/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_GRAPHICS // Uncomment this to remove support for HWC_DEVICE_API_VERSION_0_3 and older #define HWC_REMOVE_DEPRECATED_VERSIONS 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Layer.h" // needed only for debugging #include "LayerBase.h" #include "HWComposer.h" #include "SurfaceFlinger.h" #include namespace android { #define MIN_HWC_HEADER_VERSION 0 static uint32_t hwcApiVersion(const hwc_composer_device_1_t* hwc) { uint32_t hwcVersion = hwc->common.version; if (MIN_HWC_HEADER_VERSION == 0 && (hwcVersion & HARDWARE_API_VERSION_2_MAJ_MIN_MASK) == 0) { // legacy version encoding hwcVersion <<= 16; } return hwcVersion & HARDWARE_API_VERSION_2_MAJ_MIN_MASK; } static uint32_t hwcHeaderVersion(const hwc_composer_device_1_t* hwc) { uint32_t hwcVersion = hwc->common.version; if (MIN_HWC_HEADER_VERSION == 0 && (hwcVersion & HARDWARE_API_VERSION_2_MAJ_MIN_MASK) == 0) { // legacy version encoding hwcVersion <<= 16; } return hwcVersion & HARDWARE_API_VERSION_2_HEADER_MASK; } static bool hwcHasApiVersion(const hwc_composer_device_1_t* hwc, uint32_t version) { return hwcApiVersion(hwc) >= (version & HARDWARE_API_VERSION_2_MAJ_MIN_MASK); } // --------------------------------------------------------------------------- struct HWComposer::cb_context { struct callbacks : public hwc_procs_t { // these are here to facilitate the transition when adding // new callbacks (an implementation can check for NULL before // calling a new callback). void (*zero[4])(void); }; callbacks procs; HWComposer* hwc; }; // --------------------------------------------------------------------------- HWComposer::HWComposer( const sp& flinger, EventHandler& handler) : mFlinger(flinger), mFbDev(0), mHwc(0), mNumDisplays(1), mCBContext(new cb_context), mEventHandler(handler), mVSyncCount(0), mDebugForceFakeVSync(false) { for (size_t i =0 ; i> 24) & 0xff, (hwcApiVersion(mHwc) >> 16) & 0xff); if (mHwc->registerProcs) { mCBContext->hwc = this; mCBContext->procs.invalidate = &hook_invalidate; mCBContext->procs.vsync = &hook_vsync; if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) mCBContext->procs.hotplug = &hook_hotplug; else mCBContext->procs.hotplug = NULL; memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero)); mHwc->registerProcs(mHwc, &mCBContext->procs); } // don't need a vsync thread if we have a hardware composer needVSyncThread = false; // always turn vsync off when we start eventControl(HWC_DISPLAY_PRIMARY, HWC_EVENT_VSYNC, 0); // these IDs are always reserved for (size_t i=0 ; iwidth; disp.height = mFbDev->height; disp.format = mFbDev->format; disp.xdpi = mFbDev->xdpi; disp.ydpi = mFbDev->ydpi; if (disp.refresh == 0) { disp.refresh = nsecs_t(1e9 / mFbDev->fps); ALOGW("getting VSYNC period from fb HAL: %lld", disp.refresh); } if (disp.refresh == 0) { disp.refresh = nsecs_t(1e9 / 60.0); ALOGW("getting VSYNC period from thin air: %lld", mDisplayData[HWC_DISPLAY_PRIMARY].refresh); } } else if (mHwc) { // here we're guaranteed to have at least HWC 1.1 for (size_t i =0 ; irequestExitAndWait(); } if (mHwc) { hwc_close_1(mHwc); } if (mFbDev) { framebuffer_close(mFbDev); } delete mCBContext; } // Load and prepare the hardware composer module. Sets mHwc. void HWComposer::loadHwcModule() { hw_module_t const* module; if (hw_get_module(HWC_HARDWARE_MODULE_ID, &module) != 0) { ALOGE("%s module not found", HWC_HARDWARE_MODULE_ID); return; } int err = hwc_open_1(module, &mHwc); if (err) { ALOGE("%s device failed to initialize (%s)", HWC_HARDWARE_COMPOSER, strerror(-err)); return; } if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_0) || hwcHeaderVersion(mHwc) < MIN_HWC_HEADER_VERSION || hwcHeaderVersion(mHwc) > HWC_HEADER_VERSION) { ALOGE("%s device version %#x unsupported, will not be used", HWC_HARDWARE_COMPOSER, mHwc->common.version); hwc_close_1(mHwc); mHwc = NULL; return; } } // Load and prepare the FB HAL, which uses the gralloc module. Sets mFbDev. void HWComposer::loadFbHalModule() { hw_module_t const* module; if (hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module) != 0) { ALOGE("%s module not found", GRALLOC_HARDWARE_MODULE_ID); return; } int err = framebuffer_open(module, &mFbDev); if (err) { ALOGE("framebuffer_open failed (%s)", strerror(-err)); return; } } status_t HWComposer::initCheck() const { return mHwc ? NO_ERROR : NO_INIT; } void HWComposer::hook_invalidate(const struct hwc_procs* procs) { cb_context* ctx = reinterpret_cast( const_cast(procs)); ctx->hwc->invalidate(); } void HWComposer::hook_vsync(const struct hwc_procs* procs, int disp, int64_t timestamp) { cb_context* ctx = reinterpret_cast( const_cast(procs)); ctx->hwc->vsync(disp, timestamp); } void HWComposer::hook_hotplug(const struct hwc_procs* procs, int disp, int connected) { cb_context* ctx = reinterpret_cast( const_cast(procs)); ctx->hwc->hotplug(disp, connected); } void HWComposer::invalidate() { mFlinger->repaintEverything(); } void HWComposer::vsync(int disp, int64_t timestamp) { ATRACE_INT("VSYNC", ++mVSyncCount&1); mEventHandler.onVSyncReceived(disp, timestamp); Mutex::Autolock _l(mLock); mLastHwVSync = timestamp; } void HWComposer::hotplug(int disp, int connected) { if (disp == HWC_DISPLAY_PRIMARY || disp >= HWC_NUM_DISPLAY_TYPES) { ALOGE("hotplug event received for invalid display: disp=%d connected=%d", disp, connected); return; } queryDisplayProperties(disp); mEventHandler.onHotplugReceived(disp, bool(connected)); } static const uint32_t DISPLAY_ATTRIBUTES[] = { HWC_DISPLAY_VSYNC_PERIOD, HWC_DISPLAY_WIDTH, HWC_DISPLAY_HEIGHT, HWC_DISPLAY_DPI_X, HWC_DISPLAY_DPI_Y, HWC_DISPLAY_NO_ATTRIBUTE, }; #define NUM_DISPLAY_ATTRIBUTES (sizeof(DISPLAY_ATTRIBUTES) / sizeof(DISPLAY_ATTRIBUTES)[0]) // http://developer.android.com/reference/android/util/DisplayMetrics.html #define ANDROID_DENSITY_TV 213 #define ANDROID_DENSITY_XHIGH 320 status_t HWComposer::queryDisplayProperties(int disp) { LOG_ALWAYS_FATAL_IF(!mHwc || !hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)); // use zero as default value for unspecified attributes int32_t values[NUM_DISPLAY_ATTRIBUTES - 1]; memset(values, 0, sizeof(values)); uint32_t config; size_t numConfigs = 1; status_t err = mHwc->getDisplayConfigs(mHwc, disp, &config, &numConfigs); if (err != NO_ERROR) { // this can happen if an unpluggable display is not connected mDisplayData[disp].connected = false; return err; } err = mHwc->getDisplayAttributes(mHwc, disp, config, DISPLAY_ATTRIBUTES, values); if (err != NO_ERROR) { // we can't get this display's info. turn it off. mDisplayData[disp].connected = false; return err; } int32_t w = 0, h = 0; for (size_t i = 0; i < NUM_DISPLAY_ATTRIBUTES - 1; i++) { switch (DISPLAY_ATTRIBUTES[i]) { case HWC_DISPLAY_VSYNC_PERIOD: mDisplayData[disp].refresh = nsecs_t(values[i]); break; case HWC_DISPLAY_WIDTH: mDisplayData[disp].width = values[i]; break; case HWC_DISPLAY_HEIGHT: mDisplayData[disp].height = values[i]; break; case HWC_DISPLAY_DPI_X: mDisplayData[disp].xdpi = values[i] / 1000.0f; break; case HWC_DISPLAY_DPI_Y: mDisplayData[disp].ydpi = values[i] / 1000.0f; break; default: ALOG_ASSERT(false, "unknown display attribute[%d] %#x", i, DISPLAY_ATTRIBUTES[i]); break; } } // FIXME: what