/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ /* * Hardware Composer stress test * * Performs a pseudo-random (prandom) sequence of operations to the * Hardware Composer (HWC), for a specified number of passes or for * a specified period of time. By default the period of time is FLT_MAX, * so that the number of passes will take precedence. * * The passes are grouped together, where (pass / passesPerGroup) specifies * which group a particular pass is in. This causes every passesPerGroup * worth of sequential passes to be within the same group. Computationally * intensive operations are performed just once at the beginning of a group * of passes and then used by all the passes in that group. This is done * so as to increase both the average and peak rate of graphic operations, * by moving computationally intensive operations to the beginning of a group. * In particular, at the start of each group of passes a set of * graphic buffers are created, then used by the first and remaining * passes of that group of passes. * * The per-group initialization of the graphic buffers is performed * by a function called initFrames. This function creates an array * of smart pointers to the graphic buffers, in the form of a vector * of vectors. The array is accessed in row major order, so each * row is a vector of smart pointers. All the pointers of a single * row point to graphic buffers which use the same pixel format and * have the same dimension, although it is likely that each one is * filled with a different color. This is done so that after doing * the first HWC prepare then set call, subsequent set calls can * be made with each of the layer handles changed to a different * graphic buffer within the same row. Since the graphic buffers * in a particular row have the same pixel format and dimension, * additional HWC set calls can be made, without having to perform * an HWC prepare call. * * This test supports the following command-line options: * * -v Verbose * -s num Starting pass * -e num Ending pass * -p num Execute the single pass specified by num * -n num Number of set operations to perform after each prepare operation * -t float Maximum time in seconds to execute the test * -d float Delay in seconds performed after each set operation * -D float Delay in seconds performed after the last pass is executed * * Typically the test is executed for a large range of passes. By default * passes 0 through 99999 (100,000 passes) are executed. Although this test * does not validate the generated image, at times it is useful to reexecute * a particular pass and leave the displayed image on the screen for an * extended period of time. This can be done either by setting the -s * and -e options to the desired pass, along with a large value for -D. * This can also be done via the -p option, again with a large value for * the -D options. * * So far this test only contains code to create graphic buffers with * a continuous solid color. Although this test is unable to validate the * image produced, any image that contains other than rectangles of a solid * color are incorrect. Note that the rectangles may use a transparent * color and have a blending operation that causes the color in overlapping * rectangles to be mixed. In such cases the overlapping portions may have * a different color from the rest of the rectangle. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LOG_TAG "hwcStressTest" #include #include #include #include #include "hwcTestLib.h" using namespace std; using namespace android; const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch // larger than the default screen size const unsigned int passesPerGroup = 10; // A group of passes all use the same // graphic buffers // Ratios at which rare and frequent conditions should be produced const float rareRatio = 0.1; const float freqRatio = 0.9; // Defaults for command-line options const bool defaultVerbose = false; const unsigned int defaultStartPass = 0; const unsigned int defaultEndPass = 99999; const unsigned int defaultPerPassNumSet = 10; const float defaultPerSetDelay = 0.0; // Default delay after each set // operation. Default delay of // zero used so as to perform the // the set operations as quickly // as possible. const float defaultEndDelay = 2.0; // Default delay between completion of // final pass and restart of framework const float defaultDuration = FLT_MAX; // A fairly long time, so that // range of passes will have // precedence // Command-line option settings static bool verbose = defaultVerbose; static unsigned int startPass = defaultStartPass; static unsigned int endPass = defaultEndPass; static unsigned int numSet = defaultPerPassNumSet; static float perSetDelay = defaultPerSetDelay; static float endDelay = defaultEndDelay; static float duration = defaultDuration; // Command-line mutual exclusion detection flags. // Corresponding flag set true once an option is used. bool eFlag, sFlag, pFlag; #define MAXSTR 100 #define MAXCMD 200 #define BITSPERBYTE 8 // TODO: Obtain from , once // it has been added #define CMD_STOP_FRAMEWORK "stop 2>&1" #define CMD_START_FRAMEWORK "start 2>&1" #define NUMA(a) (sizeof(a) / sizeof(a [0])) #define MEMCLR(addr, size) do { \ memset((addr), 0, (size)); \ } while (0) // File scope constants const unsigned int blendingOps[] = { HWC_BLENDING_NONE, HWC_BLENDING_PREMULT, HWC_BLENDING_COVERAGE, }; const unsigned int layerFlags[] = { HWC_SKIP_LAYER, }; const vector vecLayerFlags(layerFlags, layerFlags + NUMA(layerFlags)); const unsigned int transformFlags[] = { HWC_TRANSFORM_FLIP_H, HWC_TRANSFORM_FLIP_V, HWC_TRANSFORM_ROT_90, // ROT_180 & ROT_270 intentionally not listed, because they // they are formed from combinations of the flags already listed. }; const vector vecTransformFlags(transformFlags, transformFlags + NUMA(transformFlags)); // File scope globals static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE | GraphicBuffer::USAGE_SW_WRITE_RARELY; static hwc_composer_device_1_t *hwcDevice; static EGLDisplay dpy; static EGLSurface surface; static EGLint width, height; static vector > > frames; // File scope prototypes void init(void); void initFrames(unsigned int seed); template vector vectorRandSelect(const vector& vec, size_t num); template T vectorOr(const vector& vec); /* * Main * * Performs the following high-level sequence of operations: * * 1. Command-line parsing * * 2. Initialization * * 3. For each pass: * * a. If pass is first pass or in a different group from the * previous pass, initialize the array of graphic buffers. * * b. Create a HWC list with room to specify a prandomly * selected number of layers. * * c. Select a subset of the rows from the graphic buffer array, * such that there is a unique row to be used for each * of the layers in the HWC list. * * d. Prandomly fill in the HWC list with handles * selected from any of the columns of the selected row. * * e. Pass the populated list to the HWC prepare call. * * f. Pass the populated list to the HWC set call. * * g. If additional set calls are to be made, then for each * additional set call, select a new set of handles and * perform the set call. */ int main(int argc, char *argv[]) { int rv, opt; char *chptr; unsigned int pass; char cmd[MAXCMD]; struct timeval startTime, currentTime, delta; testSetLogCatTag(LOG_TAG); // Parse command line arguments while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) { switch (opt) { case 'd': // Delay after each set operation perSetDelay = strtod(optarg, &chptr); if ((*chptr != '\0') || (perSetDelay < 0.0)) { testPrintE("Invalid command-line specified per pass delay of: " "%s", optarg); exit(1); } break; case 'D': // End of test delay // Delay between completion of final pass and restart // of framework endDelay = strtod(optarg, &chptr); if ((*chptr != '\0') || (endDelay < 0.0)) { testPrintE("Invalid command-line specified end of test delay " "of: %s", optarg); exit(2); } break; case 't': // Duration duration = strtod(optarg, &chptr); if ((*chptr != '\0') || (duration < 0.0)) { testPrintE("Invalid command-line specified duration of: %s", optarg); exit(3); } break; case 'n': // Num set operations per pass numSet = strtoul(optarg, &chptr, 10); if (*chptr != '\0') { testPrintE("Invalid command-line specified num set per pass " "of: %s", optarg); exit(4); } break; case 's': // Starting Pass sFlag = true; if (pFlag) { testPrintE("Invalid combination of command-line options."); testPrintE(" The -p option is mutually exclusive from the"); testPrintE(" -s and -e options."); exit(5); } startPass = strtoul(optarg, &chptr, 10); if (*chptr != '\0') { testPrintE("Invalid command-line specified starting pass " "of: %s", optarg); exit(6); } break; case 'e': // Ending Pass eFlag = true; if (pFlag) { testPrintE("Invalid combination of command-line options."); testPrintE(" The -p option is mutually exclusive from the"); testPrintE(" -s and -e options."); exit(7); } endPass = strtoul(optarg, &chptr, 10); if (*chptr != '\0') { testPrintE("Invalid command-line specified ending pass " "of: %s", optarg); exit(8); } break; case 'p': // Run a single specified pass pFlag = true; if (sFlag || eFlag) { testPrintE("Invalid combination of command-line options."); testPrintE(" The -p option is mutually exclusive from the"); testPrintE(" -s and -e options."); exit(9); } startPass = endPass = strtoul(optarg, &chptr, 10); if (*chptr != '\0') { testPrintE("Invalid command-line specified pass of: %s", optarg); exit(10); } break; case 'v': // Verbose verbose = true; break; case 'h': // Help case '?': default: testPrintE(" %s [options]", basename(argv[0])); testPrintE(" options:"); testPrintE(" -p Execute specified pass"); testPrintE(" -s Starting pass"); testPrintE(" -e Ending pass"); testPrintE(" -t Duration"); testPrintE(" -d Delay after each set operation"); testPrintE(" -D End of test delay"); testPrintE(" -n Num set operations per pass"); testPrintE(" -v Verbose"); exit(((optopt == 0) || (optopt == '?')) ? 