/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "SurfaceTexture_test" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace android { class GLTest : public ::testing::Test { protected: GLTest(): mEglDisplay(EGL_NO_DISPLAY), mEglSurface(EGL_NO_SURFACE), mEglContext(EGL_NO_CONTEXT) { } virtual void SetUp() { const ::testing::TestInfo* const testInfo = ::testing::UnitTest::GetInstance()->current_test_info(); ALOGV("Begin test: %s.%s", testInfo->test_case_name(), testInfo->name()); mEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY); ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_NE(EGL_NO_DISPLAY, mEglDisplay); EGLint majorVersion; EGLint minorVersion; EXPECT_TRUE(eglInitialize(mEglDisplay, &majorVersion, &minorVersion)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); RecordProperty("EglVersionMajor", majorVersion); RecordProperty("EglVersionMajor", minorVersion); EGLint numConfigs = 0; EXPECT_TRUE(eglChooseConfig(mEglDisplay, getConfigAttribs(), &mGlConfig, 1, &numConfigs)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); char* displaySecsEnv = getenv("GLTEST_DISPLAY_SECS"); if (displaySecsEnv != NULL) { mDisplaySecs = atoi(displaySecsEnv); if (mDisplaySecs < 0) { mDisplaySecs = 0; } } else { mDisplaySecs = 0; } if (mDisplaySecs > 0) { mComposerClient = new SurfaceComposerClient; ASSERT_EQ(NO_ERROR, mComposerClient->initCheck()); mSurfaceControl = mComposerClient->createSurface( String8("Test Surface"), getSurfaceWidth(), getSurfaceHeight(), PIXEL_FORMAT_RGB_888, 0); ASSERT_TRUE(mSurfaceControl != NULL); ASSERT_TRUE(mSurfaceControl->isValid()); SurfaceComposerClient::openGlobalTransaction(); ASSERT_EQ(NO_ERROR, mSurfaceControl->setLayer(0x7FFFFFFF)); ASSERT_EQ(NO_ERROR, mSurfaceControl->show()); SurfaceComposerClient::closeGlobalTransaction(); sp window = mSurfaceControl->getSurface(); mEglSurface = eglCreateWindowSurface(mEglDisplay, mGlConfig, window.get(), NULL); } else { EGLint pbufferAttribs[] = { EGL_WIDTH, getSurfaceWidth(), EGL_HEIGHT, getSurfaceHeight(), EGL_NONE }; mEglSurface = eglCreatePbufferSurface(mEglDisplay, mGlConfig, pbufferAttribs); } ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_NE(EGL_NO_SURFACE, mEglSurface); mEglContext = eglCreateContext(mEglDisplay, mGlConfig, EGL_NO_CONTEXT, getContextAttribs()); ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_NE(EGL_NO_CONTEXT, mEglContext); EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); EGLint w, h; EXPECT_TRUE(eglQuerySurface(mEglDisplay, mEglSurface, EGL_WIDTH, &w)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); EXPECT_TRUE(eglQuerySurface(mEglDisplay, mEglSurface, EGL_HEIGHT, &h)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); RecordProperty("EglSurfaceWidth", w); RecordProperty("EglSurfaceHeight", h); glViewport(0, 0, w, h); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); } virtual void TearDown() { // Display the result if (mDisplaySecs > 0 && mEglSurface != EGL_NO_SURFACE) { eglSwapBuffers(mEglDisplay, mEglSurface); sleep(mDisplaySecs); } if (mComposerClient != NULL) { mComposerClient->dispose(); } if (mEglContext != EGL_NO_CONTEXT) { eglDestroyContext(mEglDisplay, mEglContext); } if (mEglSurface != EGL_NO_SURFACE) { eglDestroySurface(mEglDisplay, mEglSurface); } if (mEglDisplay != EGL_NO_DISPLAY) { eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); eglTerminate(mEglDisplay); } ASSERT_EQ(EGL_SUCCESS, eglGetError()); const ::testing::TestInfo* const testInfo = ::testing::UnitTest::GetInstance()->current_test_info(); ALOGV("End test: %s.%s", testInfo->test_case_name(), testInfo->name()); } virtual EGLint const* getConfigAttribs() { static EGLint sDefaultConfigAttribs[] = { EGL_SURFACE_TYPE, EGL_PBUFFER_BIT, EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT, EGL_RED_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_BLUE_SIZE, 8, EGL_ALPHA_SIZE, 8, EGL_DEPTH_SIZE, 16, EGL_STENCIL_SIZE, 8, EGL_NONE }; return sDefaultConfigAttribs; } virtual EGLint const* getContextAttribs() { static EGLint sDefaultContextAttribs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE }; return sDefaultContextAttribs; } virtual EGLint getSurfaceWidth() { return 512; } virtual EGLint getSurfaceHeight() { return 512; } ::testing::AssertionResult checkPixel(int x, int y, int r, int g, int b, int a, int tolerance=2) { GLubyte pixel[4]; String8 msg; glReadPixels(x, y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixel); GLenum err = glGetError(); if (err != GL_NO_ERROR) { msg += String8::format("error reading pixel: %#x", err); while ((err = glGetError()) != GL_NO_ERROR) { msg += String8::format(", %#x", err); } fprintf(stderr, "pixel check failure: %s\n", msg.string()); return ::testing::AssertionFailure( ::testing::Message(msg.string())); } if (r >= 0 && abs(r - int(pixel[0])) > tolerance) { msg += String8::format("r(%d isn't %d)", pixel[0], r); } if (g >= 0 && abs(g - int(pixel[1])) > tolerance) { if (!msg.isEmpty()) { msg += " "; } msg += String8::format("g(%d isn't %d)", pixel[1], g); } if (b >= 0 && abs(b - int(pixel[2])) > tolerance) { if (!msg.isEmpty()) { msg += " "; } msg += String8::format("b(%d isn't %d)", pixel[2], b); } if (a >= 0 && abs(a - int(pixel[3])) > tolerance) { if (!msg.isEmpty()) { msg += " "; } msg += String8::format("a(%d isn't %d)", pixel[3], a); } if (!msg.isEmpty()) { fprintf(stderr, "pixel check failure: %s\n", msg.string()); return ::testing::AssertionFailure( ::testing::Message(msg.string())); } else { return ::testing::AssertionSuccess(); } } ::testing::AssertionResult assertRectEq(const Rect &r1, const Rect &r2, int tolerance=1) { String8 msg; if (abs(r1.left - r2.left) > tolerance) { msg += String8::format("left(%d isn't %d)", r1.left, r2.left); } if (abs(r1.top - r2.top) > tolerance) { if (!msg.isEmpty()) { msg += " "; } msg += String8::format("top(%d isn't %d)", r1.top, r2.top); } if (abs(r1.right - r2.right) > tolerance) { if (!msg.isEmpty()) { msg += " "; } msg += String8::format("right(%d isn't %d)", r1.right, r2.right); } if (abs(r1.bottom - r2.bottom) > tolerance) { if (!msg.isEmpty()) { msg += " "; } msg += String8::format("bottom(%d isn't %d)", r1.bottom, r2.bottom); } if (!msg.isEmpty()) { msg += String8::format(" R1: [%d %d %d %d] R2: [%d %d %d %d]", r1.left, r1.top, r1.right, r1.bottom, r2.left, r2.top, r2.right, r2.bottom); fprintf(stderr, "assertRectEq: %s\n", msg.string()); return ::testing::AssertionFailure( ::testing::Message(msg.string())); } else { return ::testing::AssertionSuccess(); } } int mDisplaySecs; sp mComposerClient; sp mSurfaceControl; EGLDisplay mEglDisplay; EGLSurface mEglSurface; EGLContext mEglContext; EGLConfig mGlConfig; }; static void loadShader(GLenum shaderType, const char* pSource, GLuint* outShader) { GLuint shader = glCreateShader(shaderType); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); if (shader) { glShaderSource(shader, 1, &pSource, NULL); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glCompileShader(shader); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); GLint compiled = 0; glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); if (!compiled) { GLint infoLen = 0; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); if (infoLen) { char* buf = (char*) malloc(infoLen); if (buf) { glGetShaderInfoLog(shader, infoLen, NULL, buf); printf("Shader compile log:\n%s\n", buf); free(buf); FAIL(); } } else { char* buf = (char*) malloc(0x1000); if (buf) { glGetShaderInfoLog(shader, 0x1000, NULL, buf); printf("Shader compile log:\n%s\n", buf); free(buf); FAIL(); } } glDeleteShader(shader); shader = 0; } } ASSERT_TRUE(shader != 0); *outShader = shader; } static void createProgram(const char* pVertexSource, const char* pFragmentSource, GLuint* outPgm) { GLuint vertexShader, fragmentShader; { SCOPED_TRACE("compiling vertex shader"); ASSERT_NO_FATAL_FAILURE(loadShader(GL_VERTEX_SHADER, pVertexSource, &vertexShader)); } { SCOPED_TRACE("compiling fragment shader"); ASSERT_NO_FATAL_FAILURE(loadShader(GL_FRAGMENT_SHADER, pFragmentSource, &fragmentShader)); } GLuint program = glCreateProgram(); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); if (program) { glAttachShader(program, vertexShader); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glAttachShader(program, fragmentShader); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glLinkProgram(program); GLint linkStatus = GL_FALSE; glGetProgramiv(program, GL_LINK_STATUS, &linkStatus); if (linkStatus != GL_TRUE) { GLint bufLength = 0; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength); if (bufLength) { char* buf = (char*) malloc(bufLength); if (buf) { glGetProgramInfoLog(program, bufLength, NULL, buf); printf("Program link log:\n%s\n", buf); free(buf); FAIL(); } } glDeleteProgram(program); program = 0; } } glDeleteShader(vertexShader); glDeleteShader(fragmentShader); ASSERT_TRUE(program != 0); *outPgm = program; } static