.tracks[ name ]); if (track.enabled != 0) { track.enabled = 0; invalidateState(1<= MAX_NUM_TRACKS) { return BAD_VALUE; } mActiveTrack = track - TRACK0; return NO_ERROR; } status_t AudioMixer::setParameter(int target, int name, int value) { switch (target) { case TRACK: if (name == CHANNEL_COUNT) { if ((uint32_t(value) <= MAX_NUM_CHANNELS) && (value)) { if (mState.tracks[ mActiveTrack ].channelCount != value) { mState.tracks[ mActiveTrack ].channelCount = value; LOGV("setParameter(TRACK, CHANNEL_COUNT, %d)", value); invalidateState(1< 0) { track_t& track = mState.tracks[ mActiveTrack ]; if (track.setResampler(uint32_t(value), mSampleRate)) { LOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)", uint32_t(value)); invalidateState(1<0) && ((prevVolume[i]>>16) >= volume[i])) || ((volumeInc[i]<0) && ((prevVolume[i]>>16) <= volume[i]))) { volumeInc[i] = 0; prevVolume[i] = volume[i]<<16; } } } status_t AudioMixer::setBufferProvider(AudioBufferProvider* buffer) { mState.tracks[ mActiveTrack ].bufferProvider = buffer; return NO_ERROR; } void AudioMixer::process(void* output) { mState.hook(&mState, output); } void AudioMixer::process__validate(state_t* state, void* output) { LOGW_IF(!state->needsChanged, "in process__validate() but nothing's invalid"); uint32_t changed = state->needsChanged; state->needsChanged = 0; // clear the validation flag // recompute which tracks are enabled / disabled uint32_t enabled = 0; uint32_t disabled = 0; while (changed) { const int i = 31 - __builtin_clz(changed); const uint32_t mask = 1<tracks[i]; (t.enabled ? enabled : disabled) |= mask; } state->enabledTracks &= ~disabled; state->enabledTracks |= enabled; // compute everything we need... int countActiveTracks = 0; int all16BitsStereoNoResample = 1; int resampling = 0; int volumeRamp = 0; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; uint32_t n = 0; n |= NEEDS_CHANNEL_1 + t.channelCount - 1; n |= NEEDS_FORMAT_16; n |= t.doesResample() ? NEEDS_RESAMPLE_ENABLED : NEEDS_RESAMPLE_DISABLED; if (t.volumeInc[0]|t.volumeInc[1]) { volumeRamp = 1; } else if (!t.doesResample() && t.volumeRL == 0) { n |= NEEDS_MUTE_ENABLED; } t.needs = n; if ((n & NEEDS_MUTE__MASK) == NEEDS_MUTE_ENABLED) { t.hook = track__nop; } else { if ((n & NEEDS_RESAMPLE__MASK) == NEEDS_RESAMPLE_ENABLED) { all16BitsStereoNoResample = 0; resampling = 1; t.hook = track__genericResample; } else { if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){ t.hook = track__16BitsMono; all16BitsStereoNoResample = 0; } if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_2){ t.hook = track__16BitsStereo; } } } } // select the processing hooks state->hook = process__nop; if (countActiveTracks) { if (resampling) { if (!state->outputTemp) { state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } if (!state->resampleTemp) { state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } state->hook = process__genericResampling; } else { if (state->outputTemp) { delete [] state->outputTemp; state->outputTemp = 0; } if (state->resampleTemp) { delete [] state->resampleTemp; state->resampleTemp = 0; } state->hook = process__genericNoResampling; if (all16BitsStereoNoResample && !volumeRamp) { if (countActiveTracks == 1) { state->hook = process__OneTrack16BitsStereoNoResampling; } } } } LOGV("mixer configuration change: %d activeTracks (%08x) " "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d", countActiveTracks, state->enabledTracks, all16BitsStereoNoResample, resampling, volumeRamp); state->hook(state, output); // Now that the volume ramp has been done, set optimal state and // track hooks for subsequent mixer process if (countActiveTracks) { int allMuted = 1; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; if (!t.doesResample() && t.volumeRL == 0) { t.needs |= NEEDS_MUTE_ENABLED; t.hook = track__nop; } else { allMuted = 0; } } if (allMuted) { state->hook = process__nop; } else if (!resampling && all16BitsStereoNoResample) { if (countActiveTracks == 1) { state->hook = process__OneTrack16BitsStereoNoResampling; } } } } static inline int32_t mulAdd(int16_t in, int16_t v, int32_t a) { #if defined(__arm__) && !defined(__thumb__) int32_t out; asm( "smlabb %[out], %[in], %[v], %[a] \n" : [out]"=r"(out) : [in]"%r"(in), [v]"r"(v), [a]"r"(a) : ); return out; #else return a + in * int32_t(v); #endif } static inline int32_t mul(int16_t in, int16_t v) { #if defined(__arm__) && !defined(__thumb__) int32_t out; asm( "smulbb %[out], %[in], %[v] \n" : [out]"=r"(out) : [in]"%r"(in), [v]"r"(v) : ); return out; #else return in * int32_t(v); #endif } static inline int32_t mulAddRL(int left, uint32_t inRL, uint32_t vRL, int32_t a) { #if defined(__arm__) && !defined(__thumb__) int32_t out; if (left) { asm( "smlabb %[out], %[inRL], %[vRL], %[a] \n" : [out]"=r"(out) : [inRL]"%r"(inRL), [vRL]"r"(vRL), [a]"r"(a) : ); } else { asm( "smlatt %[out], %[inRL], %[vRL], %[a] \n" : [out]"=r"(out) : [inRL]"%r"(inRL), [vRL]"r"(vRL), [a]"r"(a) : ); } return out; #else if (left) { return a + int16_t(inRL&0xFFFF) * int16_t(vRL&0xFFFF); } else { return a + int16_t(inRL>>16) * int16_t(vRL>>16); } #endif } static inline int32_t mulRL(int left, uint32_t inRL, uint32_t vRL) { #if defined(__arm__) && !defined(__thumb__) int32_t out; if (left) { asm( "smulbb %[out], %[inRL], %[vRL] \n" : [out]"=r"(out) : [inRL]"%r"(inRL), [vRL]"r"(vRL) : ); } else { asm( "smultt %[out], %[inRL], %[vRL] \n" : [out]"=r"(out) : [inRL]"%r"(inRL), [vRL]"r"(vRL) : ); } return out; #else if (left) { return int16_t(inRL&0xFFFF) * int16_t(vRL&0xFFFF); } else { return int16_t(inRL>>16) * int16_t(vRL>>16); } #endif } void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount, int32_t* temp) { t->resampler->setSampleRate(t->sampleRate); // ramp gain - resample to temp buffer and scale/mix in 2nd step if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]) { t->resampler->setVolume(UNITY_GAIN, UNITY_GAIN); memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); volumeRampStereo(t, out, outFrameCount, temp); } // constant gain else { t->resampler->setVolume(t->volume[0], t->volume[1]); t->resampler->resample(out, outFrameCount, t->bufferProvider); } } void AudioMixer::track__nop(track_t* t, int32_t* out, size_t outFrameCount, int32_t* temp) { } void AudioMixer::volumeRampStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; //LOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); // ramp volume do { *out++ += (vl >> 16) * (*temp++ >> 12); *out++ += (vr >> 16) * (*temp++ >> 12); vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(); } void AudioMixer::track__16BitsStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp) { int16_t const *in = static_cast(t->in); // ramp gain if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; // LOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { *out++ += (vl >> 16) * (int32_t) *in++; *out++ += (vr >> 16) * (int32_t) *in++; vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(); } // constant gain else { const uint32_t vrl = t->volumeRL; do { uint32_t rl = *reinterpret_cast(in); in += 2; out[0] = mulAddRL(1, rl, vrl, out[0]); out[1] = mulAddRL(0, rl, vrl, out[1]); out += 2; } while (--frameCount); } t->in = in; } void AudioMixer::track__16BitsMono(track_t* t, int32_t* out, size_t frameCount, int32_t* temp) { int16_t const *in = static_cast(t->in); // ramp gain if UNLIKELY(t->volumeInc[0]|t->volumeInc[1]) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; // LOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { int32_t l = *in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * l; vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(); } // constant gain else { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; do { int16_t l = *in++; out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(l, vr, out[1]); out += 2; } while (--frameCount); } t->in = in; } inline void AudioMixer::ditherAndClamp(int32_t* out, int32_t const *sums, size_t c) { for (size_t i=0 ; i> 12; int32_t nr = r >> 12; l = clamp16(nl); r = clamp16(nr); *out++ = (r<<16) | (l & 0xFFFF); } } // no-op case void AudioMixer::process__nop(state_t* state, void* output) { // this assumes output 16 bits stereo, no resampling memset(output, 0, state->frameCount*4); uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; t.bufferProvider->getNextBuffer(&t.buffer); if (t.buffer.raw) { t.bufferProvider->releaseBuffer(&t.buffer); } } } // generic code without resampling void AudioMixer::process__genericNoResampling(state_t* state, void* output) { int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32))); // acquire each track's buffer uint32_t enabledTracks = state->enabledTracks; uint32_t en = enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; t.bufferProvider->getNextBuffer(&t.buffer); t.in = t.buffer.raw; // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in == NULL) enabledTracks &= ~(1<(output); size_t numFrames = state->frameCount; do { memset(outTemp, 