0 : 11); } } if (endPass < startPass) { testPrintE("Unexpected ending pass before starting pass"); testPrintE(" startPass: %u endPass: %u", startPass, endPass); exit(12); } if (argc != optind) { testPrintE("Unexpected command-line postional argument"); testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]", basename(argv[0])); exit(13); } testPrintI("duration: %g", duration); testPrintI("startPass: %u", startPass); testPrintI("endPass: %u", endPass); testPrintI("numSet: %u", numSet); // Stop framework rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK); if (rv >= (signed) sizeof(cmd) - 1) { testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK); exit(14); } testExecCmd(cmd); testDelay(1.0); // TODO - need means to query whether asyncronous stop // framework operation has completed. For now, just wait // a long time. init(); // For each pass gettimeofday(&startTime, NULL); for (pass = startPass; pass <= endPass; pass++) { // Stop if duration of work has already been performed gettimeofday(¤tTime, NULL); delta = tvDelta(&startTime, ¤tTime); if (tv2double(&delta) > duration) { break; } // Regenerate a new set of test frames when this pass is // either the first pass or is in a different group then // the previous pass. A group of passes are passes that // all have the same quotient when their pass number is // divided by passesPerGroup. if ((pass == startPass) || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) { initFrames(pass / passesPerGroup); } testPrintI("==== Starting pass: %u", pass); // Cause deterministic sequence of prandom numbers to be // generated for this pass. srand48(pass); hwc_display_contents_1_t *list; list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1); if (list == NULL) { testPrintE("hwcTestCreateLayerList failed"); exit(20); } // Prandomly select a subset of frames to be used by this pass. vector > > selectedFrames; selectedFrames = vectorRandSelect(frames, list->numHwLayers); // Any transform tends to create a layer that the hardware // composer is unable to support and thus has to leave for // SurfaceFlinger. Place heavy bias on specifying no transforms. bool noTransform = testRandFract() > rareRatio; for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) { unsigned int idx = testRandMod(selectedFrames[n1].size()); sp gBuf = selectedFrames[n1][idx]; hwc_layer_1_t *layer = &list->hwLayers[n1]; layer->handle = gBuf->handle; layer->blending = blendingOps[testRandMod(NUMA(blendingOps))]; layer->flags = (testRandFract() > rareRatio) ? 0 : vectorOr(vectorRandSelect(vecLayerFlags, testRandMod(vecLayerFlags.size() + 1))); layer->transform = (noTransform || testRandFract() > rareRatio) ? 0 : vectorOr(vectorRandSelect(vecTransformFlags, testRandMod(vecTransformFlags.size() + 1))); layer->sourceCrop.left = testRandMod(gBuf->getWidth()); layer->sourceCrop.top = testRandMod(gBuf->getHeight()); layer->sourceCrop.right = layer->sourceCrop.left + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1; layer->sourceCrop.bottom = layer->sourceCrop.top + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1; layer->displayFrame.left = testRandMod(width); layer->displayFrame.top = testRandMod(height); layer->displayFrame.right = layer->displayFrame.left + testRandMod(width - layer->displayFrame.left) + 1; layer->displayFrame.bottom = layer->displayFrame.top + testRandMod(height - layer->displayFrame.top) + 1; // Increase the frequency that a scale factor of 1.0 from // the sourceCrop to displayFrame occurs. This is the // most common scale factor used by applications and would // be rarely produced by this stress test without this // logic. if (testRandFract() <= freqRatio) { // Only change to scale factor to 1.0 if both the // width and height will fit. int sourceWidth = layer->sourceCrop.right - layer->sourceCrop.left; int sourceHeight = layer->sourceCrop.bottom - layer->sourceCrop.top; if (((layer->displayFrame.left + sourceWidth) <= width) && ((layer->displayFrame.top + sourceHeight) <= height)) { layer->displayFrame.right = layer->displayFrame.left + sourceWidth; layer->displayFrame.bottom = layer->displayFrame.top + sourceHeight; } } layer->visibleRegionScreen.numRects = 1; layer->visibleRegionScreen.rects = &layer->displayFrame; } // Perform prepare operation if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); } hwcDevice->prepare(hwcDevice, 1, &list); if (verbose) { testPrintI("Post Prepare:"); hwcTestDisplayListPrepareModifiable(list); } // Turn off the geometry changed flag list->flags &= ~HWC_GEOMETRY_CHANGED; // Perform the set operation(s) if (verbose) {testPrintI("Set:"); } for (unsigned int n1 = 0; n1 < numSet; n1++) { if (verbose) { hwcTestDisplayListHandles(list); } list->dpy = dpy; list->sur = surface; hwcDevice->set(hwcDevice, 1, &list); // Prandomly select a new set of handles for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) { unsigned int idx = testRandMod(selectedFrames[n1].size()); sp gBuf = selectedFrames[n1][idx]; hwc_layer_1_t *layer = &list->hwLayers[n1]; layer->handle = (native_handle_t *) gBuf->handle; } testDelay(perSetDelay); } hwcTestFreeLayerList(list); testPrintI("==== Completed pass: %u", pass); } testDelay(endDelay); // Start framework rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK); if (rv >= (signed) sizeof(cmd) - 1) { testPrintE("Command too long for: %s", CMD_START_FRAMEWORK); exit(21); } testExecCmd(cmd); testPrintI("Successfully completed %u passes", pass - startPass); return 0; } void init(void) { srand48(0); // Defensively set pseudo random number generator. // Should not need to set this, because a stress test // sets the seed on each pass. Defensively set it here // so that future code that uses pseudo random numbers // before the first pass will be deterministic. hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height); hwcTestOpenHwc(&hwcDevice); } /* * Initialize Frames * * Creates an array of graphic buffers, within the global variable * named frames. The graphic buffers are contained within a vector of * vectors. All the graphic buffers in a particular row are of the same * format and dimension. Each graphic buffer is uniformly filled with a * prandomly selected color. It is likely that each buffer, even * in the same row, will be filled with a unique color. */ void initFrames(unsigned int seed) { int rv; const size_t maxRows = 5; const size_t minCols = 2; // Need at least double buffering const size_t maxCols = 4; // One more than triple buffering if (verbose) { testPrintI("initFrames seed: %u", seed); } srand48(seed); size_t rows = testRandMod(maxRows) + 1; frames.clear(); frames.resize(rows); for (unsigned int row = 0; row < rows; row++) { // All frames within a row have to have the same format and // dimensions. Width and height need to be >= 1. unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat)); const struct hwcTestGraphicFormat *formatPtr = &hwcTestGraphicFormat[formatIdx]; int format = formatPtr->format; // Pick width and height, which must be >= 1 and the size // mod the wMod/hMod value must be equal to 0. size_t w = (width * maxSizeRatio) * testRandFract(); size_t h = (height * maxSizeRatio) * testRandFract(); w = max(size_t(1u), w); h = max(size_t(1u), h); if ((w % formatPtr->wMod) != 0) { w += formatPtr->wMod - (w % formatPtr->wMod); } if ((h % formatPtr->hMod) != 0) { h += formatPtr->hMod - (h % formatPtr->hMod); } if (verbose) { testPrintI(" frame %u width: %u height: %u format: %u %s", row, w, h, format, hwcTestGraphicFormat2str(format)); } size_t cols = testRandMod((maxCols + 1) - minCols) + minCols; frames[row].resize(cols); for (unsigned int col = 0; col < cols; col++) { ColorFract color(testRandFract(), testRandFract(), testRandFract()); float alpha = testRandFract(); frames[row][col] = new GraphicBuffer(w, h, format, texUsage); if ((rv = frames[row][col]->initCheck()) != NO_ERROR) { testPrintE("GraphicBuffer initCheck failed, rv: %i", rv); testPrintE(" frame %u width: %u height: %u format: %u %s", row, w, h, format, hwcTestGraphicFormat2str(format)); exit(80); } hwcTestFillColor(frames[row][col].get(), color, alpha); if (verbose) { testPrintI(" buf: %p handle: %p color: %s alpha: %f", frames[row][col].get(), frames[row][col]->handle, string(color).c_str(), alpha); } } } } /* * Vector Random Select * * Prandomly selects and returns num elements from vec. */ template vector vectorRandSelect(const vector& vec, size_t num) { vector rv = vec; while (rv.size() > num) { rv.erase(rv.begin() + testRandMod(rv.size())); } return rv; } /* * Vector Or * * Or's togethen the values of each element of vec and returns the result. */ template T vectorOr(const vector& vec) { T rv = 0; for (size_t n1 = 0; n1 < vec.size(); n1++) { rv |= vec[n1]; } return rv; }