int abs(int value) { return value > 0 ? value : -value; } // XXX: Code above this point should live elsewhere class SurfaceTextureGLTest : public GLTest { protected: enum { TEX_ID = 123 }; virtual void SetUp() { GLTest::SetUp(); mST = new SurfaceTexture(TEX_ID); mSTC = new SurfaceTextureClient(mST->getBufferQueue()); mANW = mSTC; mTextureRenderer = new TextureRenderer(TEX_ID, mST); ASSERT_NO_FATAL_FAILURE(mTextureRenderer->SetUp()); mFW = new FrameWaiter; mST->setFrameAvailableListener(mFW); } virtual void TearDown() { mANW.clear(); mSTC.clear(); mST.clear(); GLTest::TearDown(); } void drawTexture() { mTextureRenderer->drawTexture(); } class TextureRenderer: public RefBase { public: TextureRenderer(GLuint texName, const sp& st): mTexName(texName), mST(st) { } void SetUp() { const char vsrc[] = "attribute vec4 vPosition;\n" "varying vec2 texCoords;\n" "uniform mat4 texMatrix;\n" "void main() {\n" " vec2 vTexCoords = 0.5 * (vPosition.xy + vec2(1.0, 1.0));\n" " texCoords = (texMatrix * vec4(vTexCoords, 0.0, 1.0)).xy;\n" " gl_Position = vPosition;\n" "}\n"; const char fsrc[] = "#extension GL_OES_EGL_image_external : require\n" "precision mediump float;\n" "uniform samplerExternalOES texSampler;\n" "varying vec2 texCoords;\n" "void main() {\n" " gl_FragColor = texture2D(texSampler, texCoords);\n" "}\n"; { SCOPED_TRACE("creating shader program"); ASSERT_NO_FATAL_FAILURE(createProgram(vsrc, fsrc, &mPgm)); } mPositionHandle = glGetAttribLocation(mPgm, "vPosition"); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); ASSERT_NE(-1, mPositionHandle); mTexSamplerHandle = glGetUniformLocation(mPgm, "texSampler"); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); ASSERT_NE(-1, mTexSamplerHandle); mTexMatrixHandle = glGetUniformLocation(mPgm, "texMatrix"); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); ASSERT_NE(-1, mTexMatrixHandle); } // drawTexture draws the SurfaceTexture over the entire GL viewport. void drawTexture() { static const GLfloat triangleVertices[] = { -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, 1.0f, 1.0f, }; glVertexAttribPointer(mPositionHandle, 2, GL_FLOAT, GL_FALSE, 0, triangleVertices); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glEnableVertexAttribArray(mPositionHandle); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glUseProgram(mPgm); glUniform1i(mTexSamplerHandle, 0); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glBindTexture(GL_TEXTURE_EXTERNAL_OES, mTexName); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); // XXX: These calls are not needed for GL_TEXTURE_EXTERNAL_OES as // they're setting the defautls for that target, but when hacking // things to use GL_TEXTURE_2D they are needed to achieve the same // behavior. glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MIN_FILTER, GL_LINEAR); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MAG_FILTER, GL_LINEAR); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); GLfloat texMatrix[16]; mST->getTransformMatrix(texMatrix); glUniformMatrix4fv(mTexMatrixHandle, 1, GL_FALSE, texMatrix); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); } GLuint mTexName; sp mST; GLuint mPgm; GLint mPositionHandle; GLint mTexSamplerHandle; GLint mTexMatrixHandle; }; class FrameWaiter : public SurfaceTexture::FrameAvailableListener { public: FrameWaiter(): mPendingFrames(0) { } void waitForFrame() { Mutex::Autolock lock(mMutex); while (mPendingFrames == 0) { mCondition.wait(mMutex); } mPendingFrames--; } virtual void onFrameAvailable() { Mutex::Autolock lock(mMutex); mPendingFrames++; mCondition.signal(); } int mPendingFrames; Mutex mMutex; Condition mCondition; }; // Note that SurfaceTexture will lose the notifications // onBuffersReleased and onFrameAvailable as there is currently // no way to forward the events. This DisconnectWaiter will not let the // disconnect finish until finishDisconnect() is called. It will // also block until a disconnect is called class DisconnectWaiter : public BufferQueue::ConsumerListener { public: DisconnectWaiter () : mWaitForDisconnect(false), mPendingFrames(0) { } void waitForFrame() { Mutex::Autolock lock(mMutex); while (mPendingFrames == 0) { mFrameCondition.wait(mMutex); } mPendingFrames--; } virtual void onFrameAvailable() { Mutex::Autolock lock(mMutex); mPendingFrames++; mFrameCondition.signal(); } virtual void onBuffersReleased() { Mutex::Autolock lock(mMutex); while (!mWaitForDisconnect) { mDisconnectCondition.wait(mMutex); } } void finishDisconnect() { Mutex::Autolock lock(mMutex); mWaitForDisconnect = true; mDisconnectCondition.signal(); } private: Mutex mMutex; bool mWaitForDisconnect; Condition mDisconnectCondition; int mPendingFrames; Condition mFrameCondition; }; sp mST; sp mSTC; sp mANW; sp mTextureRenderer; sp mFW; }; // Fill a YV12 buffer with a multi-colored checkerboard pattern void fillYV12Buffer(uint8_t* buf, int w, int h, int stride) { const int blockWidth = w > 16 ? w / 16 : 1; const int blockHeight = h > 16 ? h / 16 : 1; const int yuvTexOffsetY = 0; int yuvTexStrideY = stride; int yuvTexOffsetV = yuvTexStrideY * h; int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf; int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * h/2; int yuvTexStrideU = yuvTexStrideV; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { int parityX = (x / blockWidth) & 1; int parityY = (y / blockHeight) & 1; unsigned char intensity = (parityX ^ parityY) ? 63 : 191; buf[yuvTexOffsetY + (y * yuvTexStrideY) + x] = intensity; if (x < w / 2 && y < h / 2) { buf[yuvTexOffsetU + (y * yuvTexStrideU) + x] = intensity; if (x * 2 < w / 2 && y * 2 < h / 2) { buf[yuvTexOffsetV + (y*2 * yuvTexStrideV) + x*2 + 0] = buf[yuvTexOffsetV + (y*2 * yuvTexStrideV) + x*2 + 1] = buf[yuvTexOffsetV + ((y*2+1) * yuvTexStrideV) + x*2 + 0] = buf[yuvTexOffsetV + ((y*2+1) * yuvTexStrideV) + x*2 + 1] = intensity; } } } } } // Fill a YV12 buffer with red outside a given rectangle and green inside it. void fillYV12BufferRect(uint8_t* buf, int w, int h, int stride, const android_native_rect_t& rect) { const int yuvTexOffsetY = 0; int yuvTexStrideY = stride; int yuvTexOffsetV = yuvTexStrideY * h; int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf; int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * h/2; int yuvTexStrideU = yuvTexStrideV; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { bool inside = rect.left <= x && x < rect.right && rect.top <= y && y < rect.bottom; buf[yuvTexOffsetY + (y * yuvTexStrideY) + x] = inside ? 240 : 64; if (x < w / 2 && y < h / 2) { bool inside = rect.left <= 2*x && 2*x < rect.right && rect.top <= 2*y && 2*y < rect.bottom; buf[yuvTexOffsetU + (y * yuvTexStrideU) + x] = 16; buf[yuvTexOffsetV + (y * yuvTexStrideV) + x] = inside ? 16 : 255; } } } } void fillRGBA8Buffer(uint8_t* buf, int w, int h, int stride) { const size_t PIXEL_SIZE = 4; for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { off_t offset = (y * stride + x) * PIXEL_SIZE; for (int c = 0; c < 4; c++) { int parityX = (x / (1 << (c+2))) & 1; int parityY = (y / (1 << (c+2))) & 1; buf[offset + c] = (parityX ^ parityY) ? 231 : 35; } } } } void fillRGBA8BufferSolid(uint8_t* buf, int w, int h, int stride, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { const size_t PIXEL_SIZE = 4; for (int y = 0; y < h; y++) { for (int x = 0; x < h; x++) { off_t offset = (y * stride + x) * PIXEL_SIZE; buf[offset + 0] = r; buf[offset + 1] = g; buf[offset + 2] = b; buf[offset + 3] = a; } } } // Produce a single RGBA8 frame by filling a buffer with a checkerboard pattern // using the CPU. This assumes that the ANativeWindow is already configured to // allow this to be done (e.g. the format is set to RGBA8). // // Calls to this function should be wrapped in an ASSERT_NO_FATAL_FAILURE(). void produceOneRGBA8Frame(const sp& anw) { android_native_buffer_t* anb; ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(), &anb)); ASSERT_TRUE(anb != NULL); sp buf(new GraphicBuffer(anb, false)); uint8_t* img = NULL; ASSERT_EQ(NO_ERROR, buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img))); fillRGBA8Buffer(img, buf->getWidth(), buf->getHeight(), buf->getStride()); ASSERT_EQ(NO_ERROR, buf->unlock()); ASSERT_EQ(NO_ERROR, anw->queueBuffer(anw.get(), buf->getNativeBuffer(), -1)); } TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferNpot) { const int texWidth = 64; const int texHeight = 66; ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(), texWidth, texHeight, HAL_PIXEL_FORMAT_YV12)); ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(), GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN)); ANativeWindowBuffer* anb; ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); ASSERT_TRUE(anb != NULL); sp buf(new GraphicBuffer(anb, false)); // Fill the buffer with the a checkerboard pattern uint8_t* img = NULL; buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); fillYV12Buffer(img, texWidth, texHeight, buf->getStride()); buf->unlock(); ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(), -1)); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, texWidth, texHeight); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 255, 127, 255, 255)); EXPECT_TRUE(checkPixel(63, 0, 0, 133, 0, 255)); EXPECT_TRUE(checkPixel(63, 65, 0, 133, 0, 255)); EXPECT_TRUE(checkPixel( 0, 65, 255, 127, 255, 255)); EXPECT_TRUE(checkPixel(22, 44, 255, 127, 255, 255)); EXPECT_TRUE(checkPixel(45, 52, 255, 127, 255, 255)); EXPECT_TRUE(checkPixel(52, 51, 98, 255, 73, 255)); EXPECT_TRUE(checkPixel( 7, 31, 155, 0, 118, 255)); EXPECT_TRUE(checkPixel(31, 9, 107, 24, 87, 255)); EXPECT_TRUE(checkPixel(29, 35, 255, 127, 255, 255)); EXPECT_TRUE(checkPixel(36, 22, 155, 29, 0, 255)); } TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferPow2) { const int texWidth = 64; const int texHeight = 64; ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(), texWidth, texHeight, HAL_PIXEL_FORMAT_YV12)); ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(), GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN)); ANativeWindowBuffer* anb; ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); ASSERT_TRUE(anb != NULL); sp buf(new GraphicBuffer(anb, false)); // Fill the buffer with the a checkerboard pattern uint8_t* img = NULL; buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); fillYV12Buffer(img, texWidth, texHeight, buf->getStride()); buf->unlock(); ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(), -1)); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, texWidth, texHeight); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 0, 133, 0, 255)); EXPECT_TRUE(checkPixel(63, 0, 255, 127, 255, 255)); EXPECT_TRUE(checkPixel(63, 63, 0, 133, 0, 255)); EXPECT_TRUE(checkPixel( 0, 63, 255, 127, 255, 255)); EXPECT_TRUE(checkPixel(22, 19, 100, 255, 74, 255)); EXPECT_TRUE(checkPixel(45, 11, 100, 255, 74, 255)); EXPECT_TRUE(checkPixel(52, 12, 155, 0, 181, 255)); EXPECT_TRUE(checkPixel( 7, 32, 150, 237, 170, 255)); EXPECT_TRUE(checkPixel(31, 54, 0, 71, 117, 255)); EXPECT_TRUE(checkPixel(29, 28, 0, 133, 0, 255)); EXPECT_TRUE(checkPixel(36, 41, 100, 232, 255, 255)); } TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferWithCrop) { const int texWidth = 64; const int texHeight = 66; ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(), texWidth, texHeight, HAL_PIXEL_FORMAT_YV12)); ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(), GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN)); android_native_rect_t crops[] = { {4, 6, 22, 36}, {0, 6, 22, 36}, {4, 0, 22, 36}, {4, 6, texWidth, 36}, {4, 6, 22, texHeight}, }; for (int i = 0; i < 5; i++) { const android_native_rect_t& crop(crops[i]); SCOPED_TRACE(String8::format("rect{ l: %d t: %d r: %d b: %d }", crop.left, crop.top, crop.right, crop.bottom).string()); ASSERT_EQ(NO_ERROR, native_window_set_crop(mANW.get(), &crop)); ANativeWindowBuffer* anb; ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); ASSERT_TRUE(anb != NULL); sp buf(new GraphicBuffer(anb, false)); uint8_t* img = NULL; buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); fillYV12BufferRect(img, texWidth, texHeight, buf->getStride(), crop); buf->unlock(); ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(), -1)); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, 64, 64); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel(63, 0, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel(63, 63, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel( 0, 63, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel(25, 14, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel(35, 31, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel(57, 6, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel( 5, 42, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel(32, 33, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel(16, 26, 82, 255, 35, 255)); EXPECT_TRUE(checkPixel(46, 51, 82, 255, 35, 255)); } } // This test is intended to catch synchronization bugs between the CPU-written // and GPU-read buffers. TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BuffersRepeatedly) { enum { texWidth = 16 }; enum { texHeight = 16 }; enum { numFrames = 1024 }; ASSERT_EQ(NO_ERROR, mST->setSynchronousMode(true)); ASSERT_EQ(NO_ERROR, mST->setDefaultMaxBufferCount(2)); ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(), texWidth, texHeight, HAL_PIXEL_FORMAT_YV12)); ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(), GRALLOC_USAGE_SW_WRITE_OFTEN)); struct TestPixel { int x; int y; }; const TestPixel testPixels[] = { { 4, 11 }, { 12, 14 }, { 7, 2 }, }; enum {numTestPixels = sizeof(testPixels) / sizeof(testPixels[0])}; class ProducerThread : public Thread { public: ProducerThread(const sp& anw, const TestPixel* testPixels): mANW(anw), mTestPixels(testPixels) { } virtual ~ProducerThread() { } virtual bool threadLoop() { for (int i = 0; i < numFrames; i++) { ANativeWindowBuffer* anb; if (native_window_dequeue_buffer_and_wait(mANW.get(), &anb) != NO_ERROR) { return false; } if (anb == NULL) { return false; } sp buf(new GraphicBuffer(anb, false)); const int yuvTexOffsetY = 0; int stride = buf->getStride(); int yuvTexStrideY = stride; int yuvTexOffsetV = yuvTexStrideY * texHeight; int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf; int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * texHeight/2; int yuvTexStrideU = yuvTexStrideV; uint8_t* img = NULL; buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); // Gray out all the test pixels first, so we're more likely to // see a failure if GL is still texturing from the buffer we // just dequeued. for (int j = 0; j < numTestPixels; j++) { int x = mTestPixels[j].x; int y = mTestPixels[j].y; uint8_t value = 128; img[y*stride + x] = value; } // Fill the buffer with gray. for (int y = 0; y < texHeight; y++) { for (int x = 0; x < texWidth; x++) { img[yuvTexOffsetY + y*yuvTexStrideY + x] = 128; img[yuvTexOffsetU + (y/2)*yuvTexStrideU + x/2] = 128; img[yuvTexOffsetV + (y/2)*yuvTexStrideV + x/2] = 128; } } // Set the test pixels to either white or black. for (int j = 0; j < numTestPixels; j++) { int x = mTestPixels[j].x; int y = mTestPixels[j].y; uint8_t value = 0; if (j == (i % numTestPixels)) { value = 255; } img[y*stride + x] = value; } buf->unlock(); if (mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(), -1) != NO_ERROR) { return false; } } return false; } sp mANW; const TestPixel* mTestPixels; }; sp pt(new ProducerThread(mANW, testPixels)); pt->run(); glViewport(0, 0, texWidth, texHeight); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); // We wait for the first two frames up front so that the producer will be // likely to dequeue the buffer that's currently being textured from. mFW->waitForFrame(); mFW->waitForFrame(); for (int i = 0; i < numFrames; i++) { SCOPED_TRACE(String8::format("frame %d", i).string()); // We must wait for each frame to come in because if we ever do an // updateTexImage call that doesn't consume a newly available buffer // then the producer and consumer will get out of sync, which will cause // a deadlock. if (i > 1) { mFW->waitForFrame(); } ASSERT_EQ(NO_ERROR, mST->updateTexImage()); drawTexture(); for (int j = 0; j < numTestPixels; j++) { int x = testPixels[j].x; int y = testPixels[j].y; uint8_t value = 0; if (j == (i % numTestPixels)) { // We must y-invert the texture coords EXPECT_TRUE(checkPixel(x, texHeight-y-1, 255, 255, 255, 255)); } else { // We must y-invert the texture coords EXPECT_TRUE(checkPixel(x, texHeight-y-1, 0, 0, 0, 255)); } } } pt->requestExitAndWait(); } TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledRGBABufferNpot) { const int texWidth = 64; const int texHeight = 66; ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(), texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888)); ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(), GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN)); ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, texWidth, texHeight); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35)); EXPECT_TRUE(checkPixel(63, 0, 231, 231, 231, 231)); EXPECT_TRUE(checkPixel(63, 65, 231, 231, 231, 231)); EXPECT_TRUE(checkPixel( 0, 65, 35, 35, 35, 35)); EXPECT_TRUE(checkPixel(15, 10, 35, 231, 231, 231)); EXPECT_TRUE(checkPixel(23, 65, 231, 35, 231, 35)); EXPECT_TRUE(checkPixel(19, 40, 35, 231, 35, 35)); EXPECT_TRUE(checkPixel(38, 30, 231, 35, 35, 35)); EXPECT_TRUE(checkPixel(42, 54, 35, 35, 35, 231)); EXPECT_TRUE(checkPixel(37, 34, 35, 231, 231, 231)); EXPECT_TRUE(checkPixel(31, 8, 231, 35, 35, 231)); EXPECT_TRUE(checkPixel(37, 47, 231, 35, 231, 231)); EXPECT_TRUE(checkPixel(25, 38, 35, 35, 35, 35)); EXPECT_TRUE(checkPixel(49, 6, 35, 231, 35, 35)); EXPECT_TRUE(checkPixel(54, 50, 35, 231, 231, 231)); EXPECT_TRUE(checkPixel(27, 26, 231, 231, 231, 