// // Copyright 2010 The Android Open Source Project // // Provides a shared memory transport for input events. // #define LOG_TAG "InputTransport" //#define LOG_NDEBUG 0 // Log debug messages about channel messages (send message, receive message) #define DEBUG_CHANNEL_MESSAGES 0 // Log debug messages whenever InputChannel objects are created/destroyed #define DEBUG_CHANNEL_LIFECYCLE 0 // Log debug messages about transport actions #define DEBUG_TRANSPORT_ACTIONS 0 // Log debug messages about touch event resampling #define DEBUG_RESAMPLING 0 #include #include #include #include #include #include #include #include #include namespace android { // Socket buffer size. The default is typically about 128KB, which is much larger than // we really need. So we make it smaller. It just needs to be big enough to hold // a few dozen large multi-finger motion events in the case where an application gets // behind processing touches. static const size_t SOCKET_BUFFER_SIZE = 32 * 1024; // Nanoseconds per milliseconds. static const nsecs_t NANOS_PER_MS = 1000000; // Latency added during resampling. A few milliseconds doesn't hurt much but // reduces the impact of mispredicted touch positions. static const nsecs_t RESAMPLE_LATENCY = 5 * NANOS_PER_MS; // Minimum time difference between consecutive samples before attempting to resample. static const nsecs_t RESAMPLE_MIN_DELTA = 2 * NANOS_PER_MS; // Maximum time to predict forward from the last known state, to avoid predicting too // far into the future. This time is further bounded by 50% of the last time delta. static const nsecs_t RESAMPLE_MAX_PREDICTION = 8 * NANOS_PER_MS; template inline static T min(const T& a, const T& b) { return a < b ? a : b; } inline static float lerp(float a, float b, float alpha) { return a + alpha * (b - a); } // --- InputMessage --- bool InputMessage::isValid(size_t actualSize) const { if (size() == actualSize) { switch (header.type) { case TYPE_KEY: return true; case TYPE_MOTION: return body.motion.pointerCount > 0 && body.motion.pointerCount <= MAX_POINTERS; case TYPE_FINISHED: return true; } } return false; } size_t InputMessage::size() const { switch (header.type) { case TYPE_KEY: return sizeof(Header) + body.key.size(); case TYPE_MOTION: return sizeof(Header) + body.motion.size(); case TYPE_FINISHED: return sizeof(Header) + body.finished.size(); } return sizeof(Header); } // --- InputChannel --- InputChannel::InputChannel(const String8& name, int fd) : mName(name), mFd(fd) { #if DEBUG_CHANNEL_LIFECYCLE ALOGD("Input channel constructed: name='%s', fd=%d", mName.string(), fd); #endif int result = fcntl(mFd, F_SETFL, O_NONBLOCK); LOG_ALWAYS_FATAL_IF(result != 0, "channel '%s' ~ Could not make socket " "non-blocking. errno=%d", mName.string(), errno); } InputChannel::~InputChannel() { #if DEBUG_CHANNEL_LIFECYCLE ALOGD("Input channel destroyed: name='%s', fd=%d", mName.string(), mFd); #endif ::close(mFd); } status_t InputChannel::openInputChannelPair(const String8& name, sp& outServerChannel, sp& outClientChannel) { int sockets[2]; if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sockets)) { status_t result = -errno; ALOGE("channel '%s' ~ Could not create socket pair. errno=%d", name.string(), errno); outServerChannel.clear(); outClientChannel.clear(); return result; } int bufferSize = SOCKET_BUFFER_SIZE; setsockopt(sockets[0], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize)); setsockopt(sockets[0], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize)); setsockopt(sockets[1], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize)); setsockopt(sockets[1], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize)); String8 serverChannelName = name; serverChannelName.append(" (server)"); outServerChannel = new InputChannel(serverChannelName, sockets[0]); String8 clientChannelName = name; clientChannelName.append(" (client)"); outClientChannel = new InputChannel(clientChannelName, sockets[1]); return OK; } status_t InputChannel::sendMessage(const InputMessage* msg) { size_t msgLength = msg->size(); ssize_t nWrite; do { nWrite = ::send(mFd, msg, msgLength, MSG_DONTWAIT | MSG_NOSIGNAL); } while (nWrite == -1 && errno == EINTR); if (nWrite < 0) { int error = errno; #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ error sending message of type %d, errno=%d", mName.string(), msg->header.type, error); #endif if (error == EAGAIN || error == EWOULDBLOCK) { return WOULD_BLOCK; } if (error == EPIPE || error == ENOTCONN || error == ECONNREFUSED || error == ECONNRESET) { return DEAD_OBJECT; } return -error; } if (size_t(nWrite) != msgLength) { #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ error sending message type %d, send was incomplete", mName.string(), msg->header.type); #endif return DEAD_OBJECT; } #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ sent message of type %d", mName.string(), msg->header.type); #endif return OK; } status_t InputChannel::receiveMessage(InputMessage* msg) { ssize_t nRead; do { nRead = ::recv(mFd, msg, sizeof(InputMessage), MSG_DONTWAIT); } while (nRead == -1 && errno == EINTR); if (nRead < 0) { int error = errno; #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ receive message failed, errno=%d", mName.string(), errno); #endif if (error == EAGAIN || error == EWOULDBLOCK) { return WOULD_BLOCK; } if (error == EPIPE || error == ENOTCONN || error == ECONNREFUSED) { return DEAD_OBJECT; } return -error; } if (nRead == 0) { // check for EOF #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ receive message failed because peer was closed", mName.string()); #endif return DEAD_OBJECT; } if (!msg->isValid(nRead)) { #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ received invalid message", mName.string()); #endif return BAD_VALUE; } #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ received message of type %d", mName.string(), msg->header.type); #endif return OK; } sp InputChannel::dup() const { int fd = ::dup(getFd()); return fd >= 0 ? new InputChannel(getName(), fd) : NULL; } // --- InputPublisher --- InputPublisher::InputPublisher(const sp& channel) : mChannel(channel) { } InputPublisher::~InputPublisher() { } status_t InputPublisher::publishKeyEvent( uint32_t seq, int32_t deviceId, int32_t source, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, int32_t repeatCount, nsecs_t downTime, nsecs_t eventTime) { #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' publisher ~ publishKeyEvent: seq=%u, deviceId=%d, source=0x%x, " "action=0x%x, flags=0x%x, keyCode=%d, scanCode=%d, metaState=0x%x, repeatCount=%d," "downTime=%lld, eventTime=%lld", mChannel->getName().string(), seq, deviceId, source, action, flags, keyCode, scanCode, metaState, repeatCount, downTime, eventTime); #endif if (!seq) { ALOGE("Attempted to publish a key event with sequence number 0."); return BAD_VALUE; } InputMessage msg; msg.header.type = InputMessage::TYPE_KEY; msg.body.key.seq = seq; msg.body.key.deviceId = deviceId; msg.body.key.source = source; msg.body.key.action = action; msg.body.key.flags = flags; msg.body.key.keyCode = keyCode; msg.body.key.scanCode = scanCode; msg.body.key.metaState = metaState; msg.body.key.repeatCount = repeatCount; msg.body.key.downTime = downTime; msg.body.key.eventTime = eventTime; return mChannel->sendMessage(&msg); } status_t InputPublisher::publishMotionEvent( uint32_t seq, int32_t deviceId, int32_t source, int32_t action, int32_t flags, int32_t edgeFlags, int32_t metaState, int32_t buttonState, float xOffset, float yOffset, float xPrecision, float yPrecision, nsecs_t downTime, nsecs_t eventTime, uint32_t pointerCount, const PointerProperties* pointerProperties, const