0, sizeof(outTemp)); en = enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; (t.hook)(&t, outTemp, BLOCKSIZE, state->resampleTemp); } ditherAndClamp(out, outTemp, BLOCKSIZE); out += BLOCKSIZE; numFrames -= BLOCKSIZE; } while (numFrames); // release each track's buffer en = enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; t.bufferProvider->releaseBuffer(&t.buffer); } } // generic code with resampling void AudioMixer::process__genericResampling(state_t* state, void* output) { int32_t* const outTemp = state->outputTemp; const size_t size = sizeof(int32_t) * MAX_NUM_CHANNELS * state->frameCount; memset(outTemp, 0, size); int32_t* out = static_cast(output); size_t numFrames = state->frameCount; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; // this is a little goofy, on the resampling case we don't // acquire/release the buffers because it's done by // the resampler. if ((t.needs & NEEDS_RESAMPLE__MASK) == NEEDS_RESAMPLE_ENABLED) { (t.hook)(&t, outTemp, numFrames, state->resampleTemp); } else { t.bufferProvider->getNextBuffer(&t.buffer); t.in = t.buffer.raw; // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in) { (t.hook)(&t, outTemp, numFrames, state->resampleTemp); t.bufferProvider->releaseBuffer(&t.buffer); } } } ditherAndClamp(out, outTemp, numFrames); } // one track, 16 bits stereo without resampling is the most common case void AudioMixer::process__OneTrack16BitsStereoNoResampling(state_t* state, void* output) { const int i = 31 - __builtin_clz(state->enabledTracks); const track_t& t = state->tracks[i]; AudioBufferProvider::Buffer& b(t.buffer); t.bufferProvider->getNextBuffer(&b); int16_t const *in = t.buffer.i16; // in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (in == NULL) { memset(output, 0, state->frameCount*MAX_NUM_CHANNELS*sizeof(int16_t)); return; } int32_t* out = static_cast(output); size_t numFrames = state->frameCount; const int16_t vl = t.volume[0]; const int16_t vr = t.volume[1]; const uint32_t vrl = t.volumeRL; if (UNLIKELY(uint32_t(vl) > UNITY_GAIN || uint32_t(vr) > UNITY_GAIN)) { // volume is boosted, so we might need to clamp even though // we process only one track. do { uint32_t rl = *reinterpret_cast(in); in += 2; int32_t l = mulRL(1, rl, vrl) >> 12; int32_t r = mulRL(0, rl, vrl) >> 12; // clamping... l = clamp16(l); r = clamp16(r); *out++ = (r<<16) | (l & 0xFFFF); } while (--numFrames); } else { do { uint32_t rl = *reinterpret_cast(in); in += 2; int32_t l = mulRL(1, rl, vrl) >> 12; int32_t r = mulRL(0, rl, vrl) >> 12; *out++ = (r<<16) | (l & 0xFFFF); } while (--numFrames); } t.bufferProvider->releaseBuffer(&b); } // 2 tracks is also a common case void AudioMixer::process__TwoTracks16BitsStereoNoResampling(state_t* state, void* output) { int i; uint32_t en = state->enabledTracks; i = 31 - __builtin_clz(en); const track_t& t0 = state->tracks[i]; AudioBufferProvider::Buffer& b0(t0.buffer); t0.bufferProvider->getNextBuffer(&b0); en &= ~(1<tracks[i]; AudioBufferProvider::Buffer& b1(t1.buffer); t1.bufferProvider->getNextBuffer(&b1); int16_t const *in0; const int16_t vl0 = t0.volume[0]; const int16_t vr0 = t0.volume[1]; int16_t const *in1; const int16_t vl1 = t1.volume[0]; const int16_t vr1 = t1.volume[1]; size_t numFrames = state->frameCount; int32_t* out = static_cast(output); // t0/1.buffer.i16 == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t0.buffer.i16 != NULL) { in0 = t0.buffer.i16; if (t1.buffer.i16 != NULL) { in1 = t1.buffer.i16; } else { in1 = new int16_t[MAX_NUM_CHANNELS * state->frameCount]; memset((void *)in1, 0, state->frameCount*MAX_NUM_CHANNELS*sizeof(int16_t)); } } else { in0 = new int16_t[MAX_NUM_CHANNELS * state->frameCount]; memset((void *)in0, 0, state->frameCount*MAX_NUM_CHANNELS*sizeof(int16_t)); if (t1.buffer.i16 != NULL) { in1 = t1.buffer.i16; } else { in1 = in0; } } do { int32_t l0 = *in0++; int32_t r0 = *in0++; l0 = mul(l0, vl0); r0 = mul(r0, vr0); int32_t l = *in1++; int32_t r = *in1++; l = mulAdd(l, vl1, l0) >> 12; r = mulAdd(r, vr1, r0) >> 12; // clamping... l = clamp16(l); r = clamp16(r); *out++ = (r<<16) | (l & 0xFFFF); } while (--numFrames); if (t0.buffer.i16 != NULL) { t0.bufferProvider->releaseBuffer(&b0); if (t1.buffer.i16 != NULL) { t1.bufferProvider->releaseBuffer(&b1); } else { delete [] in1; } } else { delete [] in0; if (t1.buffer.i16 != NULL) { t1.bufferProvider->releaseBuffer(&b1); } } } // ---------------------------------------------------------------------------- }; // namespace android