should we set the format to? mDisplayData[disp].format = HAL_PIXEL_FORMAT_RGBA_8888; mDisplayData[disp].connected = true; if (mDisplayData[disp].xdpi == 0.0f || mDisplayData[disp].ydpi == 0.0f) { // is there anything smarter we can do? if (h >= 1080) { mDisplayData[disp].xdpi = ANDROID_DENSITY_XHIGH; mDisplayData[disp].ydpi = ANDROID_DENSITY_XHIGH; } else { mDisplayData[disp].xdpi = ANDROID_DENSITY_TV; mDisplayData[disp].ydpi = ANDROID_DENSITY_TV; } } return NO_ERROR; } int32_t HWComposer::allocateDisplayId() { if (mAllocatedDisplayIDs.count() >= mNumDisplays) { return NO_MEMORY; } int32_t id = mAllocatedDisplayIDs.firstUnmarkedBit(); mAllocatedDisplayIDs.markBit(id); return id; } status_t HWComposer::freeDisplayId(int32_t id) { if (id < HWC_NUM_DISPLAY_TYPES) { // cannot free the reserved IDs return BAD_VALUE; } if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } mAllocatedDisplayIDs.clearBit(id); return NO_ERROR; } nsecs_t HWComposer::getRefreshPeriod(int disp) const { return mDisplayData[disp].refresh; } nsecs_t HWComposer::getRefreshTimestamp(int disp) const { // this returns the last refresh timestamp. // if the last one is not available, we estimate it based on // the refresh period and whatever closest timestamp we have. Mutex::Autolock _l(mLock); nsecs_t now = systemTime(CLOCK_MONOTONIC); return now - ((now - mLastHwVSync) % mDisplayData[disp].refresh); } uint32_t HWComposer::getWidth(int disp) const { return mDisplayData[disp].width; } uint32_t HWComposer::getHeight(int disp) const { return mDisplayData[disp].height; } uint32_t HWComposer::getFormat(int disp) const { return mDisplayData[disp].format; } float HWComposer::getDpiX(int disp) const { return mDisplayData[disp].xdpi; } float HWComposer::getDpiY(int disp) const { return mDisplayData[disp].ydpi; } bool HWComposer::isConnected(int disp) const { return mDisplayData[disp].connected; } void HWComposer::eventControl(int disp, int event, int enabled) { if (uint32_t(disp)>31 || !mAllocatedDisplayIDs.hasBit(disp)) { return; } status_t err = NO_ERROR; if (mHwc && !mDebugForceFakeVSync) { // NOTE: we use our own internal lock here because we have to call // into the HWC with the lock held, and we want to make sure // that even if HWC blocks (which it shouldn't), it won't // affect other threads. Mutex::Autolock _l(mEventControlLock); const int32_t eventBit = 1UL << event; const int32_t newValue = enabled ? eventBit : 0; const int32_t oldValue = mDisplayData[disp].events & eventBit; if (newValue != oldValue) { ATRACE_CALL(); err = mHwc->eventControl(mHwc, disp, event, enabled); if (!err) { int32_t& events(mDisplayData[disp].events); events = (events & ~eventBit) | newValue; } } // error here should not happen -- not sure what we should // do if it does. ALOGE_IF(err, "eventControl(%d, %d) failed %s", event, enabled, strerror(-err)); } if (err == NO_ERROR && mVSyncThread != NULL) { mVSyncThread->setEnabled(enabled); } } status_t HWComposer::createWorkList(int32_t id, size_t numLayers) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } if (mHwc) { DisplayData& disp(mDisplayData[id]); if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // we need space for the HWC_FRAMEBUFFER_TARGET numLayers++; } if (disp.capacity < numLayers || disp.list == NULL) { size_t size = sizeof(hwc_display_contents_1_t) + numLayers * sizeof(hwc_layer_1_t); free(disp.list); disp.list = (hwc_display_contents_1_t*)malloc(size); disp.capacity = numLayers; } if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { disp.framebufferTarget = &disp.list->hwLayers[numLayers - 1]; memset(disp.framebufferTarget, 