// // Copyright 2005 The Android Open Source Project // // Handle events, like key input and vsync. // // The goal is to provide an optimized solution for Linux, not an // implementation that works well across all platforms. We expect // events to arrive on file descriptors, so that we can use a select() // select() call to sleep. // // We can't select() on anything but network sockets in Windows, so we // provide an alternative implementation of waitEvent for that platform. // #define LOG_TAG "EventHub" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_INOTIFY # include #endif #ifdef HAVE_ANDROID_OS # include /* not part of Linux */ #endif #include #include /* this macro is used to tell if "bit" is set in "array" * it selects a byte from the array, and does a boolean AND * operation with a byte that only has the relevant bit set. * eg. to check for the 12th bit, we do (array[1] & 1<<4) */ #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8))) /* this macro computes the number of bytes needed to represent a bit array of the specified size */ #define sizeof_bit_array(bits) ((bits + 7) / 8) #define ID_MASK 0x0000ffff #define SEQ_MASK 0x7fff0000 #define SEQ_SHIFT 16 #ifndef ABS_MT_TOUCH_MAJOR #define ABS_MT_TOUCH_MAJOR 0x30 /* Major axis of touching ellipse */ #endif #ifndef ABS_MT_POSITION_X #define ABS_MT_POSITION_X 0x35 /* Center X ellipse position */ #endif #ifndef ABS_MT_POSITION_Y #define ABS_MT_POSITION_Y 0x36 /* Center Y ellipse position */ #endif #define INDENT " " #define INDENT2 " " #define INDENT3 " " namespace android { static const char *WAKE_LOCK_ID = "KeyEvents"; static const char *device_path = "/dev/input"; /* return the larger integer */ static inline int max(int v1, int v2) { return (v1 > v2) ? v1 : v2; } static inline const char* toString(bool value) { return value ? "true" : "false"; } EventHub::device_t::device_t(int32_t _id, const char* _path, const char* name) : id(_id), path(_path), name(name), classes(0) , keyBitmask(NULL), layoutMap(NULL), configuration(NULL), fd(-1), next(NULL) { } EventHub::device_t::~device_t() { delete [] keyBitmask; delete layoutMap; delete configuration; } EventHub::EventHub(void) : mError(NO_INIT), mHaveFirstKeyboard(false), mFirstKeyboardId(-1) , mDevicesById(0), mNumDevicesById(0) , mOpeningDevices(0), mClosingDevices(0) , mDevices(0), mFDs(0), mFDCount(0), mOpened(false), mNeedToSendFinishedDeviceScan(false) , mInputBufferIndex(0), mInputBufferCount(0), mInputDeviceIndex(0) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); #ifdef EV_SW memset(mSwitches, 0, sizeof(mSwitches)); #endif } /* * Clean up. */ EventHub::~EventHub(void) { release_wake_lock(WAKE_LOCK_ID); // we should free stuff here... } status_t EventHub::errorCheck() const { return mError; } String8 EventHub::getDeviceName(int32_t deviceId) const { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device == NULL) return String8(); return device->name; } uint32_t EventHub::getDeviceClasses(int32_t deviceId) const { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device == NULL) return 0; return device->classes; } void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device && device->configuration) { *outConfiguration = *device->configuration; } else { outConfiguration->clear(); } } status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, RawAbsoluteAxisInfo* outAxisInfo) const { outAxisInfo->clear(); AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device == NULL) return -1; struct input_absinfo info; if(ioctl(device->fd, EVIOCGABS(axis), &info)) { LOGW("Error reading absolute controller %d for device %s fd %d\n", axis, device->name.string(), device->fd); return -errno; } if (info.minimum != info.maximum) { outAxisInfo->valid = true; outAxisInfo->minValue = info.minimum; outAxisInfo->maxValue = info.maximum; outAxisInfo->flat = info.flat; outAxisInfo->fuzz = info.fuzz; } return