/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "SurfaceTexture" //#define LOG_NDEBUG 0 #define GL_GLEXT_PROTOTYPES #define EGL_EGLEXT_PROTOTYPES #include #include #include #include #include #include #include #include #include #include #include #include // This compile option makes SurfaceTexture use the EGL_KHR_fence_sync extension // to synchronize access to the buffers. It will cause dequeueBuffer to stall, // waiting for the GL reads for the buffer being dequeued to complete before // allowing the buffer to be dequeued. #ifdef USE_FENCE_SYNC #ifdef ALLOW_DEQUEUE_CURRENT_BUFFER #error "USE_FENCE_SYNC and ALLOW_DEQUEUE_CURRENT_BUFFER are incompatible" #endif #endif // Macros for including the SurfaceTexture name in log messages #define ST_LOGV(x, ...) ALOGV("[%s] "x, mName.string(), ##__VA_ARGS__) #define ST_LOGD(x, ...) ALOGD("[%s] "x, mName.string(), ##__VA_ARGS__) #define ST_LOGI(x, ...) ALOGI("[%s] "x, mName.string(), ##__VA_ARGS__) #define ST_LOGW(x, ...) ALOGW("[%s] "x, mName.string(), ##__VA_ARGS__) #define ST_LOGE(x, ...) ALOGE("[%s] "x, mName.string(), ##__VA_ARGS__) namespace android { // Transform matrices static float mtxIdentity[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }; static float mtxFlipH[16] = { -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxFlipV[16] = { 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static float mtxRot90[16] = { 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxRot180[16] = { -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, }; static float mtxRot270[16] = { 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static void mtxMul(float out[16], const float a[16], const float b[16]); SurfaceTexture::SurfaceTexture(GLuint tex, bool allowSynchronousMode, GLenum texTarget, bool useFenceSync) : BufferQueue(allowSynchronousMode), mCurrentTransform(0), mCurrentTimestamp(0), mTexName(tex), #ifdef USE_FENCE_SYNC mUseFenceSync(useFenceSync), #else mUseFenceSync(false), #endif mTexTarget(texTarget) { ST_LOGV("SurfaceTexture"); memcpy(mCurrentTransformMatrix, mtxIdentity, sizeof(mCurrentTransformMatrix)); } SurfaceTexture::~SurfaceTexture() { ST_LOGV("~SurfaceTexture"); freeAllBuffersLocked(); } status_t SurfaceTexture::setBufferCountServer(int bufferCount) { Mutex::Autolock lock(mMutex); return setBufferCountServerLocked(bufferCount); } status_t SurfaceTexture::setDefaultBufferSize(uint32_t w, uint32_t h) { ST_LOGV("setDefaultBufferSize: w=%d, h=%d", w, h); if (!w || !h) { ST_LOGE("setDefaultBufferSize: dimensions cannot be 0 (w=%d, h=%d)", w, h); return BAD_VALUE; } Mutex::Autolock lock(mMutex); mDefaultWidth = w; mDefaultHeight = h; return OK; } status_t SurfaceTexture::updateTexImage() { ST_LOGV("updateTexImage"); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("calling updateTexImage() on an abandoned SurfaceTexture"); return NO_INIT; } // In asynchronous mode the list is guaranteed to be one buffer // deep, while in synchronous mode we use the oldest buffer. if (!mQueue.empty()) { Fifo::iterator front(mQueue.begin()); int buf = *front; // Update the GL texture object. EGLImageKHR image = mSlots[buf].mEglImage; EGLDisplay dpy = eglGetCurrentDisplay(); if (image == EGL_NO_IMAGE_KHR) { if (mSlots[buf].mGraphicBuffer == 0) { ST_LOGE("buffer at slot %d is null", buf); return BAD_VALUE; } image = createImage(dpy, mSlots[buf].mGraphicBuffer); mSlots[buf].mEglImage = image; mSlots[buf].mEglDisplay = dpy; if (image == EGL_NO_IMAGE_KHR) { // NOTE: if dpy was invalid, createImage() is guaranteed to // fail. so we'd end up here. return -EINVAL; } } GLint error; while ((error = glGetError()) != GL_NO_ERROR) { ST_LOGW("updateTexImage: clearing GL error: %#04x", error); } glBindTexture(mTexTarget, mTexName); glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image); bool failed = false; while ((error = glGetError()) != GL_NO_ERROR) { ST_LOGE("error binding external texture image %p (slot %d): %#04x", image, buf, error); failed = true; } if (failed) { return -EINVAL; } if (mCurrentTexture != INVALID_BUFFER_SLOT) { if (mUseFenceSync) { EGLSyncKHR fence = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL); if (fence == EGL_NO_SYNC_KHR) { ALOGE("updateTexImage: error creating fence: %#x", eglGetError()); return -EINVAL; } glFlush(); mSlots[mCurrentTexture].mFence = fence; } } ST_LOGV("updateTexImage: (slot=%d buf=%p) -> (slot=%d buf=%p)", mCurrentTexture, mCurrentTextureBuf != NULL ? mCurrentTextureBuf->handle : 0, buf, mSlots[buf].mGraphicBuffer->handle); if (mCurrentTexture != INVALID_BUFFER_SLOT) { // The