// // Copyright 2005 The Android Open Source Project // // Handle events, like key input and vsync. // // The goal is to provide an optimized solution for Linux, not an // implementation that works well across all platforms. We expect // events to arrive on file descriptors, so that we can use a select() // select() call to sleep. // // We can't select() on anything but network sockets in Windows, so we // provide an alternative implementation of waitEvent for that platform. // #define LOG_TAG "EventHub" //#define LOG_NDEBUG 0 #include <ui/EventHub.h> #include <ui/KeycodeLabels.h> #include <hardware_legacy/power.h> #include <cutils/properties.h> #include <utils/Log.h> #include <utils/Timers.h> #include <utils/threads.h> #include <utils/Errors.h> #include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <fcntl.h> #include <memory.h> #include <errno.h> #include <assert.h> #include "KeyLayoutMap.h" #include <string.h> #include <stdint.h> #include <dirent.h> #ifdef HAVE_INOTIFY # include <sys/inotify.h> #endif #ifdef HAVE_ANDROID_OS # include <sys/limits.h> /* not part of Linux */ #endif #include <sys/poll.h> #include <sys/ioctl.h> /* this macro is used to tell if "bit" is set in "array" * it selects a byte from the array, and does a boolean AND * operation with a byte that only has the relevant bit set. * eg. to check for the 12th bit, we do (array[1] & 1<<4) */ #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8))) #define ID_MASK 0x0000ffff #define SEQ_MASK 0x7fff0000 #define SEQ_SHIFT 16 #define id_to_index(id) ((id&ID_MASK)+1) #ifndef ABS_MT_TOUCH_MAJOR #define ABS_MT_TOUCH_MAJOR 0x30 /* Major axis of touching ellipse */ #endif #ifndef ABS_MT_POSITION_X #define ABS_MT_POSITION_X 0x35 /* Center X ellipse position */ #endif #ifndef ABS_MT_POSITION_Y #define ABS_MT_POSITION_Y 0x36 /* Center Y ellipse position */ #endif namespace android { static const char *WAKE_LOCK_ID = "KeyEvents"; static const char *device_path = "/dev/input"; /* return the larger integer */ static inline int max(int v1, int v2) { return (v1 > v2) ? v1 : v2; } EventHub::device_t::device_t(int32_t _id, const char* _path, const char* name) : id(_id), path(_path), name(name), classes(0) , keyBitmask(NULL), layoutMap(new KeyLayoutMap()), next(NULL) { } EventHub::device_t::~device_t() { delete [] keyBitmask; delete layoutMap; } EventHub::EventHub(void) : mError(NO_INIT), mHaveFirstKeyboard(false), mFirstKeyboardId(0) , mDevicesById(0), mNumDevicesById(0) , mOpeningDevices(0), mClosingDevices(0) , mDevices(0), mFDs(0), mFDCount(0), mOpened(false) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); #ifdef EV_SW memset(mSwitches, 0, sizeof(mSwitches)); #endif } /* * Clean up. */ EventHub::~EventHub(void) { release_wake_lock(WAKE_LOCK_ID); // we should free stuff here... } status_t EventHub::errorCheck() const { return mError; } String8 EventHub::getDeviceName(int32_t deviceId) const { AutoMutex _l(mLock); device_t* device = getDevice(deviceId); if (device == NULL) return String8(); return device->name; } uint32_t EventHub::getDeviceClasses(int32_t deviceId) const { AutoMutex _l(mLock); device_t* device = getDevice(deviceId); if (device == NULL) return 0; return device->classes; } int EventHub::getAbsoluteInfo(int32_t deviceId, int axis, int *outMinValue, int* outMaxValue, int* outFlat, int* outFuzz) const { AutoMutex _l(mLock); device_t* device = getDevice(deviceId); if (device == NULL) return -1; struct input_absinfo info; if(ioctl(mFDs[id_to_index(device->id)].fd, EVIOCGABS(axis), &info)) { LOGE("Error reading absolute controller %d for device %s fd %d\n", axis, device->name.string(), mFDs[id_to_index(device->id)].fd); return -1; } *outMinValue = info.minimum; *outMaxValue = info.maximum; *outFlat = info.flat; *outFuzz = info.fuzz; return 0; } int EventHub::getSwitchState(int sw) const { #ifdef EV_SW if (sw >= 0 && sw <= SW_MAX) { int32_t devid = mSwitches[sw]; if (devid != 0) { return getSwitchState(devid, sw); } } #endif return -1; } int EventHub::getSwitchState(int32_t deviceId, int sw) const { #ifdef EV_SW AutoMutex _l(mLock); device_t* device = getDevice(deviceId); if (device == NULL) return -1; if (sw >= 0 && sw <= SW_MAX) { uint8_t sw_bitmask[(SW_MAX+1)/8]; memset(sw_bitmask, 0, sizeof(sw_bitmask)); if (ioctl(mFDs[id_to_index(device->id)].fd, EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) { return test_bit(sw, sw_bitmask) ? 1 : 0; } } #endif return -1; } int EventHub::getScancodeState(int code) const { return getScancodeState(mFirstKeyboardId, code); } int EventHub::getScancodeState(int32_t deviceId, int code) const { AutoMutex _l(mLock); device_t* device = getDevice(deviceId); if (device == NULL) return -1; if (code >= 0 && code <= KEY_MAX) { uint8_t key_bitmask[(KEY_MAX+1)/8]; memset(key_bitmask, 0, sizeof(key_bitmask)); if (ioctl(mFDs[id_to_index(device->id)].fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) { return test_bit(code, key_bitmask) ? 1 : 0; } } return -1; } int EventHub::getKeycodeState(int code) const { return getKeycodeState(mFirstKeyboardId, code); } int EventHub::getKeycodeState(int32_t deviceId, int code) const { AutoMutex _l(mLock); device_t* device = getDevice(deviceId); if (device == NULL || device->layoutMap == NULL) return -1; Vector<int32_t> scanCodes; device->layoutMap->findScancodes(code, &scanCodes); uint8_t key_bitmask[(KEY_MAX+1)/8]; memset(key_bitmask, 0, sizeof(key_bitmask)); if (ioctl(mFDs[id_to_index(device->id)].fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) { #if 0 for (size_t i=0; i<=KEY_MAX; i++) { LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask)); } #endif const size_t N = scanCodes.size(); for (size_t i=0; i<N && i<=KEY_MAX; i++) { int32_t sc = scanCodes.itemAt(i); //LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask)); if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) { return 1; } } } return 0; } status_t EventHub::scancodeToKeycode(int32_t deviceId, int scancode, int32_t* outKeycode, uint32_t* outFlags) const { AutoMutex _l(mLock); device_t* device = getDevice(deviceId); if (device != NULL && device->layoutMap != NULL) { status_t err = device->layoutMap->map(scancode, outKeycode, outFlags); if (err == NO_ERROR) { return NO_ERROR; } } if (mHaveFirstKeyboard) { device = getDevice(mFirstKeyboardId); if (device != NULL && device->layoutMap != NULL) { status_t err = device->layoutMap->map(scancode, outKeycode, outFlags); if (err == NO_ERROR) { return NO_ERROR; } } } *outKeycode = 0; *outFlags = 0; return NAME_NOT_FOUND; } void EventHub::addExcludedDevice(const char* deviceName) { String8 name(deviceName); mExcludedDevices.push_back(name); } EventHub::device_t* EventHub::getDevice(int32_t deviceId) const { if (deviceId == 0) deviceId = mFirstKeyboardId; int32_t id = deviceId & ID_MASK; if (id >= mNumDevicesById || id < 0) return NULL; device_t* dev = mDevicesById[id].device; if (dev == NULL) return NULL; if (dev->id == deviceId) { return dev; } return NULL; } bool EventHub::getEvent(int32_t* outDeviceId, int32_t* outType, int32_t* outScancode, int32_t* outKeycode, uint32_t *outFlags, int32_t* outValue, nsecs_t* outWhen) { *outDeviceId = 0; *outType = 0; *outScancode = 0; *outKeycode = 0; *outFlags = 0; *outValue = 0; *outWhen = 0; status_t err; fd_set readfds; int maxFd = -1; int cc; int i; int res; int pollres; struct input_event iev; // Note that we only allow one caller to getEvent(), so don't need // to do locking here... only