/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Read-only access to Zip archives, with minimal heap allocation. // #define LOG_TAG "zipro" //#define LOG_NDEBUG 0 #include #include #include #include #include #include #include #include #include #include /* * TEMP_FAILURE_RETRY is defined by some, but not all, versions of * . (Alas, it is not as standard as we'd hoped!) So, if it's * not already defined, then define it here. */ #ifndef TEMP_FAILURE_RETRY /* Used to retry syscalls that can return EINTR. */ #define TEMP_FAILURE_RETRY(exp) ({ \ typeof (exp) _rc; \ do { \ _rc = (exp); \ } while (_rc == -1 && errno == EINTR); \ _rc; }) #endif using namespace android; /* * Zip file constants. */ #define kEOCDSignature 0x06054b50 #define kEOCDLen 22 #define kEOCDNumEntries 8 // offset to #of entries in file #define kEOCDSize 12 // size of the central directory #define kEOCDFileOffset 16 // offset to central directory #define kMaxCommentLen 65535 // longest possible in ushort #define kMaxEOCDSearch (kMaxCommentLen + kEOCDLen) #define kLFHSignature 0x04034b50 #define kLFHLen 30 // excluding variable-len fields #define kLFHNameLen 26 // offset to filename length #define kLFHExtraLen 28 // offset to extra length #define kCDESignature 0x02014b50 #define kCDELen 46 // excluding variable-len fields #define kCDEMethod 10 // offset to compression method #define kCDEModWhen 12 // offset to modification timestamp #define kCDECRC 16 // offset to entry CRC #define kCDECompLen 20 // offset to compressed length #define kCDEUncompLen 24 // offset to uncompressed length #define kCDENameLen 28 // offset to filename length #define kCDEExtraLen 30 // offset to extra length #define kCDECommentLen 32 // offset to comment length #define kCDELocalOffset 42 // offset to local hdr /* * The values we return for ZipEntryRO use 0 as an invalid value, so we * want to adjust the hash table index by a fixed amount. Using a large * value helps insure that people don't mix & match arguments, e.g. to * findEntryByIndex(). */ #define kZipEntryAdj 10000 /* * Convert a ZipEntryRO to a hash table index, verifying that it's in a * valid range. */ int ZipFileRO::entryToIndex(const ZipEntryRO entry) const { long ent = ((long) entry) - kZipEntryAdj; if (ent < 0 || ent >= mHashTableSize || mHashTable[ent].name == NULL) { LOGW("Invalid ZipEntryRO %p (%ld)\n", entry, ent); return -1; } return ent; } /* * Open the specified file read-only. We memory-map the entire thing and * close the file before returning. */ status_t ZipFileRO::open(const char* zipFileName) { int fd = -1; assert(mDirectoryMap == NULL); /* * Open and map the specified file. */ fd = ::open(zipFileName, O_RDONLY); if (fd < 0) { LOGW("Unable to open zip '%s': %s\n", zipFileName, strerror(errno)); return NAME_NOT_FOUND; } mFileLength = lseek(fd, 0, SEEK_END); if (mFileLength < kEOCDLen) { close(fd); return UNKNOWN_ERROR; } if (mFileName != NULL) { free(mFileName); } mFileName = strdup(zipFileName); mFd = fd; /* * Find the Central Directory and store its size and number of entries. */ if (!mapCentralDirectory()) { goto bail; } /* * Verify Central Directory and create data structures for fast access. */ if (!parseZipArchive()) { goto bail; } return OK; bail: free(mFileName); mFileName = NULL; close(fd); return UNKNOWN_ERROR; } /* * Parse the Zip archive, verifying its contents and initializing internal * data structures. */ bool ZipFileRO::mapCentralDirectory(void) { size_t