PointerCoords* pointerCoords) { #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' publisher ~ publishMotionEvent: seq=%u, deviceId=%d, source=0x%x, " "action=0x%x, flags=0x%x, edgeFlags=0x%x, metaState=0x%x, buttonState=0x%x, " "xOffset=%f, yOffset=%f, " "xPrecision=%f, yPrecision=%f, downTime=%lld, eventTime=%lld, " "pointerCount=%d", mChannel->getName().string(), seq, deviceId, source, action, flags, edgeFlags, metaState, buttonState, xOffset, yOffset, xPrecision, yPrecision, downTime, eventTime, pointerCount); #endif if (!seq) { ALOGE("Attempted to publish a motion event with sequence number 0."); return BAD_VALUE; } if (pointerCount > MAX_POINTERS || pointerCount < 1) { ALOGE("channel '%s' publisher ~ Invalid number of pointers provided: %zu.", mChannel->getName().string(), pointerCount); return BAD_VALUE; } InputMessage msg; msg.header.type = InputMessage::TYPE_MOTION; msg.body.motion.seq = seq; msg.body.motion.deviceId = deviceId; msg.body.motion.source = source; msg.body.motion.action = action; msg.body.motion.flags = flags; msg.body.motion.edgeFlags = edgeFlags; msg.body.motion.metaState = metaState; msg.body.motion.buttonState = buttonState; msg.body.motion.xOffset = xOffset; msg.body.motion.yOffset = yOffset; msg.body.motion.xPrecision = xPrecision; msg.body.motion.yPrecision = yPrecision; msg.body.motion.downTime = downTime; msg.body.motion.eventTime = eventTime; msg.body.motion.pointerCount = pointerCount; for (uint32_t i = 0; i < pointerCount; i++) { msg.body.motion.pointers[i].properties.copyFrom(pointerProperties[i]); msg.body.motion.pointers[i].coords.copyFrom(pointerCoords[i]); } return mChannel->sendMessage(&msg); } status_t InputPublisher::receiveFinishedSignal(uint32_t* outSeq, bool* outHandled) { #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' publisher ~ receiveFinishedSignal", mChannel->getName().string()); #endif InputMessage msg; status_t result = mChannel->receiveMessage(&msg); if (result) { *outSeq = 0; *outHandled = false; return result; } if (msg.header.type != InputMessage::TYPE_FINISHED) { ALOGE("channel '%s' publisher ~ Received unexpected message of type %d from consumer", mChannel->getName().string(), msg.header.type); return UNKNOWN_ERROR; } *outSeq = msg.body.finished.seq; *outHandled = msg.body.finished.handled; return OK; } // --- InputConsumer --- InputConsumer::InputConsumer(const sp& channel) : mResampleTouch(isTouchResamplingEnabled()), mChannel(channel), mMsgDeferred(false) { } InputConsumer::~InputConsumer() { } bool InputConsumer::isTouchResamplingEnabled() { char value[PROPERTY_VALUE_MAX]; int length = property_get("ro.input.noresample", value, NULL); if (length > 0) { if (!strcmp("1", value)) { return false; } if (strcmp("0", value)) { ALOGD("Unrecognized property value for 'ro.input.noresample'. " "Use '1' or '0'."); } } return true; } status_t InputConsumer::consume(InputEventFactoryInterface* factory, bool consumeBatches, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) { #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' consumer ~ consume: consumeBatches=%s, frameTime=%lld", mChannel->getName().string(), consumeBatches ? "true" : "false", frameTime); #endif *outSeq = 0; *outEvent = NULL; // Fetch the next input message. // Loop until an event can be returned or no additional events are received. while (!