OK; } int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { if (scanCode >= 0 && scanCode <= KEY_MAX) { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device != NULL) { return getScanCodeStateLocked(device, scanCode); } } return AKEY_STATE_UNKNOWN; } int32_t EventHub::getScanCodeStateLocked(device_t* device, int32_t scanCode) const { uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)]; memset(key_bitmask, 0, sizeof(key_bitmask)); if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) { return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } return AKEY_STATE_UNKNOWN; } int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device != NULL) { return getKeyCodeStateLocked(device, keyCode); } return AKEY_STATE_UNKNOWN; } int32_t EventHub::getKeyCodeStateLocked(device_t* device, int32_t keyCode) const { if (!device->layoutMap) { return AKEY_STATE_UNKNOWN; } Vector scanCodes; device->layoutMap->findScanCodes(keyCode, &scanCodes); uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)]; memset(key_bitmask, 0, sizeof(key_bitmask)); if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) { #if 0 for (size_t i=0; i<=KEY_MAX; i++) { LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask)); } #endif const size_t N = scanCodes.size(); for (size_t i=0; i= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) { return AKEY_STATE_DOWN; } } return AKEY_STATE_UP; } return AKEY_STATE_UNKNOWN; } int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { #ifdef EV_SW if (sw >= 0 && sw <= SW_MAX) { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device != NULL) { return getSwitchStateLocked(device, sw); } } #endif return AKEY_STATE_UNKNOWN; } int32_t EventHub::getSwitchStateLocked(device_t* device, int32_t sw) const { uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)]; memset(sw_bitmask, 0, sizeof(sw_bitmask)); if (ioctl(device->fd, EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) { return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP; } return AKEY_STATE_UNKNOWN; } bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) const { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device != NULL) { return markSupportedKeyCodesLocked(device, numCodes, keyCodes, outFlags); } return false; } bool EventHub::markSupportedKeyCodesLocked(device_t* device, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) const { if (device->layoutMap == NULL || device->keyBitmask == NULL) { return false; } Vector scanCodes; for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) { scanCodes.clear(); status_t err = device->layoutMap->findScanCodes(keyCodes[codeIndex], &scanCodes); if (! err) { // check the possible scan codes identified by the layout map against the // map of codes actually emitted by the driver for (size_t sc = 0; sc < scanCodes.size(); sc++) { if (test_bit(scanCodes[sc], device->keyBitmask)) { outFlags[codeIndex] = 1; break; } } } } return true; } status_t EventHub::scancodeToKeycode(int32_t deviceId, int scancode, int32_t* outKeycode, uint32_t* outFlags) const { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device != NULL && device->layoutMap != NULL) { status_t err = device->layoutMap->map(scancode, outKeycode, outFlags); if (err == NO_ERROR) { return NO_ERROR; } } if (mHaveFirstKeyboard) { device = getDeviceLocked(mFirstKeyboardId); if (device != NULL && device->layoutMap != NULL) { status_t err = device->layoutMap->map(scancode, outKeycode, outFlags); if (err == NO_ERROR) { return NO_ERROR; } } } *outKeycode = 0; *outFlags = 0; return NAME_NOT_FOUND; } void EventHub::addExcludedDevice(const char* deviceName) { AutoMutex _l(mLock); String8 name(deviceName); mExcludedDevices.push_back(name); } bool EventHub::hasLed(int32_t deviceId, int32_t led) const { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device) { uint8_t bitmask[sizeof_bit_array(LED_MAX + 1)]; memset(bitmask, 0, sizeof(bitmask)); if (ioctl(device->fd, EVIOCGBIT(EV_LED, sizeof(bitmask)), bitmask) >= 0) { if (test_bit(led, bitmask)) { return true; } } } return false; } void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { AutoMutex _l(mLock); device_t* device = getDeviceLocked(deviceId); if (device) { struct input_event ev; ev.time.tv_sec = 0; ev.time.tv_usec = 0; ev.type = EV_LED; ev.code = led; ev.value = on ? 