readAmount = kMaxEOCDSearch; if (readAmount > (size_t) mFileLength) readAmount = mFileLength; unsigned char* scanBuf = (unsigned char*) malloc(readAmount); if (scanBuf == NULL) { LOGW("couldn't allocate scanBuf: %s", strerror(errno)); free(scanBuf); return false; } /* * Make sure this is a Zip archive. */ if (lseek(mFd, 0, SEEK_SET) != 0) { LOGW("seek to start failed: %s", strerror(errno)); free(scanBuf); return false; } ssize_t actual = TEMP_FAILURE_RETRY(read(mFd, scanBuf, sizeof(int32_t))); if (actual != (ssize_t) sizeof(int32_t)) { LOGI("couldn't read first signature from zip archive: %s", strerror(errno)); free(scanBuf); return false; } { unsigned int header = get4LE(scanBuf); if (header == kEOCDSignature) { LOGI("Found Zip archive, but it looks empty\n"); free(scanBuf); return false; } else if (header != kLFHSignature) { LOGV("Not a Zip archive (found 0x%08x)\n", header); free(scanBuf); return false; } } /* * Perform the traditional EOCD snipe hunt. * * We're searching for the End of Central Directory magic number, * which appears at the start of the EOCD block. It's followed by * 18 bytes of EOCD stuff and up to 64KB of archive comment. We * need to read the last part of the file into a buffer, dig through * it to find the magic number, parse some values out, and use those * to determine the extent of the CD. * * We start by pulling in the last part of the file. */ off_t searchStart = mFileLength - readAmount; if (lseek(mFd, searchStart, SEEK_SET) != searchStart) { LOGW("seek %ld failed: %s\n", (long) searchStart, strerror(errno)); free(scanBuf); return false; } actual = TEMP_FAILURE_RETRY(read(mFd, scanBuf, readAmount)); if (actual != (ssize_t) readAmount) { LOGW("Zip: read %zd failed: %s\n", readAmount, strerror(errno)); free(scanBuf); return false; } /* * Scan backward for the EOCD magic. In an archive without a trailing * comment, we'll find it on the first try. (We may want to consider * doing an initial minimal read; if we don't find it, retry with a * second read as above.) */ int i; for (i = readAmount - kEOCDLen; i >= 0; i--) { if (scanBuf[i] == 0x50 && get4LE(&scanBuf[i]) == kEOCDSignature) { LOGV("+++ Found EOCD at buf+%d\n", i); break; } } if (i < 0) { LOGD("Zip: EOCD not found, %s is not zip\n", mFileName); free(scanBuf); return false; } off_t eocdOffset = searchStart + i; const unsigned char* eocdPtr = scanBuf + i; assert(eocdOffset < mFileLength); /* * Grab the CD offset and size, and the number of entries in the * archive. After that, we can release our EOCD hunt buffer. */ unsigned int numEntries = get2LE(eocdPtr + kEOCDNumEntries); unsigned int dirSize = get4LE(eocdPtr + kEOCDSize); unsigned int dirOffset = get4LE(eocdPtr + kEOCDFileOffset); free(scanBuf); // Verify that they look reasonable. if ((long long) dirOffset + (long long) dirSize > (long long) eocdOffset) { LOGW("bad offsets (dir %ld, size %u, eocd %ld)\n", (long) dirOffset, dirSize, (long) eocdOffset); return false; } if (numEntries == 0) { LOGW("empty archive?