/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_GRAPHICS // Uncomment this to remove support for HWC_DEVICE_API_VERSION_0_3 and older #define HWC_REMOVE_DEPRECATED_VERSIONS 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Layer.h" // needed only for debugging #include "LayerBase.h" #include "HWComposer.h" #include "SurfaceFlinger.h" namespace android { static bool hwcHasVersion(const hwc_composer_device_1_t* hwc, uint32_t version) { return hwc->common.version >= version; } // --------------------------------------------------------------------------- struct HWComposer::cb_context { struct callbacks : public hwc_procs_t { // these are here to facilitate the transition when adding // new callbacks (an implementation can check for NULL before // calling a new callback). void (*zero[4])(void); }; callbacks procs; HWComposer* hwc; }; // --------------------------------------------------------------------------- HWComposer::HWComposer( const sp& flinger, EventHandler& handler, framebuffer_device_t const* fbDev) : mFlinger(flinger), mModule(0), mHwc(0), mNumDisplays(1), mCBContext(new cb_context), mEventHandler(handler), mVSyncCount(0), mDebugForceFakeVSync(false) { for (size_t i =0 ; icommon.version < HWC_DEVICE_API_VERSION_1_0) { ALOGE("%s device version %#x too old, will not be used", HWC_HARDWARE_COMPOSER, mHwc->common.version); hwc_close_1(mHwc); mHwc = NULL; } } if (mHwc) { if (mHwc->registerProcs) { mCBContext->hwc = this; mCBContext->procs.invalidate = &hook_invalidate; mCBContext->procs.vsync = &hook_vsync; memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero)); mHwc->registerProcs(mHwc, &mCBContext->procs); } // always turn vsync off when we start needVSyncThread = false; mHwc->eventControl(mHwc, 0, HWC_EVENT_VSYNC, 0); int period; if (mHwc->query(mHwc, HWC_VSYNC_PERIOD, &period) == NO_ERROR) { mDisplayData[HWC_DISPLAY_PRIMARY].refresh = nsecs_t(period); } // these IDs are always reserved for (size_t i=0 ; icommon.version == HWC_DEVICE_API_VERSION_1_1) { // 1.1 adds support for multiple displays mNumDisplays = HWC_NUM_DISPLAY_TYPES; } else if (mHwc->common.version > HWC_DEVICE_API_VERSION_1_1) { // 1.2 adds support for virtual displays mNumDisplays = MAX_DISPLAYS; } } } if (fbDev) { // if we're here it means we are on version 1.0 DisplayData& disp(mDisplayData[HWC_DISPLAY_PRIMARY]); disp.xdpi = fbDev->xdpi; disp.ydpi = fbDev->ydpi; if (disp.refresh == 0) { disp.refresh = nsecs_t(1e9 / fbDev->fps); ALOGW("getting VSYNC period from fb HAL: %lld", disp.refresh); } if (disp.refresh == 0) { disp.refresh = nsecs_t(1e9 / 60.0); ALOGW("getting VSYNC period thin air: %lld", mDisplayData[HWC_DISPLAY_PRIMARY].refresh); } } if (needVSyncThread) { // we don't have VSYNC support, we need to fake it mVSyncThread = new VSyncThread(*this); } } HWComposer::~HWComposer() { mHwc->eventControl(mHwc, 0, EVENT_VSYNC, 0); if (mVSyncThread != NULL) { mVSyncThread->requestExitAndWait(); } if (mHwc) { hwc_close_1(mHwc); } delete mCBContext; } status_t HWComposer::initCheck() const { return mHwc ? NO_ERROR : NO_INIT; } void HWComposer::hook_invalidate(const struct hwc_procs* procs) { cb_context* ctx = reinterpret_cast( const_cast(procs)); ctx->hwc->invalidate(); } void HWComposer::hook_vsync(const struct hwc_procs* procs, int dpy, int64_t timestamp) { cb_context* ctx = reinterpret_cast( const_cast(procs)); ctx->hwc->vsync(dpy, timestamp); } void HWComposer::invalidate() { mFlinger->repaintEverything(); } void HWComposer::vsync(int dpy, int64_t