*outEvent) { if (mMsgDeferred) { // mMsg contains a valid input message from the previous call to consume // that has not yet been processed. mMsgDeferred = false; } else { // Receive a fresh message. status_t result = mChannel->receiveMessage(&mMsg); if (result) { // Consume the next batched event unless batches are being held for later. if (consumeBatches || result != WOULD_BLOCK) { result = consumeBatch(factory, frameTime, outSeq, outEvent); if (*outEvent) { #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' consumer ~ consumed batch event, seq=%u", mChannel->getName().string(), *outSeq); #endif break; } } return result; } } switch (mMsg.header.type) { case InputMessage::TYPE_KEY: { KeyEvent* keyEvent = factory->createKeyEvent(); if (!keyEvent) return NO_MEMORY; initializeKeyEvent(keyEvent, &mMsg); *outSeq = mMsg.body.key.seq; *outEvent = keyEvent; #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' consumer ~ consumed key event, seq=%u", mChannel->getName().string(), *outSeq); #endif break; } case AINPUT_EVENT_TYPE_MOTION: { ssize_t batchIndex = findBatch(mMsg.body.motion.deviceId, mMsg.body.motion.source); if (batchIndex >= 0) { Batch& batch = mBatches.editItemAt(batchIndex); if (canAddSample(batch, &mMsg)) { batch.samples.push(mMsg); #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' consumer ~ appended to batch event", mChannel->getName().string()); #endif break; } else { // We cannot append to the batch in progress, so we need to consume // the previous batch right now and defer the new message until later. mMsgDeferred = true; status_t result = consumeSamples(factory, batch, batch.samples.size(), outSeq, outEvent); mBatches.removeAt(batchIndex); if (result) { return result; } #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' consumer ~ consumed batch event and " "deferred current event, seq=%u", mChannel->getName().string(), *outSeq); #endif break; } } // Start a new batch if needed. if (mMsg.body.motion.action == AMOTION_EVENT_ACTION_MOVE || mMsg.body.motion.action == AMOTION_EVENT_ACTION_HOVER_MOVE) { mBatches.push(); Batch& batch = mBatches.editTop(); batch.samples.push(mMsg); #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' consumer ~ started batch event", mChannel->getName().string()); #endif break; } MotionEvent* motionEvent = factory->createMotionEvent(); if (! motionEvent) return NO_MEMORY; updateTouchState(&mMsg); initializeMotionEvent(motionEvent, &mMsg); *outSeq = mMsg.body.motion.seq; *outEvent = motionEvent; #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' consumer ~ consumed motion event, seq=%u", mChannel->getName().string(), *outSeq); #endif break; } default: ALOGE("channel '%s' consumer ~ Received unexpected message of type %d", mChannel->getName().string(), mMsg.header.type); return UNKNOWN_ERROR; } } return OK; } status_t InputConsumer::consumeBatch(InputEventFactoryInterface* factory, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) { status_t result; for (size_t i = mBatches.size(); i-- > 0; ) { Batch& batch = mBatches.editItemAt(i); if (frameTime < 0) { result = consumeSamples(factory, batch, batch.samples.size(), outSeq, outEvent); mBatches.removeAt(i); return result; } nsecs_t sampleTime = frameTime; if (mResampleTouch) { sampleTime -= RESAMPLE_LATENCY; } ssize_t split = findSampleNoLaterThan(batch, sampleTime); if (split < 0) { continue; } result = consumeSamples(factory, batch, split + 1, outSeq, outEvent); const InputMessage* next; if (batch.samples.isEmpty()) { mBatches.removeAt(i); next = NULL; } else { next = &batch.samples.itemAt(0); } if (!result && mResampleTouch) { resampleTouchState(sampleTime, static_cast(*outEvent), next); } return result; } return WOULD_BLOCK; } status_t InputConsumer::consumeSamples(InputEventFactoryInterface* factory, Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent) { MotionEvent* motionEvent = factory->createMotionEvent(); if (! motionEvent) return NO_MEMORY; uint32_t chain = 0; for (size_t i = 0; i < count; i++) { InputMessage& msg = batch.samples.editItemAt(i); updateTouchState(&msg); if (i) { SeqChain seqChain; seqChain.seq = msg.body.motion.seq; seqChain.chain = chain; mSeqChains.push(seqChain); addSample(motionEvent, &msg); } else { initializeMotionEvent(motionEvent, &msg); } chain = msg.body.motion.seq; } batch.samples.removeItemsAt(0, count); *outSeq = chain; *outEvent = motionEvent; return OK; } void InputConsumer::updateTouchState(InputMessage* msg) { if (!mResampleTouch || !