\n"); return false; } LOGV("+++ numEntries=%d dirSize=%d dirOffset=%d\n", numEntries, dirSize, dirOffset); mDirectoryMap = new FileMap(); if (mDirectoryMap == NULL) { LOGW("Unable to create directory map: %s", strerror(errno)); return false; } if (!mDirectoryMap->create(mFileName, mFd, dirOffset, dirSize, true)) { LOGW("Unable to map '%s' (%zd to %zd): %s\n", mFileName, dirOffset, dirOffset + dirSize, strerror(errno)); return false; } mNumEntries = numEntries; mDirectoryOffset = dirOffset; return true; } bool ZipFileRO::parseZipArchive(void) { bool result = false; const unsigned char* cdPtr = (const unsigned char*) mDirectoryMap->getDataPtr(); size_t cdLength = mDirectoryMap->getDataLength(); int numEntries = mNumEntries; /* * Create hash table. We have a minimum 75% load factor, possibly as * low as 50% after we round off to a power of 2. */ mHashTableSize = roundUpPower2(1 + (numEntries * 4) / 3); mHashTable = (HashEntry*) calloc(mHashTableSize, sizeof(HashEntry)); /* * Walk through the central directory, adding entries to the hash * table. */ const unsigned char* ptr = cdPtr; for (int i = 0; i < numEntries; i++) { if (get4LE(ptr) != kCDESignature) { LOGW("Missed a central dir sig (at %d)\n", i); goto bail; } if (ptr + kCDELen > cdPtr + cdLength) { LOGW("Ran off the end (at %d)\n", i); goto bail; } long localHdrOffset = (long) get4LE(ptr + kCDELocalOffset); if (localHdrOffset >= mDirectoryOffset) { LOGW("bad LFH offset %ld at entry %d\n", localHdrOffset, i); goto bail; } unsigned int fileNameLen, extraLen, commentLen, hash; fileNameLen = get2LE(ptr + kCDENameLen); extraLen = get2LE(ptr + kCDEExtraLen); commentLen = get2LE(ptr + kCDECommentLen); /* add the CDE filename to the hash table */ hash = computeHash((const char*)ptr + kCDELen, fileNameLen); addToHash((const char*)ptr + kCDELen, fileNameLen, hash); ptr += kCDELen + fileNameLen + extraLen + commentLen; if ((size_t)(ptr - cdPtr) > cdLength) { LOGW("bad CD advance (%d vs %zd) at entry %d\n", (int) (ptr - cdPtr), cdLength, i); goto bail; } } LOGV("+++ zip good scan %d entries\n", numEntries); result = true; bail: return result; } /* * Simple string hash function for non-null-terminated strings. */ /*static*/ unsigned int ZipFileRO::computeHash(const char* str, int len) { unsigned int hash = 0; while (len--) hash = hash * 31 + *str++; return hash; } /* * Add a new entry to the hash table. */ void ZipFileRO::addToHash(const char* str, int strLen, unsigned int hash) { int ent = hash & (mHashTableSize-1); /* * We over-allocate the table, so we're guaranteed to find an empty slot. */ while (mHashTable[ent].name != NULL) ent = (ent + 1) & (mHashTableSize-1); mHashTable[ent].name = str; mHashTable[ent].nameLen = strLen; } /* * Find a matching entry. * * Returns 0 if not found. */ ZipEntryRO ZipFileRO::findEntryByName(const char* fileName) const { int nameLen = strlen(fileName); unsigned int hash = computeHash(fileName, nameLen); int ent = hash & (mHashTableSize-1); while (mHashTable[ent].name != NULL) { if (mHashTable[ent].nameLen == nameLen && memcmp(mHashTable[ent].name, fileName, nameLen) == 0) { /* match */ return (ZipEntryRO)(long)(ent + kZipEntryAdj); } ent = (ent + 1) & (mHashTableSize-1); } return NULL; } /* * Find the Nth entry. * * This currently involves walking through the sparse hash table, counting * non-empty entries. If we need to speed this up we can either allocate * a parallel lookup table or (perhaps better) provide an iterator interface. */ ZipEntryRO ZipFileRO::findEntryByIndex(int idx) const { if (idx < 0 || idx >= mNumEntries) { LOGW("Invalid index %d\n", idx); return NULL; } for (int ent = 0; ent < mHashTableSize; ent++) { if (mHashTable[ent].name != NULL) { if (idx-- == 0) return (ZipEntryRO) (ent + kZipEntryAdj); } } return NULL; } /* * Get the useful fields from the zip entry. * * Returns "false" if