/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "SurfaceTexture" //#define LOG_NDEBUG 0 #define GL_GLEXT_PROTOTYPES #define EGL_EGLEXT_PROTOTYPES #include #include #include #include #include #include #include #include #include #include #include namespace android { // Transform matrices static float mtxIdentity[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }; static float mtxFlipH[16] = { -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxFlipV[16] = { 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static float mtxRot90[16] = { 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxRot180[16] = { -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, }; static float mtxRot270[16] = { 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static void mtxMul(float out[16], const float a[16], const float b[16]); SurfaceTexture::SurfaceTexture(GLuint tex, bool allowSynchronousMode) : mDefaultWidth(1), mDefaultHeight(1), mPixelFormat(PIXEL_FORMAT_RGBA_8888), mBufferCount(MIN_ASYNC_BUFFER_SLOTS), mClientBufferCount(0), mServerBufferCount(MIN_ASYNC_BUFFER_SLOTS), mCurrentTexture(INVALID_BUFFER_SLOT), mCurrentTextureTarget(GL_TEXTURE_EXTERNAL_OES), mCurrentTransform(0), mCurrentTimestamp(0), mNextTransform(0), mTexName(tex), mSynchronousMode(false), mAllowSynchronousMode(allowSynchronousMode) { LOGV("SurfaceTexture::SurfaceTexture"); sp composer(ComposerService::getComposerService()); mGraphicBufferAlloc = composer->createGraphicBufferAlloc(); mNextCrop.makeInvalid(); memcpy(mCurrentTransformMatrix, mtxIdentity, sizeof(mCurrentTransformMatrix)); } SurfaceTexture::~SurfaceTexture() { LOGV("SurfaceTexture::~SurfaceTexture"); freeAllBuffers(); } status_t SurfaceTexture::setBufferCountServerLocked(int bufferCount) { if (bufferCount > NUM_BUFFER_SLOTS) return BAD_VALUE; // special-case, nothing to do if (bufferCount == mBufferCount) return OK; if (!mClientBufferCount && bufferCount >= mBufferCount) { // easy, we just have more buffers mBufferCount = bufferCount; mServerBufferCount = bufferCount; mDequeueCondition.signal(); } else { // we're here because we're either // - reducing the number of available buffers // - or there is a client-buffer-count in effect // less than 2 buffers is never allowed if (bufferCount < 2) return BAD_VALUE; // when there is non client-buffer-count in effect, the client is not // allowed to dequeue more than one buffer at a time, // so the next time they dequeue a buffer, we know that they don't // own one. the actual resizing will happen during the next // dequeueBuffer. mServerBufferCount = bufferCount; } return OK; } status_t SurfaceTexture::setBufferCountServer(int bufferCount) { Mutex::Autolock lock(mMutex); return setBufferCountServerLocked(bufferCount); } status_t SurfaceTexture::setBufferCount(int bufferCount) { LOGV("SurfaceTexture::setBufferCount"); Mutex::Autolock lock(mMutex); if (bufferCount > NUM_BUFFER_SLOTS) { LOGE("setBufferCount: bufferCount larger than slots available"); return BAD_VALUE; } // Error out if the user has dequeued buffers for (int i=0 ; i= minBufferSlots) ? mServerBufferCount : minBufferSlots; return setBufferCountServerLocked(bufferCount); } // We don't allow the client to set a buffer-count less than // MIN_ASYNC_BUFFER_SLOTS (3), there is no reason for it. if (bufferCount < MIN_ASYNC_BUFFER_SLOTS) { return BAD_VALUE; } // here we're guaranteed that the client doesn't have dequeued buffers // and will release all of its buffer references. freeAllBuffers(); mBufferCount = bufferCount; mClientBufferCount = bufferCount; mCurrentTexture = INVALID_BUFFER_SLOT; mQueue.clear(); mDequeueCondition.signal(); return OK; } status_t SurfaceTexture::setDefaultBufferSize(uint32_t w, uint32_t h) { Mutex::Autolock lock(mMutex); if ((w != mDefaultWidth) || (h != mDefaultHeight)) { mDefaultWidth = w; mDefaultHeight = h; } return OK; } sp SurfaceTexture::requestBuffer(int buf) { LOGV("SurfaceTexture::requestBuffer"); Mutex::Autolock lock(mMutex); if (buf < 0 || mBufferCount <= buf) { LOGE("requestBuffer: slot index out of range [0, %d]: %d", mBufferCount, buf); return 0; } mSlots[buf].mRequestBufferCalled = true; return mSlots[buf].mGraphicBuffer; } status_t SurfaceTexture::dequeueBuffer(int *outBuf, uint32_t w, uint32_t h, uint32_t format, uint32_t usage) { LOGV("SurfaceTexture::dequeueBuffer"); if ((w && !h) || (!w && h)) { LOGE("dequeueBuffer: invalid size: w=%u, h=%u", w, h); return BAD_VALUE; } Mutex::Autolock lock(mMutex); status_t returnFlags(OK); int found, foundSync; int dequeuedCount = 0; bool tryAgain = true; while (tryAgain) { // We need to wait for the FIFO to drain if the number of buffer // needs to change. // // The condition "number of buffer needs to change" is true if // - the client doesn't care about how many buffers there are // - AND the actual number of buffer is different from what was // set in the last setBufferCountServer() // - OR - // setBufferCountServer() was set to a value incompatible with // the synchronization mode (for instance because the sync mode // changed since) // // As long as this condition is true AND the FIFO is not empty, we // wait on mDequeueCondition. int minBufferCountNeeded = mSynchronousMode ? MIN_SYNC_BUFFER_SLOTS : MIN_ASYNC_BUFFER_SLOTS; if (!mClientBufferCount && ((mServerBufferCount != mBufferCount) || (mServerBufferCount < minBufferCountNeeded))) { // wait for the FIFO to drain while (!mQueue.isEmpty()) { mDequeueCondition.wait(mMutex); } minBufferCountNeeded = mSynchronousMode ? MIN_SYNC_BUFFER_SLOTS : MIN_ASYNC_BUFFER_SLOTS; } if (!mClientBufferCount && ((mServerBufferCount != mBufferCount) || (mServerBufferCount < minBufferCountNeeded))) { // here we're guaranteed that mQueue is empty freeAllBuffers(); mBufferCount = mServerBufferCount; if (mBufferCount < minBufferCountNeeded) mBufferCount = minBufferCountNeeded; mCurrentTexture = INVALID_BUFFER_SLOT; returnFlags |= ISurfaceTexture::RELEASE_ALL_BUFFERS; } // look for a free buffer to give to the client found = INVALID_BUFFER_SLOT; foundSync = INVALID_BUFFER_SLOT; dequeuedCount = 0; for (int i = 0; i < mBufferCount; i++) { const int state = mSlots[i].mBufferState; if (state == BufferSlot::DEQUEUED) { dequeuedCount++; } if (state == BufferSlot::FREE /*|| i == mCurrentTexture*/) { foundSync = i; if (i != mCurrentTexture) { found = i; break; } } } // clients are not allowed to dequeue more than one buffer // if they didn't set a buffer count. if (!mClientBufferCount && dequeuedCount) { return -EINVAL; } // See whether a buffer has been queued since the last setBufferCount so // we know whether to perform the MIN_UNDEQUEUED_BUFFERS check below. bool bufferHasBeenQueued = mCurrentTexture != INVALID_BUFFER_SLOT; if (bufferHasBeenQueued) { // make sure the client is not trying to dequeue more buffers // than allowed. const int avail = mBufferCount - (dequeuedCount+1); if (avail < (MIN_UNDEQUEUED_BUFFERS-int(mSynchronousMode))) { LOGE("dequeueBuffer: MIN_UNDEQUEUED_BUFFERS=%d exceeded (dequeued=%d)", MIN_UNDEQUEUED_BUFFERS-int(mSynchronousMode), dequeuedCount); return -EBUSY; } } // we're in synchronous mode and didn't find a buffer, we need to wait // for for some buffers to be consumed tryAgain = mSynchronousMode && (foundSync == INVALID_BUFFER_SLOT); if (tryAgain) { mDequeueCondition.wait(mMutex); } } if (mSynchronousMode && found == INVALID_BUFFER_SLOT) { // foundSync guaranteed to be != INVALID_BUFFER_SLOT found = foundSync; } if (found == INVALID_BUFFER_SLOT) { return -EBUSY; } const int buf = found; *outBuf = found; const bool useDefaultSize = !w && !h; if (useDefaultSize) { // use the default size w = mDefaultWidth; h = mDefaultHeight; } const bool updateFormat = (format != 0); if (!updateFormat) { // keep the current (or default) format format = mPixelFormat; } // buffer is now in DEQUEUED (but can also be current at the same time, // if we're in synchronous mode) mSlots[buf].mBufferState = BufferSlot::DEQUEUED; const sp& buffer(mSlots[buf].mGraphicBuffer); if ((buffer == NULL) || (uint32_t(buffer->width) != w) || (uint32_t(buffer->height) != h) || (uint32_t(buffer->format) != format) || ((uint32_t(buffer->usage) & usage) != usage)) { usage |= GraphicBuffer::USAGE_HW_TEXTURE; sp graphicBuffer( mGraphicBufferAlloc->createGraphicBuffer(w, h, format, usage)); if (graphicBuffer == 0) { LOGE("dequeueBuffer: SurfaceComposer::createGraphicBuffer failed"); return NO_MEMORY; } if (updateFormat) { mPixelFormat = format; } mSlots[buf].mGraphicBuffer = graphicBuffer; mSlots[buf].mRequestBufferCalled = false; if (mSlots[buf].mEglImage != EGL_NO_IMAGE_KHR) { eglDestroyImageKHR(mSlots[buf].mEglDisplay, mSlots[buf].mEglImage); mSlots[buf].mEglImage = EGL_NO_IMAGE_KHR; mSlots[buf].mEglDisplay = EGL_NO_DISPLAY; } returnFlags |= ISurfaceTexture::BUFFER_NEEDS_REALLOCATION; } return returnFlags; } status_t SurfaceTexture::setSynchronousMode(bool enabled) { Mutex::Autolock lock(mMutex); status_t err = OK; if (!mAllowSynchronousMode && enabled) return err; if (!enabled) { // going to asynchronous mode, drain the queue while (mSynchronousMode != enabled && !mQueue.isEmpty()) { mDequeueCondition.wait(mMutex); } } if (mSynchronousMode != enabled) { // - if we're going to asynchronous mode, the queue is guaranteed to be // empty here // - if the client set the number of buffers, we're guaranteed that // we have at least 3 (because we don't allow less) mSynchronousMode = enabled; mDequeueCondition.signal(); } return err; } status_t SurfaceTexture::queueBuffer(int buf, int64_t timestamp) { LOGV("SurfaceTexture::queueBuffer"); sp listener; { // scope for the lock Mutex::Autolock lock(mMutex); if (buf < 0 || buf >= mBufferCount) { LOGE("queueBuffer: slot index out of range [0, %d]: %d", mBufferCount, buf); return -EINVAL; } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) { LOGE("queueBuffer: slot %d is not owned by the client (state=%d)", buf, mSlots[buf].mBufferState); return -EINVAL; } else if (buf == mCurrentTexture) { LOGE("queueBuffer: slot %d is current!", buf); return -EINVAL; } else if (!mSlots[buf].mRequestBufferCalled) { LOGE("queueBuffer: slot %d was enqueued without requesting a " "buffer", buf); return -EINVAL; } if (mSynchronousMode) { // In synchronous mode we queue all buffers in a FIFO. mQueue.push_back(buf); // Synchronous mode always signals that an additional frame should // be consumed. listener = mFrameAvailableListener; } else { // In asynchronous mode we only keep the most recent buffer. if (mQueue.empty()) { mQueue.push_back(buf); // Asynchronous mode only signals that a frame should be // consumed if no previous frame was pending. If a frame were // pending then the consumer would have already been notified. listener = mFrameAvailableListener; } else { Fifo::iterator front(mQueue.begin()); // buffer currently queued is freed mSlots[*front].mBufferState = BufferSlot::FREE; // and we record the new buffer index in the queued list *front = buf; } } mSlots[buf].mBufferState = BufferSlot::QUEUED; mSlots[buf].mCrop = mNextCrop; mSlots[buf].mTransform = mNextTransform; mSlots[buf].mTimestamp = timestamp; mDequeueCondition.signal(); } // scope for the lock // call back without lock held if (listener != 0) { listener->onFrameAvailable(); } return OK; } void SurfaceTexture::cancelBuffer(int buf) { LOGV("SurfaceTexture::cancelBuffer"); Mutex::Autolock lock(mMutex); if (buf < 0 || buf >= mBufferCount) { LOGE("cancelBuffer: slot index out of range [0, %d]: %d", mBufferCount, buf); return; } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) { LOGE("cancelBuffer: slot %d is not owned by the client (state=%d)", buf, mSlots[buf].mBufferState); return; } mSlots[buf].mBufferState = BufferSlot::FREE; mDequeueCondition.signal(); } status_t SurfaceTexture::setCrop(const Rect& crop) { LOGV("SurfaceTexture::setCrop"); Mutex::Autolock lock(mMutex); mNextCrop = crop; return OK; } status_t SurfaceTexture::setTransform(uint32_t transform) { LOGV("SurfaceTexture::setTransform"); Mutex::Autolock lock(mMutex); mNextTransform = transform; return OK; } status_t SurfaceTexture::updateTexImage() { LOGV("SurfaceTexture::updateTexImage"); Mutex::Autolock lock(mMutex); // In asynchronous mode the list is guaranteed to be one buffer // deep, while in synchronous mode we use the oldest buffer. if (!mQueue.empty()) { Fifo::iterator front(mQueue.begin()); int buf = *front; // Update the GL texture object. EGLImageKHR image = mSlots[buf].mEglImage; if (image == EGL_NO_IMAGE_KHR) { EGLDisplay dpy = eglGetCurrentDisplay(); image = createImage(dpy, mSlots[buf].mGraphicBuffer); mSlots[buf].mEglImage = image; mSlots[buf].mEglDisplay = dpy; if (image == EGL_NO_IMAGE_KHR) { // NOTE: if dpy was invalid, createImage() is guaranteed to // fail. so we'd end up here. return -EINVAL; } } GLint error; while ((error = glGetError()) != GL_NO_ERROR) { LOGW("updateTexImage: clearing GL error: %#04x", error); } GLenum target = getTextureTarget(mSlots[buf].mGraphicBuffer->format); if (target != mCurrentTextureTarget) { glDeleteTextures(1, &mTexName); } glBindTexture(target, mTexName); glEGLImageTargetTexture2DOES(target, (GLeglImageOES)image); bool failed = false; while ((error = glGetError()) != GL_NO_ERROR) { LOGE("error binding external texture image %p (slot %d): %#04x", image, buf, error); failed = true; } if (failed) { return -EINVAL; } if (mCurrentTexture != INVALID_BUFFER_SLOT) { // The current buffer becomes FREE if it was still in the queued // state. If it has already been given to the client // (synchronous mode), then it stays in DEQUEUED state. if (mSlots[mCurrentTexture].mBufferState == BufferSlot::QUEUED) mSlots[mCurrentTexture].mBufferState = BufferSlot::FREE; } // Update the SurfaceTexture state. mCurrentTexture = buf; mCurrentTextureTarget = target; mCurrentTextureBuf = mSlots[buf].mGraphicBuffer; mCurrentCrop = mSlots[buf].mCrop; mCurrentTransform = mSlots[buf].mTransform; mCurrentTimestamp = mSlots[buf].mTimestamp; computeCurrentTransformMatrix(); // Now that we've passed the point at which failures can happen, // it's safe to remove the buffer from the front of the queue. mQueue.erase(front); mDequeueCondition.signal(); } else { // We always bind the texture even if we don't update its contents. glBindTexture(mCurrentTextureTarget, mTexName); } return OK; } bool SurfaceTexture::isExternalFormat(uint32_t format) { switch (format) { // supported YUV formats case HAL_PIXEL_FORMAT_YV12: // Legacy/deprecated YUV formats case HAL_PIXEL_FORMAT_YCbCr_422_SP: case HAL_PIXEL_FORMAT_YCrCb_420_SP: case HAL_PIXEL_FORMAT_YCbCr_422_I: return true; } // Any OEM format needs to be considered if (format>=0x100 && format<=0x1FF) return true; return false; } GLenum SurfaceTexture::getTextureTarget(uint32_t format) { GLenum target = GL_TEXTURE_2D; #if defined(GL_OES_EGL_image_external) if (isExternalFormat(format)) { target = GL_TEXTURE_EXTERNAL_OES; } #endif return target; } GLenum SurfaceTexture::getCurrentTextureTarget() const { Mutex::Autolock lock(mMutex); return mCurrentTextureTarget; } void SurfaceTexture::getTransformMatrix(float mtx[16]) { Mutex::Autolock lock(mMutex); memcpy(mtx, mCurrentTransformMatrix, sizeof(mCurrentTransformMatrix)); } void