(msg->body.motion.source & AINPUT_SOURCE_CLASS_POINTER)) { return; } int32_t deviceId = msg->body.motion.deviceId; int32_t source = msg->body.motion.source; nsecs_t eventTime = msg->body.motion.eventTime; // Update the touch state history to incorporate the new input message. // If the message is in the past relative to the most recently produced resampled // touch, then use the resampled time and coordinates instead. switch (msg->body.motion.action & AMOTION_EVENT_ACTION_MASK) { case AMOTION_EVENT_ACTION_DOWN: { ssize_t index = findTouchState(deviceId, source); if (index < 0) { mTouchStates.push(); index = mTouchStates.size() - 1; } TouchState& touchState = mTouchStates.editItemAt(index); touchState.initialize(deviceId, source); touchState.addHistory(msg); break; } case AMOTION_EVENT_ACTION_MOVE: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates.editItemAt(index); touchState.addHistory(msg); if (eventTime < touchState.lastResample.eventTime) { rewriteMessage(touchState, msg); } else { touchState.lastResample.idBits.clear(); } } break; } case AMOTION_EVENT_ACTION_POINTER_DOWN: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates.editItemAt(index); touchState.lastResample.idBits.clearBit(msg->body.motion.getActionId()); rewriteMessage(touchState, msg); } break; } case AMOTION_EVENT_ACTION_POINTER_UP: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates.editItemAt(index); rewriteMessage(touchState, msg); touchState.lastResample.idBits.clearBit(msg->body.motion.getActionId()); } break; } case AMOTION_EVENT_ACTION_SCROLL: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { const TouchState& touchState = mTouchStates.itemAt(index); rewriteMessage(touchState, msg); } break; } case AMOTION_EVENT_ACTION_UP: case AMOTION_EVENT_ACTION_CANCEL: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { const TouchState& touchState = mTouchStates.itemAt(index); rewriteMessage(touchState, msg); mTouchStates.removeAt(index); } break; } } } void InputConsumer::rewriteMessage(const TouchState& state, InputMessage* msg) { for (uint32_t i = 0; i < msg->body.motion.pointerCount; i++) { uint32_t id = msg->body.motion.pointers[i].properties.id; if (state.lastResample.idBits.hasBit(id)) { PointerCoords& msgCoords = msg->body.motion.pointers[i].coords; const PointerCoords& resampleCoords = state.lastResample.getPointerById(id); #if DEBUG_RESAMPLING ALOGD("[%d] - rewrite (%0.3f, %0.3f), old (%0.3f, %0.3f)", id, resampleCoords.getAxisValue(AMOTION_EVENT_AXIS_X), resampleCoords.getAxisValue(AMOTION_EVENT_AXIS_Y), msgCoords.getAxisValue(AMOTION_EVENT_AXIS_X), msgCoords.getAxisValue(AMOTION_EVENT_AXIS_Y)); #endif msgCoords.setAxisValue(AMOTION_EVENT_AXIS_X, resampleCoords.getX()); msgCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, resampleCoords.getY()); } } } void InputConsumer::resampleTouchState(nsecs_t sampleTime, MotionEvent* event, const InputMessage* next) { if (!mResampleTouch || !(event->getSource() & AINPUT_SOURCE_CLASS_POINTER) || event->getAction() != AMOTION_EVENT_ACTION_MOVE) { return; } ssize_t index = findTouchState(event->getDeviceId(), event->getSource()); if (index < 0) { #if DEBUG_RESAMPLING ALOGD("Not resampled, no touch state for device."); #endif return; } TouchState& touchState = mTouchStates.editItemAt(index); if (touchState.historySize < 1) { #if DEBUG_RESAMPLING ALOGD("Not resampled, no history for device."); #endif return; } // Ensure that the current sample has all of the pointers that need to be reported. const History* current = touchState.getHistory(0); size_t pointerCount = event->getPointerCount(); for (size_t i = 0; i < pointerCount; i++) { uint32_t id = event->getPointerId(i); if (!current->idBits.hasBit(id)) { #if DEBUG_RESAMPLING ALOGD("Not resampled, missing id %d", id); #endif return; } } // Find the data to use for resampling. const History* other; History future; float alpha; if (next) { // Interpolate between current sample and future sample. // So current->eventTime <= sampleTime <= future.eventTime. future.initializeFrom(next); other = &future; nsecs_t delta = future.eventTime - current->eventTime; if (delta < RESAMPLE_MIN_DELTA) { #if DEBUG_RESAMPLING ALOGD("Not resampled, delta time is %lld ns.", delta); #endif return; } alpha = float(sampleTime - current->eventTime) / delta; } else if (touchState.historySize >= 2) { // Extrapolate future sample using current sample and past sample. // So other->eventTime <= current->eventTime <= sampleTime. other = touchState.getHistory(1); nsecs_t delta = current->eventTime - other->eventTime; if (delta < RESAMPLE_MIN_DELTA) { #if DEBUG_RESAMPLING ALOGD("Not resampled, delta time is %lld ns.", delta); #endif return; } nsecs_t maxPredict = current->eventTime + min(delta / 2, RESAMPLE_MAX_PREDICTION); if (sampleTime > maxPredict) { #if DEBUG_RESAMPLING ALOGD("Sample time is too far in the future, adjusting prediction " "from %lld to %lld ns.", sampleTime - current->eventTime, maxPredict - current->eventTime); #endif sampleTime = maxPredict; } alpha = float(current->eventTime - sampleTime) / delta; } else { #if DEBUG_RESAMPLING ALOGD("Not resampled, insufficient data."); #endif return; } // Resample touch coordinates. touchState.lastResample.eventTime = sampleTime; touchState.lastResample.idBits.clear(); for (size_t i = 0; i < pointerCount; i++) { uint32_t id = event->getPointerId(i); touchState.lastResample.idToIndex[id] = i; touchState.lastResample.idBits.markBit(id); PointerCoords& resampledCoords = touchState.lastResample.pointers[i]; const PointerCoords& currentCoords = current->getPointerById(id); if (other->idBits.hasBit(id) && shouldResampleTool(event->getToolType(i))) { const PointerCoords& otherCoords = other->getPointerById(id); resampledCoords.copyFrom(currentCoords); resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_X, lerp(currentCoords.getX(), otherCoords.getX(), alpha)); resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, lerp(currentCoords.getY(), otherCoords.getY(), alpha)); #if DEBUG_RESAMPLING ALOGD("[%d] - out (%0.3f, %0.3f), cur (%0.3f, %0.3f), " "other (%0.3f, %0.3f), alpha %0.3f", id, resampledCoords.getX(), resampledCoords.getY(), currentCoords.getX(), currentCoords.getY(), otherCoords.getX(), otherCoords.getY(), alpha); #endif } else { resampledCoords.copyFrom(currentCoords); #if DEBUG_RESAMPLING ALOGD("[%d] - out (%0.3f, %0.3f), cur (%0.3f, %0.3f)", id, resampledCoords.getX(), resampledCoords.getY(), currentCoords.getX(), currentCoords.getY()); #endif } } event->addSample(sampleTime, touchState.lastResample.pointers); } bool InputConsumer::shouldResampleTool(int32_t toolType) { return toolType == AMOTION_EVENT_TOOL_TYPE_FINGER || toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN; } status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) { #if DEBUG_TRANSPORT_ACTIONS ALOGD("channel '%s' consumer ~ sendFinishedSignal: seq=%u, handled=%s", mChannel->getName().string(), seq, handled ? "true" : "false"); #endif if (!seq) { ALOGE("Attempted to send a finished signal with sequence number 0."); return BAD_VALUE; } // Send finished signals for the batch sequence chain first. size_t seqChainCount = mSeqChains.size(); if (seqChainCount) { uint32_t currentSeq = seq; uint32_t chainSeqs[seqChainCount]; size_t chainIndex = 0; for (size_t i = seqChainCount; i-- > 0; ) { const SeqChain& seqChain = mSeqChains.itemAt(i); if (seqChain.seq == currentSeq) { currentSeq = seqChain.chain; chainSeqs[chainIndex++] = currentSeq; mSeqChains.removeAt(i); } } status_t status = OK; while (!status && chainIndex-- > 0) { status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled); } if (status) { // An error occurred so at least one signal was not sent, reconstruct the chain. do { SeqChain seqChain; seqChain.seq = chainIndex != 0 ? chainSeqs[chainIndex - 1] : seq; seqChain.chain = chainSeqs[chainIndex]; mSeqChains.push(seqChain); } while (chainIndex-- > 0); return status; } } // Send finished signal for the last message in the batch. return sendUnchainedFinishedSignal(seq, handled); } status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) { InputMessage msg; msg.header.type = InputMessage::TYPE_FINISHED; msg.body.finished.seq = seq; msg.body.finished.handled = handled; return mChannel->sendMessage(&msg); } bool InputConsumer::hasDeferredEvent() const { return mMsgDeferred; } bool InputConsumer::hasPendingBatch() const { return !mBatches.isEmpty(); } ssize_t InputConsumer::findBatch(int32_t deviceId, int32_t source) const { for (size_t i = 0; i < mBatches.size(); i++) { const Batch& batch = mBatches.itemAt(i); const InputMessage& head = batch.samples.itemAt(0); if (head.body.motion.deviceId == deviceId && head.body.motion.source == source) { return i; } } return -1; } ssize_t InputConsumer::findTouchState(int32_t deviceId, int32_t source) const { for (size_t i = 0; i < mTouchStates.size(); i++) { const TouchState& touchState = mTouchStates.itemAt(i); if (touchState.deviceId == deviceId && touchState.source == source) { return i; } } return -1; } void InputConsumer::initializeKeyEvent(KeyEvent* event, const InputMessage* msg) { event->initialize( msg->body.key.deviceId, msg->body.key.source, msg->body.key.action, msg->body.key.flags, msg->body.key.keyCode, msg->body.key.scanCode, msg->body.key.metaState, msg->body.key.repeatCount, msg->body.key.downTime, msg->body.key.eventTime); } void InputConsumer::initializeMotionEvent(MotionEvent* event, const InputMessage* msg) { uint32_t pointerCount = msg->body.motion.pointerCount; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (uint32_t i = 0; i < pointerCount; i++) { pointerProperties[i].copyFrom(msg->body.motion.pointers[i].properties); pointerCoords[i].copyFrom(msg->body.motion.pointers[i].coords); } event->initialize( msg->body.motion.deviceId, msg->body.motion.source, msg->body.motion.action, msg->body.motion.flags, msg->body.motion.edgeFlags, msg->body.motion.metaState, msg->body.motion.buttonState, msg->body.motion.xOffset, msg->body.motion.yOffset, msg->body.motion.xPrecision, msg->body.motion.yPrecision, msg->body.motion.downTime, msg->body.motion.eventTime, pointerCount, pointerProperties, pointerCoords); } void InputConsumer::addSample(MotionEvent* event, const InputMessage* msg) { uint32_t pointerCount = msg->body.motion.pointerCount; PointerCoords pointerCoords[pointerCount]; for (uint32_t i = 0; i < pointerCount; i++) { pointerCoords[i].copyFrom(msg->body.motion.pointers[i].coords); } event->setMetaState(event->getMetaState() | msg->body.motion.metaState); event->addSample(msg->body.motion.eventTime, pointerCoords); } bool InputConsumer::canAddSample(const Batch& batch, const InputMessage *msg) { const InputMessage& head = batch.samples.itemAt(0); uint32_t pointerCount = msg->body.motion.pointerCount; if (head.body.motion.pointerCount != pointerCount || head.body.motion.action != msg->body.motion.action) { return false; } for (size_t i = 0; i < pointerCount; i++) { if (head.body.motion.pointers[i].properties != msg->body.motion.pointers[i].properties) { return false; } } return true; } ssize_t InputConsumer::findSampleNoLaterThan(const Batch& batch, nsecs_t time) { size_t numSamples = batch.samples.size(); size_t index = 0; while (index < numSamples && batch.samples.itemAt(index).body.motion.eventTime <= time) { index += 1; } return ssize_t(index) - 1; } } // namespace android