0, sizeof(hwc_layer_1_t)); const hwc_rect_t r = { 0, 0, disp.width, disp.height }; disp.framebufferTarget->compositionType = HWC_FRAMEBUFFER_TARGET; disp.framebufferTarget->hints = 0; disp.framebufferTarget->flags = 0; disp.framebufferTarget->handle = disp.fbTargetHandle; disp.framebufferTarget->transform = 0; disp.framebufferTarget->blending = HWC_BLENDING_PREMULT; disp.framebufferTarget->sourceCrop = r; disp.framebufferTarget->displayFrame = r; disp.framebufferTarget->visibleRegionScreen.numRects = 1; disp.framebufferTarget->visibleRegionScreen.rects = &disp.framebufferTarget->displayFrame; disp.framebufferTarget->acquireFenceFd = -1; disp.framebufferTarget->releaseFenceFd = -1; } disp.list->retireFenceFd = -1; disp.list->flags = HWC_GEOMETRY_CHANGED; disp.list->numHwLayers = numLayers; } return NO_ERROR; } status_t HWComposer::setFramebufferTarget(int32_t id, const sp& acquireFence, const sp& buf) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } DisplayData& disp(mDisplayData[id]); if (!disp.framebufferTarget) { // this should never happen, but apparently eglCreateWindowSurface() // triggers a SurfaceTextureClient::queueBuffer() on some // devices (!?) -- log and ignore. ALOGE("HWComposer: framebufferTarget is null"); // CallStack stack; // stack.update(); // stack.dump(""); return NO_ERROR; } int acquireFenceFd = -1; if (acquireFence != NULL) { acquireFenceFd = acquireFence->dup(); } // ALOGD("fbPost: handle=%p, fence=%d", buf->handle, acquireFenceFd); disp.fbTargetHandle = buf->handle; disp.framebufferTarget->handle = disp.fbTargetHandle; disp.framebufferTarget->acquireFenceFd = acquireFenceFd; return NO_ERROR; } status_t HWComposer::prepare() { for (size_t i=0 ; icompositionType = HWC_FRAMEBUFFER_TARGET; } if (!disp.connected && disp.list != NULL) { ALOGW("WARNING: disp %d: connected, non-null list, layers=%d", i, disp.list->numHwLayers); } mLists[i] = disp.list; if (mLists[i]) { if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_2)) { mLists[i]->outbuf = NULL; mLists[i]->outbufAcquireFenceFd = -1; } else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // garbage data to catch improper use mLists[i]->dpy = (hwc_display_t)0xDEADBEEF; mLists[i]->sur = (hwc_surface_t)0xDEADBEEF; } else { mLists[i]->dpy = EGL_NO_DISPLAY; mLists[i]->sur = EGL_NO_SURFACE; } } } int err = mHwc->prepare(mHwc, mNumDisplays, mLists); ALOGE_IF(err, "HWComposer: prepare failed (%s)", strerror(-err)); if (err == NO_ERROR) { // here we're just making sure that "skip" layers are set // to HWC_FRAMEBUFFER and we're also counting how many layers // we have of each type. for (size_t i=0 ; inumHwLayers ; i++) { hwc_layer_1_t& l = disp.list->hwLayers[i]; //ALOGD("prepare: %d, type=%d, handle=%p", // i, l.compositionType, l.handle); if (l.flags & HWC_SKIP_LAYER) { l.compositionType = HWC_FRAMEBUFFER; } if (l.compositionType == HWC_FRAMEBUFFER) { disp.hasFbComp = true; } if (l.compositionType == HWC_OVERLAY) { disp.hasOvComp = true; } } } } } return (status_t)err; } bool HWComposer::hasHwcComposition(int32_t id) const { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return false; return mDisplayData[id].hasOvComp; } bool HWComposer::hasGlesComposition(int32_t id) const { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return false; return mDisplayData[id].hasFbComp; } int HWComposer::getAndResetReleaseFenceFd(int32_t id) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return BAD_INDEX; int fd = INVALID_OPERATION; if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { const DisplayData& disp(mDisplayData[id]); if (disp.framebufferTarget) { fd = disp.framebufferTarget->releaseFenceFd; disp.framebufferTarget->acquireFenceFd = -1; disp.framebufferTarget->releaseFenceFd = -1; } } return fd; } status_t HWComposer::commit() { int err = NO_ERROR; if (mHwc) { if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // On version 1.0, the OpenGL ES target surface is communicated // by the (dpy, sur) fields and we are guaranteed to have only // a single display. mLists[0]->dpy = eglGetCurrentDisplay(); mLists[0]->sur = eglGetCurrentSurface(EGL_DRAW); } err = mHwc->set(mHwc, mNumDisplays, mLists); for (size_t i=0 ; iretireFenceFd != -1) { close(disp.list->retireFenceFd); disp.list->retireFenceFd = -1; } disp.list->flags &= ~HWC_GEOMETRY_CHANGED; } } } return (status_t)err; } status_t HWComposer::release(int disp) { LOG_FATAL_IF(disp >= HWC_NUM_DISPLAY_TYPES); if (mHwc) { eventControl(disp, HWC_EVENT_VSYNC, 0); return (status_t)mHwc->blank(mHwc, disp, 1); } return NO_ERROR; } status_t HWComposer::acquire(int disp) { LOG_FATAL_IF(disp >= HWC_NUM_DISPLAY_TYPES); if (mHwc) { return (status_t)mHwc->blank(mHwc, disp, 0); } return NO_ERROR; } void HWComposer::disconnectDisplay(int disp) { LOG_ALWAYS_FATAL_IF(disp < 0 || disp == HWC_DISPLAY_PRIMARY); if (disp >= HWC_NUM_DISPLAY_TYPES) { // nothing to do for these yet return; } DisplayData& dd(mDisplayData[disp]); if (dd.list != NULL) { free(dd.list); dd.list = NULL; dd.framebufferTarget = NULL; // points into dd.list dd.fbTargetHandle = NULL; } } int HWComposer::getVisualID() const { if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // FIXME: temporary hack until HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED // is supported by the implementation. we can only be in this case // if we have HWC 1.1 return HAL_PIXEL_FORMAT_RGBA_8888; //return HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; } else { return mFbDev->format; } } bool HWComposer::supportsFramebufferTarget() const { return (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)); } int HWComposer::fbPost(int32_t id, const sp& acquireFence, const sp& buffer) { if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { return setFramebufferTarget(id, acquireFence, buffer); } else { if (acquireFence != NULL) { acquireFence->waitForever(1000, "HWComposer::fbPost"); } return mFbDev->post(mFbDev, buffer->handle); } } int HWComposer::fbCompositionComplete() { if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) return NO_ERROR; if (mFbDev->compositionComplete) { return mFbDev->compositionComplete(mFbDev); } else { return INVALID_OPERATION; } } void HWComposer::fbDump(String8& result) { if (mFbDev && mFbDev->common.version >= 1 && mFbDev->dump) { const size_t SIZE = 4096; char buffer[SIZE]; mFbDev->dump(mFbDev, buffer, SIZE); result.append(buffer); } } /* * Helper template to implement a concrete HWCLayer * This holds the pointer to the concrete hwc layer type * and implements the "iterable" side of HWCLayer. */ template class Iterable : public HWComposer::HWCLayer { protected: HWCTYPE* const mLayerList; HWCTYPE* mCurrentLayer; Iterable(HWCTYPE* layer) : mLayerList(layer), mCurrentLayer(layer) { } inline HWCTYPE const * getLayer() const { return mCurrentLayer; } inline HWCTYPE* getLayer() { return mCurrentLayer; } virtual ~Iterable() { } private: // returns a copy of ourselves virtual HWComposer::HWCLayer* dup() { return new CONCRETE( static_cast(*this) ); } virtual status_t setLayer(size_t index) { mCurrentLayer = &mLayerList[index]; return NO_ERROR; } }; /* * Concrete implementation of HWCLayer for HWC_DEVICE_API_VERSION_1_0. * This implements the HWCLayer