timestamp) { ATRACE_INT("VSYNC", ++mVSyncCount&1); mEventHandler.onVSyncReceived(dpy, timestamp); Mutex::Autolock _l(mLock); mLastHwVSync = timestamp; } int32_t HWComposer::allocateDisplayId() { if (mAllocatedDisplayIDs.count() >= mNumDisplays) { return NO_MEMORY; } int32_t id = mAllocatedDisplayIDs.firstUnmarkedBit(); mAllocatedDisplayIDs.markBit(id); return id; } status_t HWComposer::freeDisplayId(int32_t id) { if (id < HWC_NUM_DISPLAY_TYPES) { // cannot free the reserved IDs return BAD_VALUE; } if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } mAllocatedDisplayIDs.clearBit(id); return NO_ERROR; } nsecs_t HWComposer::getRefreshPeriod() const { return mDisplayData[HWC_DISPLAY_PRIMARY].refresh; } nsecs_t HWComposer::getRefreshTimestamp() const { // this returns the last refresh timestamp. // if the last one is not available, we estimate it based on // the refresh period and whatever closest timestamp we have. Mutex::Autolock _l(mLock); nsecs_t now = systemTime(CLOCK_MONOTONIC); return now - ((now - mLastHwVSync) % mDisplayData[HWC_DISPLAY_PRIMARY].refresh); } float HWComposer::getDpiX() const { return mDisplayData[HWC_DISPLAY_PRIMARY].xdpi; } float HWComposer::getDpiY() const { return mDisplayData[HWC_DISPLAY_PRIMARY].ydpi; } void HWComposer::eventControl(int event, int enabled) { status_t err = NO_ERROR; if (mHwc) { if (!mDebugForceFakeVSync) { err = mHwc->eventControl(mHwc, 0, event, enabled); // error here should not happen -- not sure what we should // do if it does. ALOGE_IF(err, "eventControl(%d, %d) failed %s", event, enabled, strerror(-err)); } } if (err == NO_ERROR && mVSyncThread != NULL) { mVSyncThread->setEnabled(enabled); } } status_t HWComposer::createWorkList(int32_t id, size_t numLayers) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return BAD_INDEX; } if (mHwc) { DisplayData& disp(mDisplayData[id]); if (disp.capacity < numLayers || disp.list == NULL) { const size_t size = sizeof(hwc_display_contents_1_t) + numLayers * sizeof(hwc_layer_1_t); free(disp.list); disp.list = (hwc_display_contents_1_t*)malloc(size); disp.capacity = numLayers; } disp.list->flags = HWC_GEOMETRY_CHANGED; disp.list->numHwLayers = numLayers; disp.list->flipFenceFd = -1; } return NO_ERROR; } status_t HWComposer::prepare() { for (size_t i=0 ; idpy = EGL_NO_DISPLAY; mLists[i]->sur = EGL_NO_SURFACE; } } int err = mHwc->prepare(mHwc, mNumDisplays, mLists); if (err == NO_ERROR) { // here we're just making sure that "skip" layers are set // to HWC_FRAMEBUFFER and we're also counting how many layers // we have of each type. for (size_t i=0 ; inumHwLayers ; i++) { hwc_layer_1_t& l = disp.list->hwLayers[i]; if (l.flags & HWC_SKIP_LAYER) { l.compositionType = HWC_FRAMEBUFFER; } if (l.compositionType == HWC_FRAMEBUFFER) { disp.hasFbComp = true; } if (l.compositionType == HWC_OVERLAY) { disp.hasOvComp = true; } } } } } return (status_t)err; } bool HWComposer::hasHwcComposition(int32_t id) const { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return false; return mDisplayData[id].hasOvComp; } bool HWComposer::hasGlesComposition(int32_t id) const { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) return false; return mDisplayData[id].hasFbComp; } status_t HWComposer::commit() { int err = NO_ERROR; if (mHwc) { if (mHwc->common.version == HWC_DEVICE_API_VERSION_1_0) { // On version 1.0, the OpenGL ES target surface is communicated // by the (dpy, sur) fields and we are guaranteed to have only // a single display. mLists[0]->dpy = eglGetCurrentDisplay(); mLists[0]->sur = eglGetCurrentSurface(EGL_DRAW); } err = mHwc->set(mHwc, mNumDisplays, mLists); for (size_t i=0 ; iflipFenceFd != -1) { close(disp.list->flipFenceFd); disp.list->flipFenceFd = -1; } disp.list->flags &= ~HWC_GEOMETRY_CHANGED; } } } return (status_t)err; } status_t HWComposer::release() const { if (mHwc) { mHwc->eventControl(mHwc, 0, HWC_EVENT_VSYNC, 0); return (status_t)mHwc->blank(mHwc, 0, 1); } return NO_ERROR; } status_t HWComposer::acquire() const { if (mHwc) { return (status_t)mHwc->blank(mHwc, 0, 0); } return NO_ERROR; } size_t HWComposer::getNumLayers(int32_t id) const { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return 0; } return (mHwc && mDisplayData[id].list) ? mDisplayData[id].list->numHwLayers : 0; } /* * Helper template to implement a concrete HWCLayer * This holds the pointer to the concrete hwc layer type * and implements the "iterable" side of HWCLayer. */ template class Iterable : public HWComposer::HWCLayer { protected: HWCTYPE* const mLayerList; HWCTYPE* mCurrentLayer; Iterable(HWCTYPE* layer) : mLayerList(layer), mCurrentLayer(layer) { } inline HWCTYPE const * getLayer() const { return mCurrentLayer; } inline HWCTYPE* getLayer() { return mCurrentLayer; } virtual ~Iterable() { } private: // returns a copy of ourselves virtual HWComposer::HWCLayer* dup() { return new CONCRETE( static_cast(*this) ); } virtual status_t setLayer(size_t index) { mCurrentLayer = &mLayerList[index]; return NO_ERROR; } }; /* * Concrete implementation of HWCLayer for HWC_DEVICE_API_VERSION_1_0. * This implements the HWCLayer side of HWCIterableLayer. */ class HWCLayerVersion1 : public Iterable { public: HWCLayerVersion1(hwc_layer_1_t* layer) : Iterable(layer) { } virtual int32_t getCompositionType() const { return getLayer()->compositionType; } virtual uint32_t getHints() const { return getLayer()->hints; } virtual int getAndResetReleaseFenceFd() { int fd = getLayer()->releaseFenceFd; getLayer()->releaseFenceFd = -1; return fd; } virtual void setAcquireFenceFd(int fenceFd) { getLayer()->acquireFenceFd = fenceFd; } virtual void setDefaultState() { getLayer()->compositionType = HWC_FRAMEBUFFER; getLayer()->hints = 0; getLayer()->flags = HWC_SKIP_LAYER; getLayer()->transform = 0; getLayer()->blending = HWC_BLENDING_NONE; getLayer()->visibleRegionScreen.numRects = 0; getLayer()->visibleRegionScreen.rects = NULL; getLayer()->acquireFenceFd = -1; getLayer()->releaseFenceFd = -1; } virtual void setSkip(bool skip) { if (skip) { getLayer()->flags |= HWC_SKIP_LAYER; } else { getLayer()->flags &= ~HWC_SKIP_LAYER; } } virtual void setBlending(uint32_t blending) { getLayer()->blending = blending; } virtual void setTransform(uint32_t transform) { getLayer()->transform = transform; } virtual void setFrame(const Rect& frame) { reinterpret_cast(getLayer()->displayFrame) = frame; } virtual void setCrop(const Rect& crop) { reinterpret_cast(getLayer()->sourceCrop) = crop; } virtual void setVisibleRegionScreen(const Region& reg) { getLayer()->visibleRegionScreen.rects = reinterpret_cast( reg.getArray(&getLayer()->visibleRegionScreen.numRects)); } virtual void setBuffer(const sp& buffer) { if (buffer == 0 || buffer->handle == 0) { getLayer()->compositionType = HWC_FRAMEBUFFER; getLayer()->flags |= HWC_SKIP_LAYER; getLayer()->handle = 0; } else { getLayer()->handle = buffer->handle; } } }; /* * returns an iterator initialized at a given index in the layer list */ HWComposer::LayerListIterator HWComposer::getLayerIterator(int32_t