when adding/removing devices. if (!mOpened) { mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR; mOpened = true; } while(1) { // First, report any devices that had last been added/removed. if (mClosingDevices != NULL) { device_t* device = mClosingDevices; LOGV("Reporting device closed: id=0x%x, name=%s\n", device->id, device->path.string()); mClosingDevices = device->next; *outDeviceId = device->id; if (*outDeviceId == mFirstKeyboardId) *outDeviceId = 0; *outType = DEVICE_REMOVED; delete device; return true; } if (mOpeningDevices != NULL) { device_t* device = mOpeningDevices; LOGV("Reporting device opened: id=0x%x, name=%s\n", device->id, device->path.string()); mOpeningDevices = device->next; *outDeviceId = device->id; if (*outDeviceId == mFirstKeyboardId) *outDeviceId = 0; *outType = DEVICE_ADDED; return true; } release_wake_lock(WAKE_LOCK_ID); pollres = poll(mFDs, mFDCount, -1); acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); if (pollres <= 0) { if (errno != EINTR) { LOGW("select failed (errno=%d)\n", errno); usleep(100000); } continue; } //printf("poll %d, returned %d\n", mFDCount, pollres); // mFDs[0] is used for inotify, so process regular events starting at mFDs[1] for(i = 1; i < mFDCount; i++) { if(mFDs[i].revents) { LOGV("revents for %d = 0x%08x", i, mFDs[i].revents); if(mFDs[i].revents & POLLIN) { res = read(mFDs[i].fd, &iev, sizeof(iev)); if (res == sizeof(iev)) { LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, v=%d", mDevices[i]->path.string(), (int) iev.time.tv_sec, (int) iev.time.tv_usec, iev.type, iev.code, iev.value); *outDeviceId = mDevices[i]->id; if (*outDeviceId == mFirstKeyboardId) *outDeviceId = 0; *outType = iev.type; *outScancode = iev.code; if (iev.type == EV_KEY) { err = mDevices[i]->layoutMap->map(iev.code, outKeycode, outFlags); LOGV("iev.code=%d outKeycode=%d outFlags=0x%08x err=%d\n", iev.code, *outKeycode, *outFlags, err); if (err != 0) { *outKeycode = 0; *outFlags = 0; } } else { *outKeycode = iev.code; } *outValue = iev.value; *outWhen = s2ns(iev.time.tv_sec) + us2ns(iev.time.tv_usec); return true; } else { if (res<0) { LOGW("could not get event (errno=%d)", errno); } else { LOGE("could not get event (wrong size: %d)", res); } continue; } } } } // read_notify() will modify mFDs and mFDCount, so this must be done after // processing all other events. if(mFDs[0].revents & POLLIN) { read_notify(mFDs[0].fd); } } } /* * Open the platform-specific input device. */ bool EventHub::openPlatformInput(void) { /* * Open platform-specific input device(s). */ int res; mFDCount = 1; mFDs = (pollfd *)calloc(1, sizeof(mFDs[0])); mDevices = (device_t **)calloc(1, sizeof(mDevices[0])); mFDs[0].events = POLLIN; mDevices[0] = NULL; #ifdef HAVE_INOTIFY mFDs[0].fd = inotify_init(); res = inotify_add_watch(mFDs[0].fd, device_path, IN_DELETE | IN_CREATE); if(res < 0) { LOGE("could not add watch for %s, %s\n", device_path, strerror(errno)); } #else /* * The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd. * We allocate space for it and set it to something invalid. */ mFDs[0].fd = -1; #endif res = scan_dir(device_path); if(res < 0) { LOGE("scan dir failed for %s\n", device_path); //open_device("/dev/input/event0"); } return true; } /* * Inspect the known devices to determine whether physical keys exist for the given * framework-domain key codes. */ bool EventHub::hasKeys(size_t numCodes, int32_t* keyCodes, uint8_t* outFlags) { for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) { outFlags[codeIndex] = 0; // check each available hardware device for support for this keycode Vector<int32_t> scanCodes; for (int n = 0; (n < mFDCount) && (outFlags[codeIndex] == 0); n++) { if (mDevices[n]) { status_t err = mDevices[n]->layoutMap->findScancodes(keyCodes[codeIndex], &scanCodes); if (!err) { // check the possible scan codes identified by the layout map against the // map of codes actually emitted by the driver for (size_t sc = 0; sc < scanCodes.size(); sc++) { if (test_bit(scanCodes[sc], mDevices[n]->keyBitmask)) { outFlags[codeIndex] = 1; break; } } } } } } return true; } // ---------------------------------------------------------------------------- int EventHub::open_device(const char *deviceName) { int version; int fd; struct pollfd *new_mFDs; device_t **new_devices; char **new_device_names; char name[80]; char location[80]; char idstr[80]; struct input_id id; LOGV("Opening device: %s", deviceName); AutoMutex _l(mLock); fd = open(deviceName, O_RDWR); if(fd < 0) { LOGE("could not open %s, %s\n", deviceName, strerror(errno)); return -1; } if(ioctl(fd, EVIOCGVERSION, &version)) { LOGE("could not get driver version for %s, %s\n", deviceName, strerror(errno)); return -1; } if(ioctl(fd, EVIOCGID, &id)) { LOGE("could not get driver id for %s, %s\n", deviceName, strerror(errno)); return -1; } name[sizeof(name) - 1] = '\0'; location[sizeof(location) - 1] = '\0'; idstr[sizeof(idstr) - 1] = '\0'; if(ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) { //fprintf(stderr, "could not get device name for %s, %s\n", deviceName, strerror(errno)); name[0] = '\0'; } // check to see if the device is on our excluded list List<String8>::iterator iter = mExcludedDevices.begin(); List<String8>::iterator end = mExcludedDevices.end(); for ( ; iter != end; iter++) { const char* test = *iter; if (strcmp(name, test) == 0) { LOGI("ignoring event id %s driver %s\n", deviceName, test); close(fd); fd = -1; return -1; } } if(ioctl(fd, EVIOCGPHYS(sizeof(location) - 1), &location) < 1) { //fprintf(stderr, "could not get location for %s, %s\n", deviceName, strerror(errno)); location[0] = '\0'; } if(ioctl(fd, EVIOCGUNIQ(sizeof(idstr) - 1), &idstr) < 1) { //fprintf(stderr, "could not get idstring for %s, %s\n", deviceName, strerror(errno)); idstr[0] = '\0'; } int devid = 0; while (devid < mNumDevicesById) { if (mDevicesById[devid].device == NULL) { break; } devid++; } if (devid >= mNumDevicesById) { device_ent* new_devids = (device_ent*)realloc(mDevicesById, sizeof(mDevicesById[0]) * (devid + 1)); if (new_devids == NULL) { LOGE("out of memory"); return -1; } mDevicesById = new_devids; mNumDevicesById = devid+1; mDevicesById[devid].device = NULL; mDevicesById[devid].seq = 0; } mDevicesById[devid].seq = (mDevicesById[devid].seq+(1<<SEQ_SHIFT))&SEQ_MASK; if (mDevicesById[devid].seq == 0) { mDevicesById[devid].seq = 1<<SEQ_SHIFT; } new_mFDs = (pollfd*)realloc(mFDs, sizeof(mFDs[0]) * (mFDCount + 1)); new_devices = (device_t**)realloc(mDevices, sizeof(mDevices[0]) * (mFDCount + 1)); if (new_mFDs == NULL || new_devices == NULL) { LOGE("out of memory"); return -1; } mFDs = new_mFDs; mDevices = new_devices; #if 0 LOGI("add device %d: %s\n", mFDCount, deviceName); LOGI(" bus: %04x\n" " vendor %04x\n" " product %04x\n" " version %04x\n", id.bustype, id.vendor, id.product, id.version); LOGI(" name: \"%s\"\n", name); LOGI(" location: \"%s\"\n" " id: \"%s\"\n", location, idstr); LOGI(" version: %d.%d.