side of HWCIterableLayer. */ class HWCLayerVersion1 : public Iterable { public: HWCLayerVersion1(hwc_layer_1_t* layer) : Iterable(layer) { } virtual int32_t getCompositionType() const { return getLayer()->compositionType; } virtual uint32_t getHints() const { return getLayer()->hints; } virtual int getAndResetReleaseFenceFd() { int fd = getLayer()->releaseFenceFd; getLayer()->releaseFenceFd = -1; return fd; } virtual void setAcquireFenceFd(int fenceFd) { getLayer()->acquireFenceFd = fenceFd; } virtual void setDefaultState() { getLayer()->compositionType = HWC_FRAMEBUFFER; getLayer()->hints = 0; getLayer()->flags = HWC_SKIP_LAYER; getLayer()->handle = 0; getLayer()->transform = 0; getLayer()->blending = HWC_BLENDING_NONE; getLayer()->visibleRegionScreen.numRects = 0; getLayer()->visibleRegionScreen.rects = NULL; getLayer()->acquireFenceFd = -1; getLayer()->releaseFenceFd = -1; } virtual void setSkip(bool skip) { if (skip) { getLayer()->flags |= HWC_SKIP_LAYER; } else { getLayer()->flags &= ~HWC_SKIP_LAYER; } } virtual void setBlending(uint32_t blending) { getLayer()->blending = blending; } virtual void setTransform(uint32_t transform) { getLayer()->transform = transform; } virtual void setFrame(const Rect& frame) { reinterpret_cast(getLayer()->displayFrame) = frame; } virtual void setCrop(const Rect& crop) { reinterpret_cast(getLayer()->sourceCrop) = crop; } virtual void setVisibleRegionScreen(const Region& reg) { // Region::getSharedBuffer creates a reference to the underlying // SharedBuffer of this Region, this reference is freed // in onDisplayed() hwc_region_t& visibleRegion = getLayer()->visibleRegionScreen; SharedBuffer const* sb = reg.getSharedBuffer(&visibleRegion.numRects); visibleRegion.rects = reinterpret_cast(sb->data()); } virtual void setBuffer(const sp& buffer) { if (buffer == 0 || buffer->handle == 0) { getLayer()->compositionType = HWC_FRAMEBUFFER; getLayer()->flags |= HWC_SKIP_LAYER; getLayer()->handle = 0; } else { getLayer()->handle = buffer->handle; } } virtual void onDisplayed() { hwc_region_t& visibleRegion = getLayer()->visibleRegionScreen; SharedBuffer const* sb = SharedBuffer::bufferFromData(visibleRegion.rects); if (sb) { sb->release(); // not technically needed but safer visibleRegion.numRects = 0; visibleRegion.rects = NULL; } getLayer()->acquireFenceFd = -1; } }; /* * returns an iterator initialized at a given index in the layer list */ HWComposer::LayerListIterator HWComposer::getLayerIterator(int32_t id, size_t index) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return LayerListIterator(); } const DisplayData& disp(mDisplayData[id]); if (!mHwc || !disp.list || index > disp.list->numHwLayers) { return LayerListIterator(); } return LayerListIterator(new HWCLayerVersion1(disp.list->hwLayers), index); } /* * returns an iterator on the beginning of the layer list */ HWComposer::LayerListIterator HWComposer::begin(int32_t id) { return getLayerIterator(id, 0); } /* * returns an iterator on the end of the layer list */ HWComposer::LayerListIterator HWComposer::end(int32_t id) { size_t numLayers = 0; if (uint32_t(id) <= 31 && mAllocatedDisplayIDs.hasBit(id)) { const DisplayData& disp(mDisplayData[id]); if (mHwc && disp.list) { numLayers = disp.list->numHwLayers; if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) { // with HWC 1.1, the last layer is always the HWC_FRAMEBUFFER_TARGET, // which we ignore when iterating through the layer list. ALOGE_IF(!numLayers, "mDisplayData[%d].list->numHwLayers is 0", id); if (numLayers) { numLayers--; } } } } return getLayerIterator(id, numLayers); } void