1 : 0; ssize_t nWrite; do { nWrite = write(device->fd, &ev, sizeof(struct input_event)); } while (nWrite == -1 && errno == EINTR); } } EventHub::device_t* EventHub::getDeviceLocked(int32_t deviceId) const { if (deviceId == 0) deviceId = mFirstKeyboardId; int32_t id = deviceId & ID_MASK; if (id >= mNumDevicesById || id < 0) return NULL; device_t* dev = mDevicesById[id].device; if (dev == NULL) return NULL; if (dev->id == deviceId) { return dev; } return NULL; } bool EventHub::getEvent(RawEvent* outEvent) { outEvent->deviceId = 0; outEvent->type = 0; outEvent->scanCode = 0; outEvent->keyCode = 0; outEvent->flags = 0; outEvent->value = 0; outEvent->when = 0; // Note that we only allow one caller to getEvent(), so don't need // to do locking here... only when adding/removing devices. if (!mOpened) { mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR; mOpened = true; mNeedToSendFinishedDeviceScan = true; } for (;;) { // Report any devices that had last been added/removed. if (mClosingDevices != NULL) { device_t* device = mClosingDevices; LOGV("Reporting device closed: id=0x%x, name=%s\n", device->id, device->path.string()); mClosingDevices = device->next; if (device->id == mFirstKeyboardId) { outEvent->deviceId = 0; } else { outEvent->deviceId = device->id; } outEvent->type = DEVICE_REMOVED; outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC); delete device; mNeedToSendFinishedDeviceScan = true; return true; } if (mOpeningDevices != NULL) { device_t* device = mOpeningDevices; LOGV("Reporting device opened: id=0x%x, name=%s\n", device->id, device->path.string()); mOpeningDevices = device->next; if (device->id == mFirstKeyboardId) { outEvent->deviceId = 0; } else { outEvent->deviceId = device->id; } outEvent->type = DEVICE_ADDED; outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC); mNeedToSendFinishedDeviceScan = true; return true; } if (mNeedToSendFinishedDeviceScan) { mNeedToSendFinishedDeviceScan = false; outEvent->type = FINISHED_DEVICE_SCAN; outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC); return true; } // Grab the next input event. for (;;) { // Consume buffered input events, if any. if (mInputBufferIndex < mInputBufferCount) { const struct input_event& iev = mInputBufferData[mInputBufferIndex++]; const device_t* device = mDevices[mInputDeviceIndex]; LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, v=%d", device->path.string(), (int) iev.time.tv_sec, (int) iev.time.tv_usec, iev.type, iev.code, iev.value); if (device->id == mFirstKeyboardId) { outEvent->deviceId = 0; } else { outEvent->deviceId = device->id; } outEvent->type = iev.type; outEvent->scanCode = iev.code; outEvent->flags = 0; if (iev.type == EV_KEY) { outEvent->keyCode = AKEYCODE_UNKNOWN; if (device->layoutMap) { status_t err = device->layoutMap->map(iev.code, &outEvent->keyCode, &outEvent->flags); LOGV("iev.code=%d keyCode=%d flags=0x%08x err=%d\n", iev.code, outEvent->keyCode, outEvent->flags, err); } } else { outEvent->keyCode = iev.code; } outEvent->value = iev.value; // Use an event timestamp in the same timebase as // java.lang.System.nanoTime() and android.os.SystemClock.uptimeMillis() // as expected by the rest of the system. outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC); return true; } // Finish reading all events from devices identified in previous poll(). // This code assumes that mInputDeviceIndex is initially 0 and that the // revents member of pollfd is initialized to 0 when the device is first added. // Since mFDs[0] is used for inotify, we process regular events starting at