the offsets to the fields or the contents of the fields * appear to be bogus. */ bool ZipFileRO::getEntryInfo(ZipEntryRO entry, int* pMethod, size_t* pUncompLen, size_t* pCompLen, off_t* pOffset, long* pModWhen, long* pCrc32) const { bool ret = false; const int ent = entryToIndex(entry); if (ent < 0) return false; HashEntry hashEntry = mHashTable[ent]; /* * Recover the start of the central directory entry from the filename * pointer. The filename is the first entry past the fixed-size data, * so we can just subtract back from that. */ const unsigned char* ptr = (const unsigned char*) hashEntry.name; off_t cdOffset = mDirectoryOffset; ptr -= kCDELen; int method = get2LE(ptr + kCDEMethod); if (pMethod != NULL) *pMethod = method; if (pModWhen != NULL) *pModWhen = get4LE(ptr + kCDEModWhen); if (pCrc32 != NULL) *pCrc32 = get4LE(ptr + kCDECRC); size_t compLen = get4LE(ptr + kCDECompLen); if (pCompLen != NULL) *pCompLen = compLen; size_t uncompLen = get4LE(ptr + kCDEUncompLen); if (pUncompLen != NULL) *pUncompLen = uncompLen; /* * If requested, determine the offset of the start of the data. All we * have is the offset to the Local File Header, which is variable size, * so we have to read the contents of the struct to figure out where * the actual data starts. * * We also need to make sure that the lengths are not so large that * somebody trying to map the compressed or uncompressed data runs * off the end of the mapped region. * * Note we don't verify compLen/uncompLen if they don't request the * dataOffset, because dataOffset is expensive to determine. However, * if they don't have the file offset, they're not likely to be doing * anything with the contents. */ if (pOffset != NULL) { long localHdrOffset = get4LE(ptr + kCDELocalOffset); if (localHdrOffset + kLFHLen >= cdOffset) { LOGE("ERROR: bad local hdr offset in zip\n"); return false; } unsigned char lfhBuf[kLFHLen]; { AutoMutex _l(mFdLock); if (lseek(mFd, localHdrOffset, SEEK_SET) != localHdrOffset) { LOGW("failed seeking to lfh at offset %ld\n", localHdrOffset); return false; } ssize_t actual = TEMP_FAILURE_RETRY(read(mFd, lfhBuf, sizeof(lfhBuf))); if (actual != sizeof(lfhBuf)) { LOGW("failed reading lfh from offset %ld\n", localHdrOffset); return false; } } if (get4LE(lfhBuf) != kLFHSignature) { LOGW("didn't find signature at start of lfh, offset=%ld (got 0x%08lx, expected 0x%08x)\n", localHdrOffset, get4LE(lfhBuf), kLFHSignature); return false; } off_t dataOffset = localHdrOffset + kLFHLen + get2LE(lfhBuf + kLFHNameLen) + get2LE(lfhBuf + kLFHExtraLen); if (dataOffset >= cdOffset) { LOGW("bad data offset %ld in zip\n", (long) dataOffset); return false; } /* check lengths */ if ((off_t)(dataOffset + compLen) > cdOffset) { LOGW("bad compressed length in zip (%ld + %zd > %ld)\n", (long) dataOffset, compLen, (long) cdOffset); return false; } if (method == kCompressStored && (off_t)(dataOffset + uncompLen) > cdOffset) { LOGE("ERROR: bad uncompressed length in zip (%ld + %zd > %ld)\n", (long) dataOffset, uncompLen, (long) cdOffset); return false; } *pOffset = dataOffset; } return true; } /* * Copy the entry's filename to the buffer. */ int ZipFileRO::getEntryFileName(ZipEntryRO entry, char* buffer, int bufLen) const { int ent = entryToIndex(entry); if (ent < 0) return -1; int nameLen = mHashTable[ent].nameLen; if (bufLen < nameLen+1) return nameLen+1; memcpy(buffer, mHashTable[ent].name, nameLen); buffer[nameLen] = '\0'; return 