231)); EXPECT_TRUE(checkPixel(10, 6, 35, 35, 231, 231)); EXPECT_TRUE(checkPixel(29, 4, 35, 35, 35, 231)); EXPECT_TRUE(checkPixel(55, 28, 35, 35, 231, 35)); EXPECT_TRUE(checkPixel(58, 55, 35, 35, 231, 231)); } TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledRGBABufferPow2) { const int texWidth = 64; const int texHeight = 64; ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(), texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888)); ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(), GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN)); ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, texWidth, texHeight); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 231, 231, 231, 231)); EXPECT_TRUE(checkPixel(63, 0, 35, 35, 35, 35)); EXPECT_TRUE(checkPixel(63, 63, 231, 231, 231, 231)); EXPECT_TRUE(checkPixel( 0, 63, 35, 35, 35, 35)); EXPECT_TRUE(checkPixel(12, 46, 231, 231, 231, 35)); EXPECT_TRUE(checkPixel(16, 1, 231, 231, 35, 231)); EXPECT_TRUE(checkPixel(21, 12, 231, 35, 35, 231)); EXPECT_TRUE(checkPixel(26, 51, 231, 35, 231, 35)); EXPECT_TRUE(checkPixel( 5, 32, 35, 231, 231, 35)); EXPECT_TRUE(checkPixel(13, 8, 35, 231, 231, 231)); EXPECT_TRUE(checkPixel(46, 3, 35, 35, 231, 35)); EXPECT_TRUE(checkPixel(30, 33, 35, 35, 35, 35)); EXPECT_TRUE(checkPixel( 6, 52, 231, 231, 35, 35)); EXPECT_TRUE(checkPixel(55, 33, 35, 231, 35, 231)); EXPECT_TRUE(checkPixel(16, 29, 35, 35, 231, 231)); EXPECT_TRUE(checkPixel( 1, 30, 35, 35, 35, 231)); EXPECT_TRUE(checkPixel(41, 37, 35, 35, 231, 231)); EXPECT_TRUE(checkPixel(46, 29, 231, 231, 35, 35)); EXPECT_TRUE(checkPixel(15, 25, 35, 231, 35, 231)); EXPECT_TRUE(checkPixel( 3, 52, 35, 231, 35, 35)); } // Tests if SurfaceTexture and BufferQueue are robust enough // to handle a special case where updateTexImage is called // in the middle of disconnect. This ordering is enforced // by blocking in the disconnect callback. TEST_F(SurfaceTextureGLTest, DisconnectStressTest) { class ProducerThread : public Thread { public: ProducerThread(const sp& anw): mANW(anw) { } virtual ~ProducerThread() { } virtual bool threadLoop() { ANativeWindowBuffer* anb; native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_EGL); for (int numFrames =0 ; numFrames < 2; numFrames ++) { if (native_window_dequeue_buffer_and_wait(mANW.get(), &anb) != NO_ERROR) { return false; } if (anb == NULL) { return false; } if (mANW->queueBuffer(mANW.get(), anb, -1) != NO_ERROR) { return false; } } native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_EGL); return false; } private: sp mANW; }; ASSERT_EQ(OK, mST->setSynchronousMode(true)); sp dw(new DisconnectWaiter()); mST->getBufferQueue()->consumerConnect(dw); sp pt(new ProducerThread(mANW)); pt->run(); // eat a frame so SurfaceTexture will own an at least one slot dw->waitForFrame(); EXPECT_EQ(OK,mST->updateTexImage()); dw->waitForFrame(); // Could fail here as SurfaceTexture thinks it still owns the slot // but bufferQueue has released all slots EXPECT_EQ(OK,mST->updateTexImage()); dw->finishDisconnect(); } // This test ensures that the SurfaceTexture clears the mCurrentTexture // when it is disconnected and reconnected. Otherwise it will // attempt to release a buffer that it does not owned TEST_F(SurfaceTextureGLTest, DisconnectClearsCurrentTexture) { ASSERT_EQ(OK, mST->setSynchronousMode(true)); ASSERT_EQ(OK, native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_EGL)); ANativeWindowBuffer *anb; EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1)); EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1)); EXPECT_EQ(OK,mST->updateTexImage()); EXPECT_EQ(OK,mST->updateTexImage()); ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_EGL)); ASSERT_EQ(OK, native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_EGL)); ASSERT_EQ(OK, mST->setSynchronousMode(true)); EXPECT_EQ(OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1)); // Will fail here if mCurrentTexture is not cleared properly mFW->waitForFrame(); EXPECT_EQ(OK,mST->updateTexImage()); ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_EGL)); } TEST_F(SurfaceTextureGLTest, ScaleToWindowMode) { ASSERT_EQ(OK, mST->setSynchronousMode(true)); ASSERT_EQ(OK, native_window_set_scaling_mode(mANW.get(), NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW)); // The producer image size ASSERT_EQ(OK, native_window_set_buffers_dimensions(mANW.get(), 512, 512)); // The consumer image size (16 x 9) ratio mST->setDefaultBufferSize(1280, 720); ASSERT_EQ(OK, native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_CPU)); ANativeWindowBuffer *anb; android_native_rect_t odd = {23, 78, 123, 477}; ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &odd)); EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1)); mFW->waitForFrame(); EXPECT_EQ(OK, mST->updateTexImage()); Rect r = mST->getCurrentCrop(); assertRectEq(Rect(23, 78, 123, 477), r); ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU)); } // This test ensures the scaling mode does the right thing // ie NATIVE_WINDOW_SCALING_MODE_CROP should crop // the image such that it has the same aspect ratio as the // default buffer size TEST_F(SurfaceTextureGLTest, CroppedScalingMode) { ASSERT_EQ(OK, mST->setSynchronousMode(true)); ASSERT_EQ(OK, native_window_set_scaling_mode(mANW.get(), NATIVE_WINDOW_SCALING_MODE_SCALE_CROP)); // The producer image size ASSERT_EQ(OK, native_window_set_buffers_dimensions(mANW.get(), 512, 512)); // The consumer image size (16 x 9) ratio mST->setDefaultBufferSize(1280, 720); native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_CPU); ANativeWindowBuffer *anb; // The crop is in the shape of (320, 180) === 16 x 9 android_native_rect_t standard = {10, 20, 330, 200}; ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &standard)); EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1)); mFW->waitForFrame(); EXPECT_EQ(OK, mST->updateTexImage()); Rect r = mST->getCurrentCrop(); // crop should be the same as crop (same aspect ratio) assertRectEq(Rect(10, 20, 330, 200), r); // make this wider then desired aspect 239 x 100 (2.39:1) android_native_rect_t wide = {20, 30, 259, 130}; ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &wide)); EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1)); mFW->waitForFrame(); EXPECT_EQ(OK, mST->updateTexImage()); r = mST->getCurrentCrop(); // crop should be the same height, but have cropped left and right borders // offset is 30.6 px L+, R- assertRectEq(Rect(51, 30, 228, 130), r); // This image is taller then desired aspect 400 x 300 (4:3) android_native_rect_t narrow = {0, 0, 400, 300}; ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &narrow)); EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1)); mFW->waitForFrame(); EXPECT_EQ(OK, mST->updateTexImage()); r = mST->getCurrentCrop(); // crop should be the same width, but have cropped top and bottom borders // offset is 37.5 px assertRectEq(Rect(0, 37, 400, 262), r); native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU); } TEST_F(SurfaceTextureGLTest, AbandonUnblocksDequeueBuffer) { class ProducerThread : public Thread { public: ProducerThread(const sp& anw): mANW(anw), mDequeueError(NO_ERROR) { } virtual ~ProducerThread() { } virtual bool threadLoop() { Mutex::Autolock lock(mMutex); ANativeWindowBuffer* anb; // Frame 1 if (native_window_dequeue_buffer_and_wait(mANW.get(), &anb) != NO_ERROR) { return false; } if (anb == NULL) { return false; } if (mANW->queueBuffer(mANW.get(), anb, -1) != NO_ERROR) { return false; } // Frame 2 if (native_window_dequeue_buffer_and_wait(mANW.get(), &anb) != NO_ERROR) { return false; } if (anb == NULL) { return false; } if (mANW->queueBuffer(mANW.get(), anb, -1) != NO_ERROR) { return false; } // Frame 3 - error expected mDequeueError = native_window_dequeue_buffer_and_wait(mANW.get(), &anb); return false; } status_t getDequeueError() { Mutex::Autolock lock(mMutex); return mDequeueError; } private: sp mANW; status_t mDequeueError; Mutex mMutex; }; ASSERT_EQ(OK, mST->setSynchronousMode(true)); ASSERT_EQ(OK, mST->setDefaultMaxBufferCount(2)); sp pt(new ProducerThread(mANW)); pt->run(); mFW->waitForFrame(); mFW->waitForFrame(); // Sleep for 100ms to allow the producer thread's dequeueBuffer call to // block waiting for a buffer to become available. usleep(100000); mST->abandon(); pt->requestExitAndWait(); ASSERT_EQ(NO_INIT, reinterpret_cast(pt.get())->getDequeueError()); } TEST_F(SurfaceTextureGLTest, InvalidWidthOrHeightFails) { int texHeight = 16; ANativeWindowBuffer* anb; GLint maxTextureSize; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize); // make sure it works with small textures mST->setDefaultBufferSize(16, texHeight); EXPECT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(16, anb->width); EXPECT_EQ(texHeight, anb->height); EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb, -1)); EXPECT_EQ(NO_ERROR, mST->updateTexImage()); // make