HWComposer::dump(String8& result, char* buffer, size_t SIZE) const { if (mHwc) { result.appendFormat("Hardware Composer state (version %8x):\n", hwcApiVersion(mHwc)); result.appendFormat(" mDebugForceFakeVSync=%d\n", mDebugForceFakeVSync); for (size_t i=0 ; i >& visibleLayersSortedByZ = mFlinger->getLayerSortedByZForHwcDisplay(i); if (disp.connected) { result.appendFormat( " Display[%d] : %ux%u, xdpi=%f, ydpi=%f, refresh=%lld\n", i, disp.width, disp.height, disp.xdpi, disp.ydpi, disp.refresh); } if (disp.list && disp.connected) { result.appendFormat( " numHwLayers=%u, flags=%08x\n", disp.list->numHwLayers, disp.list->flags); result.append( " type | handle | hints | flags | tr | blend | format | source crop | frame name \n" "------------+----------+----------+----------+----+-------+----------+---------------------------+--------------------------------\n"); // " __________ | ________ | ________ | ________ | __ | _____ | ________ | [_____,_____,_____,_____] | [_____,_____,_____,_____] for (size_t i=0 ; inumHwLayers ; i++) { const hwc_layer_1_t&l = disp.list->hwLayers[i]; int32_t format = -1; String8 name("unknown"); if (i < visibleLayersSortedByZ.size()) { const sp& layer(visibleLayersSortedByZ[i]); if (layer->getLayer() != NULL) { const sp& buffer( layer->getLayer()->getActiveBuffer()); if (buffer != NULL) { format = buffer->getPixelFormat(); } } name = layer->getName(); } int type = l.compositionType; if (type == HWC_FRAMEBUFFER_TARGET) { name = "HWC_FRAMEBUFFER_TARGET"; format = disp.format; } static char const* compositionTypeName[] = { "GLES", "HWC", "BACKGROUND", "FB TARGET", "UNKNOWN"}; if (type >= NELEM(compositionTypeName)) type = NELEM(compositionTypeName) - 1; result.appendFormat( " %10s | %08x | %08x | %08x | %02x | %05x | %08x | [%5d,%5d,%5d,%5d] | [%5d,%5d,%5d,%5d] %s\n", compositionTypeName[type], intptr_t(l.handle), l.hints, l.flags, l.transform, l.blending, format, l.sourceCrop.left, l.sourceCrop.top, l.sourceCrop.right, l.sourceCrop.bottom, l.displayFrame.left, l.displayFrame.top, l.displayFrame.right, l.displayFrame.bottom, name.string()); } } } } if (mHwc && mHwc->dump) { mHwc->dump(mHwc, buffer, SIZE); result.append(buffer); } } // --------------------------------------------------------------------------- HWComposer::VSyncThread::VSyncThread(HWComposer& hwc) : mHwc(hwc), mEnabled(false), mNextFakeVSync(0), mRefreshPeriod(hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY)) { } void HWComposer::VSyncThread::setEnabled(bool enabled) { Mutex::Autolock _l(mLock); if (mEnabled != enabled) { mEnabled = enabled; mCondition.signal(); } } void HWComposer::VSyncThread::onFirstRef() { run("VSyncThread", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE); } bool HWComposer::VSyncThread::threadLoop() { { // scope for lock Mutex::Autolock _l(mLock); while (!mEnabled) { mCondition.wait(mLock); } } const nsecs_t period = mRefreshPeriod; const nsecs_t now = systemTime(CLOCK_MONOTONIC); nsecs_t next_vsync = mNextFakeVSync; nsecs_t sleep = next_vsync - now; if (sleep < 0) { // we missed, find where the next vsync should be sleep = (period - ((now - next_vsync) % period)); next_vsync = now + sleep; } mNextFakeVSync = next_vsync + period; struct timespec spec; spec.tv_sec = next_vsync / 1000000000; spec.tv_nsec = next_vsync % 1000000000; int err; do { err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, NULL); } while (err<0 && errno == EINTR); if (err == 0) { mHwc.mEventHandler.onVSyncReceived(0, next_vsync); } return true; } // --------------------------------------------------------------------------- }; // namespace android