current buffer becomes FREE if it was still in the queued // state. If it has already been given to the client // (synchronous mode), then it stays in DEQUEUED state. if (mSlots[mCurrentTexture].mBufferState == BufferSlot::QUEUED) { mSlots[mCurrentTexture].mBufferState = BufferSlot::FREE; } } // Update the SurfaceTexture state. mCurrentTexture = buf; mCurrentTextureBuf = mSlots[buf].mGraphicBuffer; mCurrentCrop = mSlots[buf].mCrop; mCurrentTransform = mSlots[buf].mTransform; mCurrentScalingMode = mSlots[buf].mScalingMode; mCurrentTimestamp = mSlots[buf].mTimestamp; computeCurrentTransformMatrix(); // Now that we've passed the point at which failures can happen, // it's safe to remove the buffer from the front of the queue. mQueue.erase(front); mDequeueCondition.signal(); } else { // We always bind the texture even if we don't update its contents. glBindTexture(mTexTarget, mTexName); } return OK; } bool SurfaceTexture::isExternalFormat(uint32_t format) { switch (format) { // supported YUV formats case HAL_PIXEL_FORMAT_YV12: // Legacy/deprecated YUV formats case HAL_PIXEL_FORMAT_YCbCr_422_SP: case HAL_PIXEL_FORMAT_YCrCb_420_SP: case HAL_PIXEL_FORMAT_YCbCr_422_I: return true; } // Any OEM format needs to be considered if (format>=0x100 && format<=0x1FF) return true; return false; } GLenum SurfaceTexture::getCurrentTextureTarget() const { return mTexTarget; } void SurfaceTexture::getTransformMatrix(float mtx[16]) { Mutex::Autolock lock(mMutex); memcpy(mtx, mCurrentTransformMatrix, sizeof(mCurrentTransformMatrix)); } void SurfaceTexture::computeCurrentTransformMatrix() { ST_LOGV("computeCurrentTransformMatrix"); float xform[16]; for (int i = 0; i < 16; i++) { xform[i] = mtxIdentity[i]; } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { float result[16]; mtxMul(result, xform, mtxFlipH); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { float result[16]; mtxMul(result, xform, mtxFlipV); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { float result[16]; mtxMul(result, xform, mtxRot90); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } sp& buf(mSlots[mCurrentTexture].mGraphicBuffer); float tx, ty, sx, sy; if (!mCurrentCrop.isEmpty()) { // In order to prevent bilinear sampling at the of the crop rectangle we // may need to shrink it by 2 texels in each direction. Normally this // would just need to take 1/2 a texel off each end, but because the // chroma channels will likely be subsampled we need to chop off a whole // texel. This will cause artifacts if someone does nearest sampling // with 1:1 pixel:texel ratio, but it's impossible to simultaneously // accomodate the bilinear and nearest sampling uses. // // If nearest sampling turns out to be a desirable usage of these // textures then we could add the ability to switch a SurfaceTexture to // nearest-mode. Preferably, however, the image producers (video // decoder, camera, etc.) would simply not use a crop rectangle (or at // least not tell the framework about it) so that the GPU can do the // correct edge behavior. int xshrink = 0, yshrink = 0; if (mCurrentCrop.left > 0) { tx = float(mCurrentCrop.left + 1) / float(buf->getWidth()); xshrink++; } else { tx = 0.0f; } if (mCurrentCrop.right < int32_t(buf->getWidth())) { xshrink++; } if (mCurrentCrop.bottom < int32_t(buf->getHeight())) { ty = (float(buf->getHeight() - mCurrentCrop.bottom) + 1.0f) / float(buf->getHeight()); yshrink++; } else { ty = 0.0f; } if (mCurrentCrop.top > 0) { yshrink++; } sx = float(mCurrentCrop.width() - xshrink) / float(buf->getWidth()); sy = float(mCurrentCrop.height() - yshrink) / float(buf->getHeight()); } else { tx = 0.0f; ty = 0.0f; sx = 1.0f; sy = 1.0f; } float crop[16] = { sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, 1, 0, tx, ty, 0, 1, }; float mtxBeforeFlipV[16]; mtxMul(mtxBeforeFlipV, crop, xform); // SurfaceFlinger expects the top of its window textures to be at a Y // coordinate of 0, so SurfaceTexture must behave the same way. We don't // want to expose this to applications, however, so we must add an // additional vertical flip to the transform after all the other transforms. mtxMul(mCurrentTransformMatrix, mtxFlipV, mtxBeforeFlipV); } nsecs_t SurfaceTexture::getTimestamp() { ST_LOGV("getTimestamp"); Mutex::Autolock lock(mMutex); return mCurrentTimestamp; } void SurfaceTexture::setFrameAvailableListener( const sp& listener) { ST_LOGV("setFrameAvailableListener"); Mutex::Autolock lock(mMutex); mFrameAvailableListener = listener; } EGLImageKHR SurfaceTexture::createImage(EGLDisplay dpy, const