index 1. mInputDeviceIndex += 1; if (mInputDeviceIndex >= mFDCount) { break; } const struct pollfd& pfd = mFDs[mInputDeviceIndex]; if (pfd.revents & POLLIN) { int32_t readSize = read(pfd.fd, mInputBufferData, sizeof(struct input_event) * INPUT_BUFFER_SIZE); if (readSize < 0) { if (errno != EAGAIN && errno != EINTR) { LOGW("could not get event (errno=%d)", errno); } } else if ((readSize % sizeof(struct input_event)) != 0) { LOGE("could not get event (wrong size: %d)", readSize); } else { mInputBufferCount = readSize / sizeof(struct input_event); mInputBufferIndex = 0; } } } #if HAVE_INOTIFY // readNotify() will modify mFDs and mFDCount, so this must be done after // processing all other events. if(mFDs[0].revents & POLLIN) { readNotify(mFDs[0].fd); mFDs[0].revents = 0; continue; // report added or removed devices immediately } #endif mInputDeviceIndex = 0; // Poll for events. Mind the wake lock dance! // We hold a wake lock at all times except during poll(). This works due to some // subtle choreography. When a device driver has pending (unread) events, it acquires // a kernel wake lock. However, once the last pending event has been read, the device // driver will release the kernel wake lock. To prevent the system from going to sleep // when this happens, the EventHub holds onto its own user wake lock while the client // is processing events. Thus the system can only sleep if there are no events // pending or currently being processed. release_wake_lock(WAKE_LOCK_ID); int pollResult = poll(mFDs, mFDCount, -1); acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); if (pollResult <= 0) { if (errno != EINTR) { LOGW("poll failed (errno=%d)\n", errno); usleep(100000); } } } } /* * Open the platform-specific input device. */ bool EventHub::openPlatformInput(void) { /* * Open platform-specific input device(s). */ int res; mFDCount = 1; mFDs = (pollfd *)calloc(1, sizeof(mFDs[0])); mDevices = (device_t **)calloc(1, sizeof(mDevices[0])); mFDs[0].events = POLLIN; mFDs[0].revents = 0; mDevices[0] = NULL; #ifdef HAVE_INOTIFY mFDs[0].fd = inotify_init(); res = inotify_add_watch(mFDs[0].fd, device_path, IN_DELETE | IN_CREATE); if(res < 0) { LOGE("could not add watch for %s, %s\n", device_path, strerror(errno)); } #else /* * The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd. * We allocate space for it and set it to something invalid. */ mFDs[0].fd = -1; #endif res = scanDir(device_path); if(res < 0) { LOGE("scan dir failed for %s\n", device_path); } return true; } // ---------------------------------------------------------------------------- static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) { const uint8_t* end = array + endIndex; array += startIndex; while (array != end) { if (*(array++) != 0) { return true; } } return false; } static const int32_t GAMEPAD_KEYCODES[] = { AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE }; int EventHub::openDevice(const char *deviceName) { int version; int fd; struct pollfd *new_mFDs; device_t **new_devices; char **new_device_names; char name[80]; char location[80]; char idstr[80]; struct input_id id; LOGV("Opening device: %s", deviceName); AutoMutex _l(mLock); fd = open(deviceName, O_RDWR); if(fd < 0) { LOGE("could not open %s, %s\n", deviceName, strerror(errno)); return -1; } if(ioctl(fd, EVIOCGVERSION, &version)) { LOGE("could not get driver version for %s, %s\n", deviceName, strerror(errno)); return -1; } if(ioctl(fd, EVIOCGID, &id)) { LOGE("could not get driver id for %s, %s\n", deviceName, strerror(errno)); return -1; } name[sizeof(name) - 1] = '\0'; location[sizeof(location) - 1] = '\0'; idstr[sizeof(idstr) - 1] = '\0'; if(ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) { //fprintf(stderr, "could not get device name for %s, %s\n", deviceName, strerror(errno)); name[0] = '\0'; } // check to see if the device is on our excluded list List::iterator iter = mExcludedDevices.begin(); List::iterator