SurfaceTexture::computeCurrentTransformMatrix() { LOGV("SurfaceTexture::computeCurrentTransformMatrix"); float xform[16]; for (int i = 0; i < 16; i++) { xform[i] = mtxIdentity[i]; } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { float result[16]; mtxMul(result, xform, mtxFlipH); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { float result[16]; mtxMul(result, xform, mtxFlipV); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { float result[16]; mtxMul(result, xform, mtxRot90); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } sp& buf(mSlots[mCurrentTexture].mGraphicBuffer); float tx, ty, sx, sy; if (!mCurrentCrop.isEmpty()) { // In order to prevent bilinear sampling at the of the crop rectangle we // may need to shrink it by 2 texels in each direction. Normally this // would just need to take 1/2 a texel off each end, but because the // chroma channels will likely be subsampled we need to chop off a whole // texel. This will cause artifacts if someone does nearest sampling // with 1:1 pixel:texel ratio, but it's impossible to simultaneously // accomodate the bilinear and nearest sampling uses. // // If nearest sampling turns out to be a desirable usage of these // textures then we could add the ability to switch a SurfaceTexture to // nearest-mode. Preferably, however, the image producers (video // decoder, camera, etc.) would simply not use a crop rectangle (or at // least not tell the framework about it) so that the GPU can do the // correct edge behavior. int xshrink = 0, yshrink = 0; if (mCurrentCrop.left > 0) { tx = float(mCurrentCrop.left + 1) / float(buf->getWidth()); xshrink++; } else { tx = 0.0f; } if (mCurrentCrop.right < int32_t(buf->getWidth())) { xshrink++; } if (mCurrentCrop.bottom < int32_t(buf->getHeight())) { ty = (float(buf->getHeight() - mCurrentCrop.bottom) + 1.0f) / float(buf->getHeight()); yshrink++; } else { ty = 0.0f; } if (mCurrentCrop.top > 0) { yshrink++; } sx = float(mCurrentCrop.width() - xshrink) / float(buf->getWidth()); sy = float(mCurrentCrop.height() - yshrink) / float(buf->getHeight()); } else { tx = 0.0f; ty = 0.0f; sx = 1.0f; sy = 1.0f; } float crop[16] = { sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, 1, 0, tx, ty, 0, 1, }; float mtxBeforeFlipV[16]; mtxMul(mtxBeforeFlipV, crop, xform); // SurfaceFlinger expects the top of its window textures to be at a Y // coordinate of 0, so SurfaceTexture must behave the same way. We don't // want to expose this to applications, however, so we must add an // additional vertical flip to the transform after all the other transforms. mtxMul(mCurrentTransformMatrix, mtxFlipV, mtxBeforeFlipV); } nsecs_t SurfaceTexture::getTimestamp() { LOGV("SurfaceTexture::getTimestamp"); Mutex::Autolock lock(mMutex); return mCurrentTimestamp; } void SurfaceTexture::setFrameAvailableListener( const sp& listener) { LOGV("SurfaceTexture::setFrameAvailableListener"); Mutex::Autolock lock(mMutex); mFrameAvailableListener = listener; } sp SurfaceTexture::getAllocator() { LOGV("SurfaceTexture::getAllocator"); return mGraphicBufferAlloc->asBinder(); } void SurfaceTexture::freeAllBuffers() { for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { mSlots[i].mGraphicBuffer = 0; mSlots[i].mBufferState = BufferSlot::FREE; if (mSlots[i].mEglImage != EGL_NO_IMAGE_KHR) { eglDestroyImageKHR(mSlots[i].mEglDisplay, mSlots[i].mEglImage); mSlots[i].mEglImage = EGL_NO_IMAGE_KHR; mSlots[i].mEglDisplay = EGL_NO_DISPLAY; } } } EGLImageKHR SurfaceTexture::createImage(EGLDisplay dpy, const sp& graphicBuffer) { EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer(); EGLint attrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE, }; EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs); if (image == EGL_NO_IMAGE_KHR) { EGLint error = eglGetError(); LOGE("error creating EGLImage: %#x", error); } return image; } sp SurfaceTexture::getCurrentBuffer() const { Mutex::Autolock lock(mMutex); return mCurrentTextureBuf; } Rect SurfaceTexture::getCurrentCrop() const { Mutex::Autolock lock(mMutex); return mCurrentCrop; } uint32_t SurfaceTexture::getCurrentTransform() const { Mutex::Autolock lock(mMutex); return mCurrentTransform; } int SurfaceTexture::query(int what, int* outValue) { Mutex::Autolock lock(mMutex); int value; switch (what) { case NATIVE_WINDOW_WIDTH: value = mDefaultWidth; if (!mDefaultWidth && !mDefaultHeight && mCurrentTextureBuf!=0) value = mCurrentTextureBuf->width; break; case NATIVE_WINDOW_HEIGHT: value = mDefaultHeight; if (!mDefaultWidth && !mDefaultHeight && mCurrentTextureBuf!=0) value = mCurrentTextureBuf->height; break; case NATIVE_WINDOW_FORMAT: value = mPixelFormat; break; case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS: value = mSynchronousMode ? (MIN_UNDEQUEUED_BUFFERS-1) : MIN_UNDEQUEUED_BUFFERS; break; default: return BAD_VALUE; } outValue[0] = value; return NO_ERROR; } void SurfaceTexture::dump(String8& result) const { char buffer[1024]; dump(result, "", buffer, 1024); } void SurfaceTexture::dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const { Mutex::Autolock _l(mMutex); snprintf(buffer, SIZE, "%smBufferCount=%d, mSynchronousMode=%d, default-size=[%dx%d], " "mPixelFormat=%d, mTexName=%d\n", prefix, mBufferCount, mSynchronousMode, mDefaultWidth, mDefaultHeight, mPixelFormat, mTexName); result.append(buffer); String8 fifo; int fifoSize = 0; Fifo::const_iterator i(mQueue.begin()); while (i != mQueue.end()) { snprintf(buffer, SIZE, "%02d ", *i++); fifoSize++; fifo.append(buffer); } snprintf(buffer, SIZE, "%scurrent: {crop=[%d,%d,%d,%d], transform=0x%02x, current=%d, target=0x%04x}\n" "%snext : {crop=[%d,%d,%d,%d], transform=0x%02x, FIFO(%d)={%s}}\n" , prefix, mCurrentCrop.left, mCurrentCrop.top, mCurrentCrop.right, mCurrentCrop.bottom, mCurrentTransform, mCurrentTexture, mCurrentTextureTarget, prefix, mNextCrop.left, mNextCrop.top, mNextCrop.right, mNextCrop.bottom, mCurrentTransform, fifoSize, fifo.string() ); result.append(buffer); struct { const char * operator()(int state) const { switch (state) { case BufferSlot::DEQUEUED: return "DEQUEUED"; case BufferSlot::QUEUED: return "QUEUED"; case BufferSlot::FREE: return "FREE"; default: return "Unknown"; } } } stateName; for (int i=0 ; i":" ", i, stateName(slot.mBufferState), slot.mCrop.left, slot.mCrop.top, slot.mCrop.right, slot.mCrop.bottom, slot.mTransform, slot.mTimestamp ); result.append(buffer); } } static void mtxMul(float out[16], const float a[16], const float b[16]) { out[0] = a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3]; out[1] = a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3]; out[2] = a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3]; out[3] = a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3]; out[4] = a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7]; out[5] = a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7]; out[6] = a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7]; out[7] = a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7]; out[8] = a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11]; out[9] = a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11]; out[10] = a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11]; out[11] = a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11]; out[12] = a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15]; out[13] = a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15]; out[14] = a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15]; out[15] = a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15]; } }; // namespace android