sure it works with GL_MAX_TEXTURE_SIZE mST->setDefaultBufferSize(maxTextureSize, texHeight); EXPECT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(maxTextureSize, anb->width); EXPECT_EQ(texHeight, anb->height); EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb, -1)); EXPECT_EQ(NO_ERROR, mST->updateTexImage()); // make sure it fails with GL_MAX_TEXTURE_SIZE+1 mST->setDefaultBufferSize(maxTextureSize+1, texHeight); EXPECT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); EXPECT_EQ(maxTextureSize+1, anb->width); EXPECT_EQ(texHeight, anb->height); EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb, -1)); ASSERT_NE(NO_ERROR, mST->updateTexImage()); } /* * This test fixture is for testing GL -> GL texture streaming. It creates an * EGLSurface and an EGLContext for the image producer to use. */ class SurfaceTextureGLToGLTest : public SurfaceTextureGLTest { protected: SurfaceTextureGLToGLTest(): mProducerEglSurface(EGL_NO_SURFACE), mProducerEglContext(EGL_NO_CONTEXT) { } virtual void SetUp() { SurfaceTextureGLTest::SetUp(); mProducerEglSurface = eglCreateWindowSurface(mEglDisplay, mGlConfig, mANW.get(), NULL); ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_NE(EGL_NO_SURFACE, mProducerEglSurface); mProducerEglContext = eglCreateContext(mEglDisplay, mGlConfig, EGL_NO_CONTEXT, getContextAttribs()); ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_NE(EGL_NO_CONTEXT, mProducerEglContext); } virtual void TearDown() { if (mProducerEglContext != EGL_NO_CONTEXT) { eglDestroyContext(mEglDisplay, mProducerEglContext); } if (mProducerEglSurface != EGL_NO_SURFACE) { eglDestroySurface(mEglDisplay, mProducerEglSurface); } SurfaceTextureGLTest::TearDown(); } EGLSurface mProducerEglSurface; EGLContext mProducerEglContext; }; TEST_F(SurfaceTextureGLToGLTest, TransformHintGetsRespected) { const uint32_t texWidth = 32; const uint32_t texHeight = 64; mST->setDefaultBufferSize(texWidth, texHeight); mST->setTransformHint(NATIVE_WINDOW_TRANSFORM_ROT_90); // This test requires 3 buffers to avoid deadlock because we're // both producer and consumer, and only using one thread. mST->setDefaultMaxBufferCount(3); // Do the producer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // Start a buffer with our chosen size and transform hint moving // through the system. glClear(GL_COLOR_BUFFER_BIT); // give the driver something to do eglSwapBuffers(mEglDisplay, mProducerEglSurface); mST->updateTexImage(); // consume it // Swap again. glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mProducerEglSurface); mST->updateTexImage(); // The current buffer should either show the effects of the transform // hint (in the form of an inverse transform), or show that the // transform hint has been ignored. sp buf = mST->getCurrentBuffer(); if (mST->getCurrentTransform() == NATIVE_WINDOW_TRANSFORM_ROT_270) { ASSERT_EQ(texWidth, buf->getHeight()); ASSERT_EQ(texHeight, buf->getWidth()); } else { ASSERT_EQ(texWidth, buf->getWidth()); ASSERT_EQ(texHeight, buf->getHeight()); } // Reset the transform hint and confirm that it takes. mST->setTransformHint(0); glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mProducerEglSurface); mST->updateTexImage(); glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mProducerEglSurface); mST->updateTexImage(); buf = mST->getCurrentBuffer(); ASSERT_EQ((uint32_t) 0, mST->getCurrentTransform()); ASSERT_EQ(texWidth, buf->getWidth()); ASSERT_EQ(texHeight, buf->getHeight()); } TEST_F(SurfaceTextureGLToGLTest, TexturingFromGLFilledRGBABufferPow2) { const int texWidth = 64; const int texHeight = 64; mST->setDefaultBufferSize(texWidth, texHeight); // This test requires 3 buffers to complete run on a single thread. mST->setDefaultMaxBufferCount(3); // Do the producer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // This is needed to ensure we pick up a buffer of the correct size. eglSwapBuffers(mEglDisplay, mProducerEglSurface); glClearColor(0.6, 0.6, 0.6, 0.6); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); glScissor(4, 4, 4, 4); glClearColor(1.0, 0.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT); glScissor(24, 48, 4, 4); glClearColor(0.0, 1.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT); glScissor(37, 17, 4, 4); glClearColor(0.0, 0.0, 1.0, 1.0); glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mProducerEglSurface); // Do the consumer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); glDisable(GL_SCISSOR_TEST); // Skip the first frame, which was empty ASSERT_EQ(NO_ERROR, mST->updateTexImage()); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, texWidth, texHeight); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(63, 0, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(63, 63, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 0, 63, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 4, 7, 255, 0, 0, 255)); EXPECT_TRUE(checkPixel(25, 51, 0, 255, 0, 255)); EXPECT_TRUE(checkPixel(40, 19, 0, 0, 255, 255)); EXPECT_TRUE(checkPixel(29, 51, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 5, 32, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(13, 8, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(46, 3, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(30, 33, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 6, 52, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(55, 33, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(16, 29, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 1, 30, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(41, 37, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(46, 29, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(15, 25, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 3, 52, 153, 153, 153, 153)); } TEST_F(SurfaceTextureGLToGLTest, EglDestroySurfaceUnrefsBuffers) { sp buffers[2]; // This test requires async mode to run on a single thread. EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); EXPECT_TRUE(eglSwapInterval(mEglDisplay, 0)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); for (int i = 0; i < 2; i++) { // Produce a frame EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mProducerEglSurface); // Consume a frame EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); mFW->waitForFrame(); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); buffers[i] = mST->getCurrentBuffer(); } // Destroy the GL texture object to release its ref on buffers[2]. GLuint texID = TEX_ID; glDeleteTextures(1, &texID); // Destroy the EGLSurface EXPECT_TRUE(eglDestroySurface(mEglDisplay, mProducerEglSurface)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); mProducerEglSurface = EGL_NO_SURFACE; // This test should have the only reference to buffer 0. EXPECT_EQ(1, buffers[0]->getStrongCount()); // The SurfaceTexture should hold a single reference to buffer 1 in its // mCurrentBuffer member. All of the references in the slots should have // been released. EXPECT_EQ(2, buffers[1]->getStrongCount()); } TEST_F(SurfaceTextureGLToGLTest, EglDestroySurfaceAfterAbandonUnrefsBuffers) { sp buffers[3]; // This test requires async mode to run on a single thread. EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); EXPECT_TRUE(eglSwapInterval(mEglDisplay, 0)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); for (int i = 0; i < 3; i++) { // Produce a frame EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); glClear(GL_COLOR_BUFFER_BIT); EXPECT_TRUE(eglSwapBuffers(mEglDisplay, mProducerEglSurface)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // Consume a frame EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); mFW->waitForFrame(); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); buffers[i] = mST->getCurrentBuffer(); } // Abandon the SurfaceTexture, releasing the ref that the SurfaceTexture has // on buffers[2]. mST->abandon(); // Destroy the GL texture object to release its ref on buffers[2]. GLuint texID = TEX_ID; glDeleteTextures(1, &texID); // Destroy the EGLSurface. EXPECT_TRUE(eglDestroySurface(mEglDisplay, mProducerEglSurface)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); mProducerEglSurface = EGL_NO_SURFACE; EXPECT_EQ(1, buffers[0]->getStrongCount()); EXPECT_EQ(1, buffers[1]->getStrongCount()); // Depending on how lazily the GL driver dequeues buffers, we may end up // with either two or three total buffers. If there are three, make sure // the last one was properly down-ref'd. if (buffers[2] != buffers[0]) { EXPECT_EQ(1, buffers[2]->getStrongCount()); } } TEST_F(SurfaceTextureGLToGLTest, EglSurfaceDefaultsToSynchronousMode) { // This test requires 3 buffers to run on a single thread. mST->setDefaultMaxBufferCount(3); ASSERT_TRUE(mST->isSynchronousMode()); for (int i = 0; i < 10; i++) { // Produce a frame EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); glClear(GL_COLOR_BUFFER_BIT); EXPECT_TRUE(eglSwapBuffers(mEglDisplay, mProducerEglSurface)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // Consume a frame EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); } ASSERT_TRUE(mST->isSynchronousMode()); } TEST_F(SurfaceTextureGLToGLTest, TexturingFromUserSizedGLFilledBuffer) { enum { texWidth = 64 }; enum { texHeight = 64 }; // This test requires 3 buffers to complete run on a single thread. mST->setDefaultMaxBufferCount(3); // Set the user buffer size. native_window_set_buffers_user_dimensions(mANW.get(), texWidth, texHeight); // Do the producer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // This is needed to ensure we pick up a buffer of the correct size. eglSwapBuffers(mEglDisplay, mProducerEglSurface); glClearColor(0.6, 0.6, 0.6, 0.6); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); glScissor(4, 4, 1, 1); glClearColor(1.0, 0.