0; } /* * Create a new FileMap object that spans the data in "entry". */ FileMap* ZipFileRO::createEntryFileMap(ZipEntryRO entry) const { /* * TODO: the efficient way to do this is to modify FileMap to allow * sub-regions of a file to be mapped. A reference-counting scheme * can manage the base memory mapping. For now, we just create a brand * new mapping off of the Zip archive file descriptor. */ FileMap* newMap; size_t compLen; off_t offset; if (!getEntryInfo(entry, NULL, NULL, &compLen, &offset, NULL, NULL)) return NULL; newMap = new FileMap(); if (!newMap->create(mFileName, mFd, offset, compLen, true)) { newMap->release(); return NULL; } return newMap; } /* * Uncompress an entry, in its entirety, into the provided output buffer. * * This doesn't verify the data's CRC, which might be useful for * uncompressed data. The caller should be able to manage it. */ bool ZipFileRO::uncompressEntry(ZipEntryRO entry, void* buffer) const { const size_t kSequentialMin = 32768; bool result = false; int ent = entryToIndex(entry); if (ent < 0) return -1; int method; size_t uncompLen, compLen; off_t offset; const unsigned char* ptr; getEntryInfo(entry, &method, &uncompLen, &compLen, &offset, NULL, NULL); FileMap* file = createEntryFileMap(entry); if (file == NULL) { goto bail; } ptr = (const unsigned char*) file->getDataPtr(); /* * Experiment with madvise hint. When we want to uncompress a file, * we pull some stuff out of the central dir entry and then hit a * bunch of compressed or uncompressed data sequentially. The CDE * visit will cause a limited amount of read-ahead because it's at * the end of the file. We could end up doing lots of extra disk * access if the file we're prying open is small. Bottom line is we * probably don't want to turn MADV_SEQUENTIAL on and leave it on. * * So, if the compressed size of the file is above a certain minimum * size, temporarily boost the read-ahead in the hope that the extra * pair of system calls are negated by a reduction in page faults. */ if (compLen > kSequentialMin) file->advise(FileMap::SEQUENTIAL); if (method == kCompressStored) { memcpy(buffer, ptr, uncompLen); } else { if (!inflateBuffer(buffer, ptr, uncompLen, compLen)) goto unmap; } if (compLen > kSequentialMin) file->advise(FileMap::NORMAL); result = true; unmap: file->release(); bail: return result; } /* * Uncompress an entry, in its entirety, to an open file descriptor. * * This doesn't verify the data's CRC, but probably should. */ bool ZipFileRO::uncompressEntry(ZipEntryRO entry, int fd) const { bool result = false; int ent = entryToIndex(entry); if (ent < 0) return -1; int method; size_t uncompLen, compLen; off_t offset; const unsigned char* ptr; getEntryInfo(entry, &method, &uncompLen, &compLen, &offset, NULL, NULL); FileMap* file = createEntryFileMap(entry); if (file == NULL) { goto bail; } ptr = (const unsigned char*) file->getDataPtr(); if (method == kCompressStored) { ssize_t actual = write(fd, ptr, uncompLen); if (actual < 0) { LOGE("Write failed: %s\n", strerror(errno)); goto unmap; } else if ((size_t) actual != uncompLen) { LOGE("Partial write during uncompress (%zd of %zd)\n", (size_t)actual, (size_t)uncompLen); goto unmap; } else { LOGI("+++ successful write\n"); } } else { if (!inflateBuffer(fd, ptr, uncompLen, compLen)) goto unmap; } result = true; unmap: file->release(); bail: return result; } /* * Uncompress "deflate" data from one buffer to another. */ /*static*/ bool ZipFileRO::inflateBuffer(void* outBuf, const void* inBuf, size_t uncompLen, size_t compLen) { bool result = false; z_stream zstream; int zerr; /* * Initialize the zlib stream struct. */ memset(&zstream, 0, sizeof(zstream)); zstream.zalloc = Z_NULL; zstream.zfree = Z_NULL; zstream.opaque = Z_NULL; zstream.next_in = (Bytef*)inBuf; zstream.avail_in = compLen; zstream.next_out = (Bytef*) outBuf; zstream.avail_out = uncompLen; zstream.data_type = Z_UNKNOWN; /* * Use the undocumented "negative window bits" feature to tell zlib * that there's no zlib header waiting for it. */ zerr = inflateInit2(&zstream, -MAX_WBITS); if (zerr != Z_OK) { if (zerr == Z_VERSION_ERROR) { LOGE("Installed zlib is not compatible with linked version (%s)\n", ZLIB_VERSION); } else { LOGE("Call to inflateInit2 failed (zerr=%d)\n", zerr); } goto bail; } /* * Expand data. */ zerr = inflate(&zstream, Z_FINISH); if (zerr != Z_STREAM_END) { LOGW("Zip inflate failed, zerr=%d (nIn=%p aIn=%u nOut=%p aOut=%u)\n", zerr, zstream.next_in, zstream.avail_in, zstream.next_out, zstream.avail_out); goto z_bail; } /* paranoia */ if (zstream.total_out != uncompLen) { LOGW("Size mismatch on inflated file (%ld vs %zd)\n", zstream.total_out, uncompLen); goto z_bail; } result = true; z_bail: inflateEnd(&zstream); /* free up any allocated structures */ bail: return result; } /* * Uncompress "deflate" data from one buffer to an open file descriptor. */ /*static*/ bool ZipFileRO::inflateBuffer(int fd, const void* inBuf, size_t uncompLen, size_t compLen) { bool result = false; const size_t kWriteBufSize = 32768; unsigned char writeBuf[kWriteBufSize]; z_stream zstream; int zerr; /* * Initialize the zlib stream struct. */ memset(&zstream, 0, sizeof(zstream)); zstream.zalloc = Z_NULL; zstream.zfree = Z_NULL; zstream.opaque = Z_NULL; zstream.next_in = (Bytef*)inBuf; zstream.avail_in = compLen; zstream.next_out = (Bytef*) writeBuf; zstream.avail_out = sizeof(writeBuf); zstream.data_type = Z_UNKNOWN; /* * Use the undocumented "negative window bits" feature to tell zlib * that there's no zlib header waiting for it. */ zerr = inflateInit2(&zstream, -MAX_WBITS); if (zerr != Z_OK) { if (zerr == Z_VERSION_ERROR) { LOGE("Installed zlib is not compatible with linked version (%s)\n", ZLIB_VERSION); } else { LOGE("Call to inflateInit2 failed (zerr=%d)\n", zerr); } goto bail; } /* * Loop while we have more to do. */ do { /* * Expand data. */ zerr = inflate(&zstream, Z_NO_FLUSH); if (zerr != Z_OK && zerr != Z_STREAM_END) { LOGW("zlib inflate: zerr=%d (nIn=%p aIn=%u nOut=%p aOut=%u)\n", zerr, zstream.next_in, zstream.avail_in, zstream.next_out, zstream.avail_out); goto z_bail; } /* write when we're full or when we're done */ if (zstream.avail_out == 0 || (zerr == Z_STREAM_END && zstream.avail_out != sizeof(writeBuf))) { long writeSize = zstream.next_out - writeBuf; int cc = write(fd, writeBuf, writeSize); if (cc != (int) writeSize) { LOGW("write failed in inflate (%d vs %ld)\n", cc, writeSize); goto z_bail; } zstream.next_out = writeBuf; zstream.avail_out = sizeof(writeBuf); } } while (zerr == Z_OK); assert(zerr == Z_STREAM_END); /* other errors should've been caught */ /* paranoia */ if (zstream.total_out != uncompLen) { LOGW("Size mismatch on inflated file (%ld vs %zd)\n", zstream.total_out, uncompLen); goto z_bail; } result = true; z_bail: inflateEnd(&zstream); /* free up any allocated structures */ bail: return result; }