sp& graphicBuffer) { EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer(); EGLint attrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE, }; EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs); if (image == EGL_NO_IMAGE_KHR) { EGLint error = eglGetError(); ST_LOGE("error creating EGLImage: %#x", error); } return image; } sp SurfaceTexture::getCurrentBuffer() const { Mutex::Autolock lock(mMutex); return mCurrentTextureBuf; } Rect SurfaceTexture::getCurrentCrop() const { Mutex::Autolock lock(mMutex); return mCurrentCrop; } uint32_t SurfaceTexture::getCurrentTransform() const { Mutex::Autolock lock(mMutex); return mCurrentTransform; } uint32_t SurfaceTexture::getCurrentScalingMode() const { Mutex::Autolock lock(mMutex); return mCurrentScalingMode; } bool SurfaceTexture::isSynchronousMode() const { Mutex::Autolock lock(mMutex); return mSynchronousMode; } int SurfaceTexture::query(int what, int* outValue) { Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("query: SurfaceTexture has been abandoned!"); return NO_INIT; } int value; switch (what) { case NATIVE_WINDOW_WIDTH: value = mDefaultWidth; break; case NATIVE_WINDOW_HEIGHT: value = mDefaultHeight; break; case NATIVE_WINDOW_FORMAT: value = mPixelFormat; break; case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS: value = mSynchronousMode ? (MIN_UNDEQUEUED_BUFFERS-1) : MIN_UNDEQUEUED_BUFFERS; break; default: return BAD_VALUE; } outValue[0] = value; return NO_ERROR; } void SurfaceTexture::abandon() { Mutex::Autolock lock(mMutex); mQueue.clear(); mAbandoned = true; mCurrentTextureBuf.clear(); freeAllBuffersLocked(); mDequeueCondition.signal(); } void SurfaceTexture::setName(const String8& name) { mName = name; } void SurfaceTexture::dump(String8& result) const { char buffer[1024]; dump(result, "", buffer, 1024); } void SurfaceTexture::dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const { Mutex::Autolock _l(mMutex); snprintf(buffer, SIZE, "%smBufferCount=%d, mSynchronousMode=%d, default-size=[%dx%d], " "mPixelFormat=%d, mTexName=%d\n", prefix, mBufferCount, mSynchronousMode, mDefaultWidth, mDefaultHeight, mPixelFormat, mTexName); result.append(buffer); String8 fifo; int fifoSize = 0; Fifo::const_iterator i(mQueue.begin()); while (i != mQueue.end()) { snprintf(buffer, SIZE, "%02d ", *i++); fifoSize++; fifo.append(buffer); } snprintf(buffer, SIZE, "%scurrent: {crop=[%d,%d,%d,%d], transform=0x%02x, current=%d}\n" "%snext : {crop=[%d,%d,%d,%d], transform=0x%02x, FIFO(%d)={%s}}\n" , prefix, mCurrentCrop.left, mCurrentCrop.top, mCurrentCrop.right, mCurrentCrop.bottom, mCurrentTransform, mCurrentTexture, prefix, mNextCrop.left, mNextCrop.top, mNextCrop.right, mNextCrop.bottom, mNextTransform, fifoSize, fifo.string() ); result.append(buffer); struct { const char * operator()(int state) const { switch (state) { case BufferSlot::DEQUEUED: return "DEQUEUED"; case BufferSlot::QUEUED: return "QUEUED"; case BufferSlot::FREE: return "FREE"; default: return "Unknown"; } } } stateName; for (int i=0 ; i":" ", i, stateName(slot.mBufferState), slot.mCrop.left, slot.mCrop.top, slot.mCrop.right, slot.mCrop.bottom, slot.mTransform, slot.mTimestamp ); result.append(buffer); const sp& buf(slot.mGraphicBuffer); if (buf != NULL) { snprintf(buffer, SIZE, ", %p [%4ux%4u:%4u,%3X]", buf->handle, buf->width, buf->height, buf->stride, buf->format); result.append(buffer); } result.append("\n"); } } static void mtxMul(float out[16], const float a[16], const float b[16]) { out[0] = a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3]; out[1] = a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3]; out[2] = a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3]; out[3] = a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3]; out[4] = a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7]; out[5] = a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7]; out[6] = a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7]; out[7] = a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7]; out[8] = a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11]; out[9] = a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11]; out[10] = a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11]; out[11] = a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11]; out[12] = a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15]; out[13] = a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15]; out[14] = a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15]; out[15] = a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15]; } }; // namespace android