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mProducerEglSurface); // Do the consumer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); glDisable(GL_SCISSOR_TEST); // Skip the first frame, which was empty ASSERT_EQ(NO_ERROR, mST->updateTexImage()); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, texWidth, texHeight); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(63, 0, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(63, 63, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 0, 63, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 4, 4, 255, 0, 0, 255)); EXPECT_TRUE(checkPixel( 5, 5, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 3, 3, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(45, 52, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(12, 36, 153, 153, 153, 153)); } TEST_F(SurfaceTextureGLToGLTest, TexturingFromPreRotatedUserSizedGLFilledBuffer) { enum { texWidth = 64 }; enum { texHeight = 16 }; // This test requires 3 buffers to complete run on a single thread. mST->setDefaultMaxBufferCount(3); // Set the transform hint. mST->setTransformHint(NATIVE_WINDOW_TRANSFORM_ROT_90); // Set the user buffer size. native_window_set_buffers_user_dimensions(mANW.get(), texWidth, texHeight); // Do the producer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // This is needed to ensure we pick up a buffer of the correct size and the // new rotation hint. eglSwapBuffers(mEglDisplay, mProducerEglSurface); glClearColor(0.6, 0.6, 0.6, 0.6); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); glScissor(24, 4, 1, 1); glClearColor(1.0, 0.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mProducerEglSurface); // Do the consumer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); glDisable(GL_SCISSOR_TEST); // Skip the first frame, which was empty ASSERT_EQ(NO_ERROR, mST->updateTexImage()); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, texWidth, texHeight); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(63, 0, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(63, 15, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 0, 15, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(24, 4, 255, 0, 0, 255)); EXPECT_TRUE(checkPixel(25, 5, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(23, 3, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(45, 13, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(12, 8, 153, 153, 153, 153)); } TEST_F(SurfaceTextureGLToGLTest, TexturingFromPreRotatedGLFilledBuffer) { enum { texWidth = 64 }; enum { texHeight = 16 }; // This test requires 3 buffers to complete run on a single thread. mST->setDefaultMaxBufferCount(3); // Set the transform hint. mST->setTransformHint(NATIVE_WINDOW_TRANSFORM_ROT_90); // Set the default buffer size. mST->setDefaultBufferSize(texWidth, texHeight); // Do the producer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // This is needed to ensure we pick up a buffer of the correct size and the // new rotation hint. eglSwapBuffers(mEglDisplay, mProducerEglSurface); glClearColor(0.6, 0.6, 0.6, 0.6); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); glScissor(24, 4, 1, 1); glClearColor(1.0, 0.0, 0.0, 1.0); glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mProducerEglSurface); // Do the consumer side of things EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); glDisable(GL_SCISSOR_TEST); // Skip the first frame, which was empty ASSERT_EQ(NO_ERROR, mST->updateTexImage()); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, texWidth, texHeight); drawTexture(); EXPECT_TRUE(checkPixel( 0, 0, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(63, 0, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(63, 15, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel( 0, 15, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(24, 4, 255, 0, 0, 255)); EXPECT_TRUE(checkPixel(25, 5, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(23, 3, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(45, 13, 153, 153, 153, 153)); EXPECT_TRUE(checkPixel(12, 8, 153, 153, 153, 153)); } /* * This test fixture is for testing GL -> GL texture streaming from one thread * to another. It contains functionality to create a producer thread that will * perform GL rendering to an ANativeWindow that feeds frames to a * SurfaceTexture. Additionally it supports interlocking the producer and * consumer threads so that a specific sequence of calls can be * deterministically created by the test. * * The intended usage is as follows: * * TEST_F(...) { * class PT : public ProducerThread { * virtual void render() { * ... * swapBuffers(); * } * }; * * runProducerThread(new PT()); * * // The order of these calls will vary from test to test and may include * // multiple frames and additional operations (e.g. GL rendering from the * // texture). * fc->waitForFrame(); * mST->updateTexImage(); * fc->finishFrame(); * } * */ class SurfaceTextureGLThreadToGLTest : public SurfaceTextureGLToGLTest { protected: // ProducerThread is an abstract base class to simplify the creation of // OpenGL ES frame producer threads. class ProducerThread : public Thread { public: virtual ~ProducerThread() { } void setEglObjects(EGLDisplay producerEglDisplay, EGLSurface producerEglSurface, EGLContext producerEglContext) { mProducerEglDisplay = producerEglDisplay; mProducerEglSurface = producerEglSurface; mProducerEglContext = producerEglContext; } virtual bool threadLoop() { eglMakeCurrent(mProducerEglDisplay, mProducerEglSurface, mProducerEglSurface, mProducerEglContext); render(); eglMakeCurrent(mProducerEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); return false; } protected: virtual void render() = 0; void swapBuffers() { eglSwapBuffers(mProducerEglDisplay, mProducerEglSurface); } EGLDisplay mProducerEglDisplay; EGLSurface mProducerEglSurface; EGLContext mProducerEglContext; }; // FrameCondition is a utility class for interlocking between the producer // and consumer threads. The FrameCondition object should be created and // destroyed in the consumer thread only. The consumer thread should set // the FrameCondition as the FrameAvailableListener of the SurfaceTexture, // and should call both waitForFrame and finishFrame once for each expected // frame. // // This interlocking relies on the fact that onFrameAvailable gets called // synchronously from SurfaceTexture::queueBuffer. class FrameCondition : public SurfaceTexture::FrameAvailableListener { public: FrameCondition(): mFrameAvailable(false), mFrameFinished(false) { } // waitForFrame waits for the next frame to arrive. This should be // called from the consumer thread once for every frame expected by the // test. void waitForFrame() { Mutex::Autolock lock(mMutex); ALOGV("+waitForFrame"); while (!mFrameAvailable) { mFrameAvailableCondition.wait(mMutex); } mFrameAvailable = false; ALOGV("-waitForFrame"); } // Allow the producer to return from its swapBuffers call and continue // on to produce the next frame. This should be called by the consumer // thread once for every frame expected by the test. void finishFrame() { Mutex::Autolock lock(mMutex); ALOGV("+finishFrame"); mFrameFinished = true; mFrameFinishCondition.signal(); ALOGV("-finishFrame"); } // This should be called by SurfaceTexture on the producer thread. virtual void onFrameAvailable() { Mutex::Autolock lock(mMutex); ALOGV("+onFrameAvailable"); mFrameAvailable = true; mFrameAvailableCondition.signal(); while (!mFrameFinished) { mFrameFinishCondition.wait(mMutex); } mFrameFinished = false; ALOGV("-onFrameAvailable"); } protected: bool mFrameAvailable; bool mFrameFinished; Mutex mMutex; Condition mFrameAvailableCondition; Condition mFrameFinishCondition; }; virtual void SetUp() { SurfaceTextureGLToGLTest::SetUp(); mFC = new FrameCondition(); mST->setFrameAvailableListener(mFC); } virtual void TearDown() { if (mProducerThread != NULL) { mProducerThread->requestExitAndWait(); } mProducerThread.clear(); mFC.clear(); SurfaceTextureGLToGLTest::TearDown(); } void runProducerThread(const sp producerThread) { ASSERT_TRUE(mProducerThread == NULL); mProducerThread = producerThread; producerThread->setEglObjects(mEglDisplay, mProducerEglSurface, mProducerEglContext); producerThread->run(); } sp mProducerThread; sp mFC; }; TEST_F(SurfaceTextureGLThreadToGLTest, UpdateTexImageBeforeFrameFinishedCompletes) { class PT : public ProducerThread { virtual void render() { glClearColor(0.0f, 1.