end = mExcludedDevices.end(); for ( ; iter != end; iter++) { const char* test = *iter; if (strcmp(name, test) == 0) { LOGI("ignoring event id %s driver %s\n", deviceName, test); close(fd); return -1; } } if(ioctl(fd, EVIOCGPHYS(sizeof(location) - 1), &location) < 1) { //fprintf(stderr, "could not get location for %s, %s\n", deviceName, strerror(errno)); location[0] = '\0'; } if(ioctl(fd, EVIOCGUNIQ(sizeof(idstr) - 1), &idstr) < 1) { //fprintf(stderr, "could not get idstring for %s, %s\n", deviceName, strerror(errno)); idstr[0] = '\0'; } if (fcntl(fd, F_SETFL, O_NONBLOCK)) { LOGE("Error %d making device file descriptor non-blocking.", errno); close(fd); return -1; } int devid = 0; while (devid < mNumDevicesById) { if (mDevicesById[devid].device == NULL) { break; } devid++; } if (devid >= mNumDevicesById) { device_ent* new_devids = (device_ent*)realloc(mDevicesById, sizeof(mDevicesById[0]) * (devid + 1)); if (new_devids == NULL) { LOGE("out of memory"); return -1; } mDevicesById = new_devids; mNumDevicesById = devid+1; mDevicesById[devid].device = NULL; mDevicesById[devid].seq = 0; } mDevicesById[devid].seq = (mDevicesById[devid].seq+(1<> 16, (version >> 8) & 0xff, version & 0xff); #endif device_t* device = new device_t(devid|mDevicesById[devid].seq, deviceName, name); if (device == NULL) { LOGE("out of memory"); return -1; } device->fd = fd; mFDs[mFDCount].fd = fd; mFDs[mFDCount].events = POLLIN; mFDs[mFDCount].revents = 0; // Load the configuration file for the device. loadConfiguration(device); // Figure out the kinds of events the device reports. uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)]; memset(key_bitmask, 0, sizeof(key_bitmask)); LOGV("Getting keys..."); if (ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask) >= 0) { //LOGI("MAP\n"); //for (int i = 0; i < sizeof(key_bitmask); i++) { // LOGI("%d: 0x%02x\n", i, key_bitmask[i]); //} // See if this is a keyboard. Ignore everything in the button range except for // gamepads which are also considered keyboards. if (containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC)) || containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_GAMEPAD), sizeof_bit_array(BTN_DIGI)) || containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK), sizeof_bit_array(KEY_MAX + 1))) { device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; device->keyBitmask = new uint8_t[sizeof(key_bitmask)]; if (device->keyBitmask != NULL) { memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask)); } else { delete device; LOGE("out of memory allocating key bitmask"); return -1; } } } // See if this is a trackball (or mouse). if (test_bit(BTN_MOUSE, key_bitmask)) { uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)]; memset(rel_bitmask, 0, sizeof(rel_bitmask)); LOGV("Getting relative controllers..."); if (ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask) >= 0) { if (test_bit(REL_X, rel_bitmask) && test_bit(REL_Y, rel_bitmask)) { device->classes |= INPUT_DEVICE_CLASS_TRACKBALL; } } } // See if this is a touch pad. uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)]; memset(abs_bitmask, 0, sizeof(abs_bitmask)); LOGV("Getting absolute controllers..."); if (ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask) >= 0) { // Is this a new modern multi-touch driver? if (test_bit(ABS_MT_POSITION_X, abs_bitmask) && test_bit(ABS_MT_POSITION_Y, abs_bitmask)) { device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN | INPUT_DEVICE_CLASS_TOUCHSCREEN_MT; // Is this an old style single-touch driver? } else if (test_bit(BTN_TOUCH, key_bitmask) && test_bit(ABS_X, abs_bitmask) && test_bit(ABS_Y, abs_bitmask)) { device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN; } } #ifdef EV_SW // figure out the switches this device reports uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)]; memset(sw_bitmask, 0, sizeof(sw_bitmask)); bool hasSwitches = false; if (ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask) >= 0) { for (int i=0; iid, i, test_bit(i, sw_bitmask)); if (test_bit(i, sw_bitmask)) { hasSwitches = true; if (mSwitches[i] == 0) { mSwitches[i] = device->id; } } } } if (hasSwitches) { device->classes |= INPUT_DEVICE_CLASS_SWITCH; } #endif if ((device->classes & INPUT_DEVICE_CLASS_KEYBOARD) != 0) { // a more descriptive name device->name = name; // Configure the keymap for the device. configureKeyMap(device); // Tell the world about the devname (the descriptive name) if (!mHaveFirstKeyboard && !device->keyMapInfo.isDefaultKeyMap && strstr(name, "-keypad")) { // the built-in keyboard has a well-known device ID of 0, // this device better not go away. mHaveFirstKeyboard = true; mFirstKeyboardId = device->id; setKeyboardProperties(device, true); } else { // ensure mFirstKeyboardId is set to -something-. if (mFirstKeyboardId == -1) { mFirstKeyboardId = device->id; setKeyboardProperties(device, true); } } setKeyboardProperties(device, false); // Load the keylayout. if (!device->keyMapInfo.keyLayoutFile.isEmpty()) { status_t status = KeyLayoutMap::load(device->keyMapInfo.keyLayoutFile, &device->layoutMap); if (status) { LOGE("Error %d loading key layout file '%s'.", status, device->keyMapInfo.keyLayoutFile.string()); } } // 'Q' key support = cheap test of whether this is an alpha-capable kbd if (hasKeycodeLocked(device, AKEYCODE_Q)) { device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; } // See if this device has a DPAD. if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { device->classes |= INPUT_DEVICE_CLASS_DPAD; } // See if this device has a gamepad. for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; break; } } LOGI("New keyboard: device->id=0x%x devname='%s' keylayout='%s' keycharactermap='%s'\n", device->id, name, device->keyMapInfo.keyLayoutFile.string(), device->keyMapInfo.keyCharacterMapFile.string()); } // If the device isn't recognized as something we handle, don't monitor it. if (device->classes == 0) { LOGV("Dropping device %s %p, id = %d\n", deviceName, device, devid); close(fd); delete device; return -1; } LOGI("New device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x " "configuration='%s'\n", deviceName, name, device->id, mNumDevicesById, mFDCount, fd, device->classes, device->configurationFile.string()); LOGV("Adding device %s %p at %d, id = %d, classes = 0x%x\n", deviceName, device, mFDCount, devid, device->classes); mDevicesById[devid].device = device; device->next = mOpeningDevices; mOpeningDevices = device; mDevices[mFDCount] = device; mFDCount++; return 0; } void EventHub::loadConfiguration(device_t* device) { device->configurationFile = getInputDeviceConfigurationFilePath(device->name, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION); if (device->configurationFile.isEmpty()) { LOGI("No input device configuration file found for device '%s'.", device->name.string()); } else { status_t status = PropertyMap::load(device->configurationFile, &device->configuration); if (status) { LOGE("Error loading input device configuration file for device '%s'.", device->name.string()); } } } void EventHub::configureKeyMap(device_t* device) { android::resolveKeyMap(device->name, device->configuration, device->keyMapInfo); } void EventHub::setKeyboardProperties(device_t* device, bool firstKeyboard) { int32_t id = firstKeyboard ? 0 : device->id; android::setKeyboardProperties(id, device->name, device->keyMapInfo); } void EventHub::clearKeyboardProperties(device_t* device, bool firstKeyboard) { int32_t id = firstKeyboard ? 