%d\n", version >> 16, (version >> 8) & 0xff, version & 0xff); #endif device_t* device = new device_t(devid|mDevicesById[devid].seq, deviceName, name); if (device == NULL) { LOGE("out of memory"); return -1; } mFDs[mFDCount].fd = fd; mFDs[mFDCount].events = POLLIN; // figure out the kinds of events the device reports // See if this is a keyboard, and classify it. uint8_t key_bitmask[(KEY_MAX+1)/8]; memset(key_bitmask, 0, sizeof(key_bitmask)); LOGV("Getting keys..."); if (ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask) >= 0) { //LOGI("MAP\n"); //for (int i=0; i<((KEY_MAX+1)/8); i++) { // LOGI("%d: 0x%02x\n", i, key_bitmask[i]); //} for (int i=0; i<((BTN_MISC+7)/8); i++) { if (key_bitmask[i] != 0) { device->classes |= CLASS_KEYBOARD; break; } } if ((device->classes & CLASS_KEYBOARD) != 0) { device->keyBitmask = new uint8_t[sizeof(key_bitmask)]; if (device->keyBitmask != NULL) { memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask)); } else { delete device; LOGE("out of memory allocating key bitmask"); return -1; } } } // See if this is a trackball. if (test_bit(BTN_MOUSE, key_bitmask)) { uint8_t rel_bitmask[(REL_MAX+1)/8]; memset(rel_bitmask, 0, sizeof(rel_bitmask)); LOGV("Getting relative controllers..."); if (ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask) >= 0) { if (test_bit(REL_X, rel_bitmask) && test_bit(REL_Y, rel_bitmask)) { device->classes |= CLASS_TRACKBALL; } } } uint8_t abs_bitmask[(ABS_MAX+1)/8]; memset(abs_bitmask, 0, sizeof(abs_bitmask)); LOGV("Getting absolute controllers..."); ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask); // Is this a new modern multi-touch driver? if (test_bit(ABS_MT_TOUCH_MAJOR, abs_bitmask) && test_bit(ABS_MT_POSITION_X, abs_bitmask) && test_bit(ABS_MT_POSITION_Y, abs_bitmask)) { device->classes |= CLASS_TOUCHSCREEN | CLASS_TOUCHSCREEN_MT; // Is this an old style single-touch driver? } else if (test_bit(BTN_TOUCH, key_bitmask) && test_bit(ABS_X, abs_bitmask) && test_bit(ABS_Y, abs_bitmask)) { device->classes |= CLASS_TOUCHSCREEN; } #ifdef EV_SW // figure out the switches this device reports uint8_t sw_bitmask[(SW_MAX+1)/8]; memset(sw_bitmask, 0, sizeof(sw_bitmask)); if (ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask) >= 0) { for (int i=0; i<EV_SW; i++) { //LOGI("Device 0x%x sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask)); if (test_bit(i, sw_bitmask)) { if (mSwitches[i] == 0) { mSwitches[i] = device->id; } } } } #endif if ((device->classes&CLASS_KEYBOARD) != 0) { char tmpfn[sizeof(name)]; char keylayoutFilename[300]; // a more descriptive name device->name = name; // replace all the spaces with underscores strcpy(tmpfn, name); for (char *p = strchr(tmpfn, ' '); p && *p; p = strchr(tmpfn, ' ')) *p = '_'; // find the .kl file we need for this device const char* root = getenv("ANDROID_ROOT"); snprintf(keylayoutFilename, sizeof(keylayoutFilename), "%s/usr/keylayout/%s.kl", root, tmpfn); bool defaultKeymap = false; if (access(keylayoutFilename, R_OK)) { snprintf(keylayoutFilename, sizeof(keylayoutFilename), "%s/usr/keylayout/%s", root, "qwerty.kl"); defaultKeymap = true; } device->layoutMap->load(keylayoutFilename); // tell the world about the devname (the descriptive name) int32_t publicID; if (!mHaveFirstKeyboard && !defaultKeymap) { publicID = 0; // the built-in keyboard has a well-known device ID of 0, // this device better not go away. mHaveFirstKeyboard = true; mFirstKeyboardId = device->id; } else { publicID = device->id; // ensure mFirstKeyboardId is set to -something-. if (mFirstKeyboardId == 0) { mFirstKeyboardId = device->id; } } char propName[100]; sprintf(propName, "hw.keyboards.%u.devname", publicID); property_set(propName, name); // 'Q' key support = cheap test of whether this is an alpha-capable kbd if (hasKeycode(device, kKeyCodeQ)) { device->classes |= CLASS_ALPHAKEY; } // See if this has a DPAD. if (hasKeycode(device, kKeyCodeDpadUp) && hasKeycode(device, kKeyCodeDpadDown) && hasKeycode(device, kKeyCodeDpadLeft) && hasKeycode(device, kKeyCodeDpadRight) && hasKeycode(device, kKeyCodeDpadCenter)) { device->classes |= CLASS_DPAD; } LOGI("New keyboard: publicID=%d device->id=0x%x devname='%s' propName='%s' keylayout='%s'\n", publicID, device->id, name, propName, keylayoutFilename); } LOGI("New