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); swapBuffers(); } }; runProducerThread(new PT()); mFC->waitForFrame(); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); mFC->finishFrame(); // TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported! } TEST_F(SurfaceTextureGLThreadToGLTest, UpdateTexImageAfterFrameFinishedCompletes) { class PT : public ProducerThread { virtual void render() { glClearColor(0.0f, 1.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); swapBuffers(); } }; runProducerThread(new PT()); mFC->waitForFrame(); mFC->finishFrame(); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); // TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported! } TEST_F(SurfaceTextureGLThreadToGLTest, RepeatedUpdateTexImageBeforeFrameFinishedCompletes) { enum { NUM_ITERATIONS = 1024 }; class PT : public ProducerThread { virtual void render() { for (int i = 0; i < NUM_ITERATIONS; i++) { glClearColor(0.0f, 1.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); ALOGV("+swapBuffers"); swapBuffers(); ALOGV("-swapBuffers"); } } }; runProducerThread(new PT()); for (int i = 0; i < NUM_ITERATIONS; i++) { mFC->waitForFrame(); ALOGV("+updateTexImage"); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); ALOGV("-updateTexImage"); mFC->finishFrame(); // TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported! } } TEST_F(SurfaceTextureGLThreadToGLTest, RepeatedUpdateTexImageAfterFrameFinishedCompletes) { enum { NUM_ITERATIONS = 1024 }; class PT : public ProducerThread { virtual void render() { for (int i = 0; i < NUM_ITERATIONS; i++) { glClearColor(0.0f, 1.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); ALOGV("+swapBuffers"); swapBuffers(); ALOGV("-swapBuffers"); } } }; runProducerThread(new PT()); for (int i = 0; i < NUM_ITERATIONS; i++) { mFC->waitForFrame(); mFC->finishFrame(); ALOGV("+updateTexImage"); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); ALOGV("-updateTexImage"); // TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported! } } // XXX: This test is disabled because it is currently hanging on some devices. TEST_F(SurfaceTextureGLThreadToGLTest, DISABLED_RepeatedSwapBuffersWhileDequeueStalledCompletes) { enum { NUM_ITERATIONS = 64 }; class PT : public ProducerThread { virtual void render() { for (int i = 0; i < NUM_ITERATIONS; i++) { glClearColor(0.0f, 1.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); ALOGV("+swapBuffers"); swapBuffers(); ALOGV("-swapBuffers"); } } }; ASSERT_EQ(OK, mST->setSynchronousMode(true)); ASSERT_EQ(OK, mST->setDefaultMaxBufferCount(2)); runProducerThread(new PT()); // Allow three frames to be rendered and queued before starting the // rendering in this thread. For the latter two frames we don't call // updateTexImage so the next dequeue from the producer thread will block // waiting for a frame to become available. mFC->waitForFrame(); mFC->finishFrame(); // We must call updateTexImage to consume the first frame so that the // SurfaceTexture is able to reduce the buffer count to 2. This is because // the GL driver may dequeue a buffer when the EGLSurface is created, and // that happens before we call setDefaultMaxBufferCount. It's possible that the // driver does not dequeue a buffer at EGLSurface creation time, so we // cannot rely on this to cause the second dequeueBuffer call to block. ASSERT_EQ(NO_ERROR, mST->updateTexImage()); mFC->waitForFrame(); mFC->finishFrame(); mFC->waitForFrame(); mFC->finishFrame(); // Sleep for 100ms to allow the producer thread's dequeueBuffer call to // block waiting for a buffer to become available. usleep(100000); // Render and present a number of images. This thread should not be blocked // by the fact that the producer thread is blocking in dequeue. for (int i = 0; i < NUM_ITERATIONS; i++) { glClear(GL_COLOR_BUFFER_BIT); eglSwapBuffers(mEglDisplay, mEglSurface); } // Consume the two pending buffers to unblock the producer thread. ASSERT_EQ(NO_ERROR, mST->updateTexImage()); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); // Consume the remaining buffers from the producer thread. for (int i = 0; i < NUM_ITERATIONS-3; i++) { mFC->waitForFrame(); mFC->finishFrame(); ALOGV("+updateTexImage"); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); ALOGV("-updateTexImage"); } } class SurfaceTextureFBOTest : public SurfaceTextureGLTest { protected: virtual void SetUp() { SurfaceTextureGLTest::SetUp(); glGenFramebuffers(1, &mFbo); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glGenTextures(1, &mFboTex); glBindTexture(GL_TEXTURE_2D, mFboTex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, getSurfaceWidth(), getSurfaceHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, 0); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); glBindFramebuffer(GL_FRAMEBUFFER, mFbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mFboTex, 0); glBindFramebuffer(GL_FRAMEBUFFER, 0); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); } virtual void TearDown() { SurfaceTextureGLTest::TearDown(); glDeleteTextures(1, &mFboTex); glDeleteFramebuffers(1, &mFbo); } GLuint mFbo; GLuint mFboTex; }; // This test is intended to verify that proper synchronization is done when // rendering into an FBO. TEST_F(SurfaceTextureFBOTest, BlitFromCpuFilledBufferToFbo) { const int texWidth = 64; const int texHeight = 64; ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(), texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888)); ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(), GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN)); android_native_buffer_t* anb; ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); ASSERT_TRUE(anb != NULL); sp buf(new GraphicBuffer(anb, false)); // Fill the buffer with green uint8_t* img = NULL; buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); fillRGBA8BufferSolid(img, texWidth, texHeight, buf->getStride(), 0, 255, 0, 255); buf->unlock(); ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(), -1)); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); glBindFramebuffer(GL_FRAMEBUFFER, mFbo); drawTexture(); glBindFramebuffer(GL_FRAMEBUFFER, 0); for (int i = 0; i < 4; i++) { SCOPED_TRACE(String8::format("frame %d", i).string()); ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(), &anb)); ASSERT_TRUE(anb != NULL); buf = new GraphicBuffer(anb, false); // Fill the buffer with red ASSERT_EQ(NO_ERROR, buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img))); fillRGBA8BufferSolid(img, texWidth, texHeight, buf->getStride(), 255, 0, 0, 255); ASSERT_EQ(NO_ERROR, buf->unlock()); ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(), -1)); ASSERT_EQ(NO_ERROR, mST->updateTexImage()); drawTexture(); EXPECT_TRUE(checkPixel( 24, 39, 255, 0, 0, 255)); } glBindFramebuffer(GL_FRAMEBUFFER, mFbo); EXPECT_TRUE(checkPixel( 24, 39, 0, 255, 0, 255)); } class SurfaceTextureMultiContextGLTest : public SurfaceTextureGLTest { protected: enum { SECOND_TEX_ID = 123 }; enum { THIRD_TEX_ID = 456 }; SurfaceTextureMultiContextGLTest(): mSecondEglContext(EGL_NO_CONTEXT) { } virtual void SetUp() { SurfaceTextureGLTest::SetUp(); // Set up the secondary context and texture renderer. mSecondEglContext = eglCreateContext(mEglDisplay, mGlConfig, EGL_NO_CONTEXT, getContextAttribs()); ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_NE(EGL_NO_CONTEXT, mSecondEglContext); ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); mSecondTextureRenderer = new TextureRenderer(SECOND_TEX_ID, mST); ASSERT_NO_FATAL_FAILURE(mSecondTextureRenderer->SetUp()); // Set up the tertiary context and texture renderer. mThirdEglContext = eglCreateContext(mEglDisplay, mGlConfig, EGL_NO_CONTEXT, getContextAttribs()); ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_NE(EGL_NO_CONTEXT, mThirdEglContext); ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mThirdEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); mThirdTextureRenderer = new TextureRenderer(THIRD_TEX_ID, mST); ASSERT_NO_FATAL_FAILURE(mThirdTextureRenderer->SetUp()); // Switch back to the primary context to start the tests. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)); } virtual void TearDown() { if (mThirdEglContext != EGL_NO_CONTEXT) { eglDestroyContext(mEglDisplay, mThirdEglContext); } if (mSecondEglContext != EGL_NO_CONTEXT) { eglDestroyContext(mEglDisplay, mSecondEglContext); } SurfaceTextureGLTest::TearDown(); } EGLContext mSecondEglContext; sp mSecondTextureRenderer; EGLContext mThirdEglContext; sp mThirdTextureRenderer; }; TEST_F(SurfaceTextureMultiContextGLTest, UpdateFromMultipleContextsFails) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Attempt to latch the texture on the secondary context. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); ASSERT_EQ(INVALID_OPERATION, mST->updateTexImage()); } TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextSucceeds) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Detach from the primary context. ASSERT_EQ(OK, mST->detachFromContext()); // Check that the GL texture was deleted. EXPECT_EQ(GL_FALSE, glIsTexture(TEX_ID)); } TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextSucceedsAfterProducerDisconnect) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Detach from the primary context. native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU); ASSERT_EQ(OK, mST->detachFromContext()); // Check that the GL texture was deleted. EXPECT_EQ(GL_FALSE, glIsTexture(TEX_ID)); } TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWhenAbandoned) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Attempt to detach from the primary context. mST->abandon(); ASSERT_EQ(NO_INIT, mST->detachFromContext()); } TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWhenDetached) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Detach from the primary context. ASSERT_EQ(OK, mST->detachFromContext()); // Attempt to detach from the primary context again. ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext()); } TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWithNoDisplay) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Make there be no current display. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // Attempt to detach from the primary context. ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext()); } TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWithNoContext) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Make current context be incorrect. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // Attempt to detach from the primary context. ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext()); } TEST_F(SurfaceTextureMultiContextGLTest, UpdateTexImageFailsWhenDetached) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Detach from the primary context. ASSERT_EQ(OK, mST->detachFromContext()); // Attempt to latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(INVALID_OPERATION, mST->updateTexImage()); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceeds) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Detach from the primary context. ASSERT_EQ(OK, mST->detachFromContext()); // Attach to the secondary context. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID)); // Verify that the texture object was created and bound. GLint texBinding = -1; glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding); EXPECT_EQ(SECOND_TEX_ID, texBinding); // Try to use the texture from the secondary context. glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, 1, 1); mSecondTextureRenderer->drawTexture(); ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35)); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceedsAfterProducerDisconnect) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Detach from the primary context. native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU); ASSERT_EQ(OK, mST->detachFromContext()); // Attach to the secondary context. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID)); // Verify that the texture object was created and bound. GLint texBinding = -1; glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding); EXPECT_EQ(SECOND_TEX_ID, texBinding); // Try to use the texture from the secondary context. glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, 1, 1); mSecondTextureRenderer->drawTexture(); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35)); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceedsBeforeUpdateTexImage) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Detach from the primary context. native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU); ASSERT_EQ(OK, mST->detachFromContext()); // Attach to the secondary context. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID)); // Verify that the texture object was created and bound. GLint texBinding = -1; glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding); EXPECT_EQ(SECOND_TEX_ID, texBinding); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Try to use the texture from the secondary context. glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, 1, 1); mSecondTextureRenderer->drawTexture(); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35)); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWhenAbandoned) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Detach from the primary context. ASSERT_EQ(OK, mST->detachFromContext()); // Attempt to attach to the secondary context. mST->abandon(); // Attempt to attach to the primary context. ASSERT_EQ(NO_INIT, mST->attachToContext(SECOND_TEX_ID)); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWhenAttached) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Attempt to attach to the primary context. ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID)); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWhenAttachedBeforeUpdateTexImage) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Attempt to attach to the primary context. ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID)); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWithNoDisplay) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Detach from the primary context. ASSERT_EQ(OK, mST->detachFromContext()); // Make there be no current display. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT)); ASSERT_EQ(EGL_SUCCESS, eglGetError()); // Attempt to attach with no context current. ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID)); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceedsTwice) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Latch the texture contents on the primary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Detach from the primary context. ASSERT_EQ(OK, mST->detachFromContext()); // Attach to the secondary context. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID)); // Detach from the secondary context. ASSERT_EQ(OK, mST->detachFromContext()); // Attach to the tertiary context. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mThirdEglContext)); ASSERT_EQ(OK, mST->attachToContext(THIRD_TEX_ID)); // Verify that the texture object was created and bound. GLint texBinding = -1; glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding); EXPECT_EQ(THIRD_TEX_ID, texBinding); // Try to use the texture from the tertiary context. glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, 1, 1); mThirdTextureRenderer->drawTexture(); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35)); } TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceedsTwiceBeforeUpdateTexImage) { ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Detach from the primary context. ASSERT_EQ(OK, mST->detachFromContext()); // Attach to the secondary context. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID)); // Detach from the secondary context. ASSERT_EQ(OK, mST->detachFromContext()); // Attach to the tertiary context. ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mThirdEglContext)); ASSERT_EQ(OK, mST->attachToContext(THIRD_TEX_ID)); // Verify that the texture object was created and bound. GLint texBinding = -1; glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding); EXPECT_EQ(THIRD_TEX_ID, texBinding); // Latch the texture contents on the tertiary context. mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // Try to use the texture from the tertiary context. glClearColor(0.2, 0.2, 0.2, 0.2); glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, 1, 1); mThirdTextureRenderer->drawTexture(); ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError()); ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35)); } TEST_F(SurfaceTextureMultiContextGLTest, UpdateTexImageSucceedsForBufferConsumedBeforeDetach) { ASSERT_EQ(NO_ERROR, mST->setSynchronousMode(true)); ASSERT_EQ(NO_ERROR, mST->setDefaultMaxBufferCount(2)); // produce two frames and consume them both on the primary context ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); // produce one more frame ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW)); // Detach from the primary context and attach to the secondary context ASSERT_EQ(OK, mST->detachFromContext()); ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mSecondEglContext)); ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID)); // Consume final frame on secondary context mFW->waitForFrame(); ASSERT_EQ(OK, mST->updateTexImage()); } } // namespace android