0 : device->id; android::clearKeyboardProperties(id); } bool EventHub::hasKeycodeLocked(device_t* device, int keycode) const { if (device->keyBitmask == NULL || device->layoutMap == NULL) { return false; } Vector scanCodes; device->layoutMap->findScanCodes(keycode, &scanCodes); const size_t N = scanCodes.size(); for (size_t i=0; i= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) { return true; } } return false; } int EventHub::closeDevice(const char *deviceName) { AutoMutex _l(mLock); int i; for(i = 1; i < mFDCount; i++) { if(strcmp(mDevices[i]->path.string(), deviceName) == 0) { //LOGD("remove device %d: %s\n", i, deviceName); device_t* device = mDevices[i]; LOGI("Removed device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n", device->path.string(), device->name.string(), device->id, mNumDevicesById, mFDCount, mFDs[i].fd, device->classes); // Clear this device's entry. int index = (device->id&ID_MASK); mDevicesById[index].device = NULL; // Close the file descriptor and compact the fd array. close(mFDs[i].fd); int count = mFDCount - i - 1; memmove(mDevices + i, mDevices + i + 1, sizeof(mDevices[0]) * count); memmove(mFDs + i, mFDs + i + 1, sizeof(mFDs[0]) * count); mFDCount--; #ifdef EV_SW for (int j=0; jid) { mSwitches[j] = 0; } } #endif device->next = mClosingDevices; mClosingDevices = device; if (device->id == mFirstKeyboardId) { LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", device->path.string(), mFirstKeyboardId); mFirstKeyboardId = -1; clearKeyboardProperties(device, true); } clearKeyboardProperties(device, false); return 0; } } LOGE("remove device: %s not found\n", deviceName); return -1; } int EventHub::readNotify(int nfd) { #ifdef HAVE_INOTIFY int res; char devname[PATH_MAX]; char *filename; char event_buf[512]; int event_size; int event_pos = 0; struct inotify_event *event; LOGV("EventHub::readNotify nfd: %d\n", nfd); res = read(nfd, event_buf, sizeof(event_buf)); if(res < (int)sizeof(*event)) { if(errno == EINTR) return 0; LOGW("could not get event, %s\n", strerror(errno)); return 1; } //printf("got %d bytes of event information\n", res); strcpy(devname, device_path); filename = devname + strlen(devname); *filename++ = '/'; while(res >= (int)sizeof(*event)) { event = (struct inotify_event *)(event_buf + event_pos); //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : ""); if(event->len) { strcpy(filename, event->name); if(event->mask & IN_CREATE) { openDevice(devname); } else { closeDevice(devname); } } event_size = sizeof(*event) + event->len; res -= event_size; event_pos += event_size; } #endif return 0; } int EventHub::scanDir(const char *dirname) { char devname[PATH_MAX]; char *filename; DIR *dir; struct dirent *de; dir = opendir(dirname); if(dir == NULL) return -1; strcpy(devname, dirname); filename = devname + strlen(devname); *filename++ = '/'; while((de = readdir(dir))) { if(de->d_name[0] == '.' && (de->d_name[1] == '\0' || (de->d_name[1] == '.' && de->d_name[2] == '\0'))) continue; strcpy(filename, de->d_name); openDevice(devname); } closedir(dir); return 0; } void EventHub::dump(String8& dump) { dump.append("Event Hub State:\n"); { // acquire lock AutoMutex _l(mLock); dump.appendFormat(INDENT "HaveFirstKeyboard: %s\n", toString(mHaveFirstKeyboard)); dump.appendFormat(INDENT "FirstKeyboardId: 0x%x\n", mFirstKeyboardId); dump.append(INDENT "Devices:\n"); for (int i = 0; i < mNumDevicesById; i++) { const device_t* device = mDevicesById[i].device; if (device) { if (mFirstKeyboardId == device->id) { dump.appendFormat(INDENT2 "0x%x: %s (aka device 0 - first keyboard)\n", device->id, device->name.string()); } else { dump.appendFormat(INDENT2 "0x%x: %s\n", device->id, device->name.string()); } dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes); dump.appendFormat(INDENT3 "Path: %s\n", device->path.string()); dump.appendFormat(INDENT3 "IsDefaultKeyMap: %s\n", toString(device->keyMapInfo.isDefaultKeyMap)); dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n", device->keyMapInfo.keyLayoutFile.string()); dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n", device->keyMapInfo.keyCharacterMapFile.string()); dump.appendFormat(INDENT3 "ConfigurationFile: %s\n", device->configurationFile.string()); } } } // release lock } }; // namespace android