device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n", deviceName, name, device->id, mNumDevicesById, mFDCount, fd, device->classes); LOGV("Adding device %s %p at %d, id = %d, classes = 0x%x\n", deviceName, device, mFDCount, devid, device->classes); mDevicesById[devid].device = device; device->next = mOpeningDevices; mOpeningDevices = device; mDevices[mFDCount] = device; mFDCount++; return 0; } bool EventHub::hasKeycode(device_t* device, int keycode) const { if (device->keyBitmask == NULL || device->layoutMap == NULL) { return false; } Vector<int32_t> scanCodes; device->layoutMap->findScancodes(keycode, &scanCodes); const size_t N = scanCodes.size(); for (size_t i=0; i<N && i<=KEY_MAX; i++) { int32_t sc = scanCodes.itemAt(i); if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) { return true; } } return false; } int EventHub::close_device(const char *deviceName) { AutoMutex _l(mLock); int i; for(i = 1; i < mFDCount; i++) { if(strcmp(mDevices[i]->path.string(), deviceName) == 0) { //LOGD("remove device %d: %s\n", i, deviceName); device_t* device = mDevices[i]; LOGI("Removed device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n", device->path.string(), device->name.string(), device->id, mNumDevicesById, mFDCount, mFDs[i].fd, device->classes); // Clear this device's entry. int index = (device->id&ID_MASK); mDevicesById[index].device = NULL; // Close the file descriptor and compact the fd array. close(mFDs[i].fd); int count = mFDCount - i - 1; memmove(mDevices + i, mDevices + i + 1, sizeof(mDevices[0]) * count); memmove(mFDs + i, mFDs + i + 1, sizeof(mFDs[0]) * count); mFDCount--; #ifdef EV_SW for (int j=0; j<EV_SW; j++) { if (mSwitches[j] == device->id) { mSwitches[j] = 0; } } #endif device->next = mClosingDevices; mClosingDevices = device; uint32_t publicID; if (device->id == mFirstKeyboardId) { LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", device->path.string(), mFirstKeyboardId); mFirstKeyboardId = 0; publicID = 0; } else { publicID = device->id; } // clear the property char propName[100]; sprintf(propName, "hw.keyboards.%u.devname", publicID); property_set(propName, NULL); return 0; } } LOGE("remove device: %s not found\n", deviceName); return -1; } int EventHub::read_notify(int nfd) { #ifdef HAVE_INOTIFY int res; char devname[PATH_MAX]; char *filename; char event_buf[512]; int event_size; int event_pos = 0; struct inotify_event *event; LOGV("EventHub::read_notify nfd: %d\n", nfd); res = read(nfd, event_buf, sizeof(event_buf)); if(res < (int)sizeof(*event)) { if(errno == EINTR) return 0; LOGW("could not get event, %s\n", strerror(errno)); return 1; } //printf("got %d bytes of event information\n", res); strcpy(devname, device_path); filename = devname + strlen(devname); *filename++ = '/'; while(res >= (int)sizeof(*event)) { event = (struct inotify_event *)(event_buf + event_pos); //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : ""); if(event->len) { strcpy(filename, event->name); if(event->mask & IN_CREATE) { open_device(devname); } else { close_device(devname); } } event_size = sizeof(*event) + event->len; res -= event_size; event_pos += event_size; } #endif return 0; } int EventHub::scan_dir(const char *dirname) { char devname[PATH_MAX]; char *filename; DIR *dir; struct dirent *de; dir = opendir(dirname); if(dir == NULL) return -1; strcpy(devname, dirname); filename = devname + strlen(devname); *filename++ = '/'; while((de = readdir(dir))) { if(de->d_name[0] == '.' && (de->d_name[1] == '\0' || (de->d_name[1] == '.' && de->d_name[2] == '\0'))) continue; strcpy(filename, de->d_name); open_device(devname); } closedir(dir); return 0; } }; // namespace android