id, size_t index) { if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) { return LayerListIterator(); } const DisplayData& disp(mDisplayData[id]); if (!mHwc || !disp.list || index > disp.list->numHwLayers) { return LayerListIterator(); } return LayerListIterator(new HWCLayerVersion1(disp.list->hwLayers), index); } /* * returns an iterator on the beginning of the layer list */ HWComposer::LayerListIterator HWComposer::begin(int32_t id) { return getLayerIterator(id, 0); } /* * returns an iterator on the end of the layer list */ HWComposer::LayerListIterator HWComposer::end(int32_t id) { return getLayerIterator(id, getNumLayers(id)); } void HWComposer::dump(String8& result, char* buffer, size_t SIZE, const Vector< sp >& visibleLayersSortedByZ) const { if (mHwc) { result.append("Hardware Composer state:\n"); result.appendFormat(" mDebugForceFakeVSync=%d\n", mDebugForceFakeVSync); for (size_t i=0 ; inumHwLayers, disp.list->flags); result.append( " type | handle | hints | flags | tr | blend | format | source crop | frame name \n" "----------+----------+----------+----------+----+-------+----------+---------------------------+--------------------------------\n"); // " ________ | ________ | ________ | ________ | __ | _____ | ________ | [_____,_____,_____,_____] | [_____,_____,_____,_____] for (size_t i=0 ; inumHwLayers ; i++) { const hwc_layer_1_t&l = disp.list->hwLayers[i]; const sp layer(visibleLayersSortedByZ[i]); int32_t format = -1; if (layer->getLayer() != NULL) { const sp& buffer( layer->getLayer()->getActiveBuffer()); if (buffer != NULL) { format = buffer->getPixelFormat(); } } result.appendFormat( " %8s | %08x | %08x | %08x | %02x | %05x | %08x | [%5d,%5d,%5d,%5d] | [%5d,%5d,%5d,%5d] %s\n", l.compositionType ? "OVERLAY" : "FB", intptr_t(l.handle), l.hints, l.flags, l.transform, l.blending, format, l.sourceCrop.left, l.sourceCrop.top, l.sourceCrop.right, l.sourceCrop.bottom, l.displayFrame.left, l.displayFrame.top, l.displayFrame.right, l.displayFrame.bottom, layer->getName().string()); } } } } if (mHwc && mHwc->dump) { mHwc->dump(mHwc, buffer, SIZE); result.append(buffer); } } // --------------------------------------------------------------------------- HWComposer::VSyncThread::VSyncThread(HWComposer& hwc) : mHwc(hwc), mEnabled(false), mNextFakeVSync(0), mRefreshPeriod(hwc.getRefreshPeriod()) { } void HWComposer::VSyncThread::setEnabled(bool enabled) { Mutex::Autolock _l(mLock); mEnabled = enabled; mCondition.signal(); } void HWComposer::VSyncThread::onFirstRef() { run("VSyncThread", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE); } bool HWComposer::VSyncThread::threadLoop() { { // scope for lock Mutex::Autolock _l(mLock); while (!mEnabled) { mCondition.wait(mLock); } } const nsecs_t period = mRefreshPeriod; const nsecs_t now = systemTime(CLOCK_MONOTONIC); nsecs_t next_vsync = mNextFakeVSync; nsecs_t sleep = next_vsync - now; if (sleep < 0) { // we missed, find where the next vsync should be sleep = (period - ((now - next_vsync) % period)); next_vsync = now + sleep; } mNextFakeVSync = next_vsync + period; struct timespec spec; spec.tv_sec = next_vsync / 1000000000; spec.tv_nsec = next_vsync % 1000000000; int err; do { err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, NULL); } while (err<0 && errno == EINTR); if (err == 0) { mHwc.mEventHandler.onVSyncReceived(0, next_vsync); } return true; } // --------------------------------------------------------------------------- }; // namespace android