/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "BatteryService.h" #include "CorrectedGyroSensor.h" #include "GravitySensor.h" #include "LinearAccelerationSensor.h" #include "OrientationSensor.h" #include "RotationVectorSensor.h" #include "SensorFusion.h" #include "SensorService.h" namespace android { // --------------------------------------------------------------------------- /* * Notes: * * - what about a gyro-corrected magnetic-field sensor? * - run mag sensor from time to time to force calibration * - gravity sensor length is wrong (=> drift in linear-acc sensor) * */ const char* SensorService::WAKE_LOCK_NAME = "SensorService"; SensorService::SensorService() : mInitCheck(NO_INIT) { } void SensorService::onFirstRef() { ALOGD("nuSensorService starting..."); SensorDevice& dev(SensorDevice::getInstance()); if (dev.initCheck() == NO_ERROR) { sensor_t const* list; ssize_t count = dev.getSensorList(&list); if (count > 0) { ssize_t orientationIndex = -1; bool hasGyro = false; uint32_t virtualSensorsNeeds = (1< 0) { batchingSupported = true; break; } } if (batchingSupported) { // Increase socket buffer size to a max of 100 KB for batching capabilities. mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED; } else { mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED; } // Compare the socketBufferSize value against the system limits and limit // it to maxSystemSocketBufferSize if necessary. FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r"); char line[128]; if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) { line[sizeof(line) - 1] = '\0'; size_t maxSystemSocketBufferSize; sscanf(line, "%zu", &maxSystemSocketBufferSize); if (mSocketBufferSize > maxSystemSocketBufferSize) { mSocketBufferSize = maxSystemSocketBufferSize; } } if (fp) { fclose(fp); } mWakeLockAcquired = false; run("SensorService", PRIORITY_URGENT_DISPLAY); mLooper = new Looper(false); const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; mSensorEventBuffer = new sensors_event_t[minBufferSize]; mSensorEventScratch = new sensors_event_t[minBufferSize]; mMapFlushEventsToConnections = new SensorEventConnection const * [minBufferSize]; mInitCheck = NO_ERROR; } } } Sensor SensorService::registerSensor(SensorInterface* s) { sensors_event_t event; memset(&event, 0, sizeof(event)); const Sensor sensor(s->getSensor()); // add to the sensor list (returned to clients) mSensorList.add(sensor); // add to our handle->SensorInterface mapping mSensorMap.add(sensor.getHandle(), s); // create an entry in the mLastEventSeen array mLastEventSeen.add(sensor.getHandle(), event); return sensor; } Sensor SensorService::registerVirtualSensor(SensorInterface* s) { Sensor sensor = registerSensor(s); mVirtualSensorList.add( s ); return sensor; } SensorService::~SensorService() { for (size_t i=0 ; i& /*args*/) { String8 result; if (!PermissionCache::checkCallingPermission(sDump)) { result.appendFormat("Permission Denial: " "can't dump SensorService from pid=%d, uid=%d\n", IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); } else { Mutex::Autolock _l(mLock); result.append("Sensor List:\n"); for (size_t i=0 ; i 0) { result.appendFormat("minRate=%.2fHz | ", 1e6f / s.getMaxDelay()); } else { result.appendFormat("maxDelay=%dus |", s.getMaxDelay()); } if (s.getMinDelay() > 0) { result.appendFormat("maxRate=%.2fHz | ", 1e6f / s.getMinDelay()); } else { result.appendFormat("minDelay=%dus |", s.getMinDelay()); } if (s.getFifoMaxEventCount() > 0) { result.appendFormat("FifoMax=%d events | ", s.getFifoMaxEventCount()); } else { result.append("no batching | "); } if (s.isWakeUpSensor()) { result.appendFormat("wakeUp | "); } else { result.appendFormat("non-wakeUp | "); } switch (s.getType()) { case SENSOR_TYPE_ROTATION_VECTOR: case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR: result.appendFormat( "last=<%5.1f,%5.1f,%5.1f,%5.1f,%5.1f, %" PRId64 ">\n", e.data[0], e.data[1], e.data[2], e.data[3], e.data[4], e.timestamp); break; case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED: case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED: result.appendFormat( "last=<%5.1f,%5.1f,%5.1f,%5.1f,%5.1f,%5.1f, %" PRId64 ">\n", e.data[0], e.data[1], e.data[2], e.data[3], e.data[4], e.data[5], e.timestamp); break; case SENSOR_TYPE_GAME_ROTATION_VECTOR: result.appendFormat( "last=<%5.1f,%5.1f,%5.1f,%5.1f, %" PRId64 ">\n", e.data[0], e.data[1], e.data[2], e.data[3], e.timestamp); break; case SENSOR_TYPE_SIGNIFICANT_MOTION: case SENSOR_TYPE_STEP_DETECTOR: result.appendFormat( "last=<%f %" PRId64 ">\n", e.data[0], e.timestamp); break; case SENSOR_TYPE_STEP_COUNTER: result.appendFormat( "last=<%" PRIu64 ", %" PRId64 ">\n", e.u64.step_counter, e.timestamp); break; default: // default to 3 values result.appendFormat( "last=<%5.1f,%5.1f,%5.1f, %" PRId64 ">\n", e.data[0], e.data[1], e.data[2], e.timestamp); break; } result.append("\n"); } SensorFusion::getInstance().dump(result); SensorDevice::getInstance().dump(result); result.append("Active sensors:\n"); for (size_t i=0 ; igetNumConnections()); } result.appendFormat("Socket Buffer size = %d events\n", mSocketBufferSize/sizeof(sensors_event_t)); result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" : "not held"); result.appendFormat("%zd active connections\n", mActiveConnections.size()); for (size_t i=0 ; i < mActiveConnections.size() ; i++) { sp connection(mActiveConnections[i].promote()); if (connection != 0) { result.appendFormat("Connection Number: %zu \n", i); connection->dump(result); } } } write(fd, result.string(), result.size()); return NO_ERROR; } void SensorService::cleanupAutoDisabledSensorLocked(const sp& connection, sensors_event_t const* buffer, const int count) { for (int i=0 ; ihasSensor(handle)) { SensorInterface* sensor = mSensorMap.valueFor(handle); // If this buffer has an event from a one_shot sensor and this connection is registered // for this particular one_shot sensor, try cleaning up the connection. if (sensor != NULL && sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { sensor->autoDisable(connection.get(), handle); cleanupWithoutDisableLocked(connection, handle); } } } } bool SensorService::threadLoop() { ALOGD("nuSensorService thread starting..."); // each virtual sensor could generate an event per "real" event, that's why we need // to size numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. // in practice, this is too aggressive, but guaranteed to be enough. const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT; const size_t numEventMax = minBufferSize / (1 + mVirtualSensorList.size()); SensorDevice& device(SensorDevice::getInstance()); const size_t vcount = mVirtualSensorList.size(); SensorEventAckReceiver sender(this); sender.run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY); const int halVersion = device.getHalDeviceVersion(); do { ssize_t count = device.poll(mSensorEventBuffer, numEventMax); if (count < 0) { ALOGE("sensor poll failed (%s)", strerror(-count)); break; } // Reset sensors_event_t.flags to zero for all events in the buffer. for (int i = 0; i < count; i++) { mSensorEventBuffer[i].flags = 0; } Mutex::Autolock _l(mLock); // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock, // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and // releasing the wakelock. bool bufferHasWakeUpEvent = false; for (int i = 0; i < count; i++) { if (isWakeUpSensorEvent(mSensorEventBuffer[i])) { bufferHasWakeUpEvent = true; break; } } if (bufferHasWakeUpEvent && !mWakeLockAcquired) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME); mWakeLockAcquired = true; ALOGD_IF(DEBUG_CONNECTIONS, "acquired wakelock %s", WAKE_LOCK_NAME); } recordLastValueLocked(mSensorEventBuffer, count); // handle virtual sensors if (count && vcount) { sensors_event_t const * const event = mSensorEventBuffer; const size_t activeVirtualSensorCount = mActiveVirtualSensors.size(); if (activeVirtualSensorCount) { size_t k = 0; SensorFusion& fusion(SensorFusion::getInstance()); if (fusion.isEnabled()) { for (size_t i=0 ; i= minBufferSize) { ALOGE("buffer too small to hold all events: " "count=%zd, k=%zu, size=%zu", count, k, minBufferSize); break; } sensors_event_t out; SensorInterface* si = mActiveVirtualSensors.valueAt(j); if (si->process(&out, event[i])) { mSensorEventBuffer[count + k] = out; k++; } } } if (k) { // record the last synthesized values recordLastValueLocked(&mSensorEventBuffer[count], k); count += k; // sort the buffer by time-stamps sortEventBuffer(mSensorEventBuffer, count); } } } // handle backward compatibility for RotationVector sensor if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) { for (int i = 0; i < count; i++) { if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) { // All the 4 components of the quaternion should be available // No heading accuracy. Set it to -1 mSensorEventBuffer[i].data[4] = -1; } } } // Map flush_complete_events in the buffer to SensorEventConnections which called // flush on the hardware sensor. mapFlushEventsToConnections[i] will be the // SensorEventConnection mapped to the corresponding flush_complete_event in // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise). for (int i = 0; i < count; ++i) { mMapFlushEventsToConnections[i] = NULL; if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) { const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor; SensorRecord* rec = mActiveSensors.valueFor(sensor_handle); if (rec != NULL) { mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection(); rec->removeFirstPendingFlushConnection(); } } } // Send our events to clients. Check the state of wake lock for each client and release the // lock if none of the clients need it. bool needsWakeLock = false; // Make a copy of the connection vector as some connections may be removed during the // course of this loop (especially when one-shot sensor events are present in the // sensor_event buffer). const SortedVector< wp > activeConnections(mActiveConnections); size_t numConnections = activeConnections.size(); for (size_t i=0 ; i < numConnections; ++i) { sp connection(activeConnections[i].promote()); if (connection != 0) { connection->sendEvents(mSensorEventBuffer, count, mSensorEventScratch, mMapFlushEventsToConnections); needsWakeLock |= connection->needsWakeLock(); // If the connection has one-shot sensors, it may be cleaned up after first trigger. // Early check for one-shot sensors. if (connection->hasOneShotSensors()) { cleanupAutoDisabledSensorLocked(connection, mSensorEventBuffer, count); } } } if (mWakeLockAcquired && !needsWakeLock) { release_wake_lock(WAKE_LOCK_NAME); mWakeLockAcquired = false; ALOGD_IF(DEBUG_CONNECTIONS, "released wakelock %s", WAKE_LOCK_NAME); } } while (!Thread::exitPending()); ALOGW("Exiting SensorService::threadLoop => aborting..."); abort(); return false; } sp SensorService::getLooper() const { return mLooper; } bool SensorService::SensorEventAckReceiver::threadLoop() { ALOGD("new thread SensorEventAckReceiver"); do { sp looper = mService->getLooper(); looper->pollOnce(-1); } while(!Thread::exitPending()); return false; } void SensorService::recordLastValueLocked( const sensors_event_t* buffer, size_t count) { const sensors_event_t* last = NULL; for (size_t i = 0; i < count; i++) { const sensors_event_t* event = &buffer[i]; if (event->type != SENSOR_TYPE_META_DATA) { if (last && event->sensor != last->sensor) { mLastEventSeen.editValueFor(last->sensor) = *last; } last = event; } } if (last) { mLastEventSeen.editValueFor(last->sensor) = *last; } } void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) { struct compar { static int cmp(void const* lhs, void const* rhs) { sensors_event_t const* l = static_cast(lhs); sensors_event_t const* r = static_cast(rhs); return l->timestamp - r->timestamp; } }; qsort(buffer, count, sizeof(sensors_event_t), compar::cmp); } String8 SensorService::getSensorName(int handle) const { size_t count = mUserSensorList.size(); for (size_t i=0 ; iisVirtual(); } bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const { int handle = event.sensor; if (event.type == SENSOR_TYPE_META_DATA) { handle = event.meta_data.sensor; } SensorInterface* sensor = mSensorMap.valueFor(handle); return sensor != NULL && sensor->getSensor().isWakeUpSensor(); } SensorService::SensorRecord * SensorService::getSensorRecord(int handle) { return mActiveSensors.valueFor(handle); } Vector SensorService::getSensorList() { char value[PROPERTY_VALUE_MAX]; property_get("debug.sensors", value, "0"); const Vector& initialSensorList = (atoi(value)) ? mUserSensorListDebug : mUserSensorList; Vector accessibleSensorList; for (size_t i = 0; i < initialSensorList.size(); i++) { Sensor sensor = initialSensorList[i]; if (canAccessSensor(sensor)) { accessibleSensorList.add(sensor); } else { String8 infoMessage; infoMessage.appendFormat( "Skipped sensor %s because it requires permission %s", sensor.getName().string(), sensor.getRequiredPermission().string()); ALOGI(infoMessage.string()); } } return accessibleSensorList; } sp SensorService::createSensorEventConnection() { uid_t uid = IPCThreadState::self()->getCallingUid(); sp result(new SensorEventConnection(this, uid)); return result; } void SensorService::cleanupConnection(SensorEventConnection* c) { Mutex::Autolock _l(mLock); const wp connection(c); size_t size = mActiveSensors.size(); ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size); for (size_t i=0 ; ihasSensor(handle)) { ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle); SensorInterface* sensor = mSensorMap.valueFor( handle ); ALOGE_IF(!sensor, "mSensorMap[handle=0x%08x] is null!", handle); if (sensor) { sensor->activate(c, false); } } SensorRecord* rec = mActiveSensors.valueAt(i); ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle); ALOGD_IF(DEBUG_CONNECTIONS, "removing connection %p for sensor[%zu].handle=0x%08x", c, i, handle); if (rec && rec->removeConnection(connection)) { ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection"); mActiveSensors.removeItemsAt(i, 1); mActiveVirtualSensors.removeItem(handle); delete rec; size--; } else { i++; } } mActiveConnections.remove(connection); BatteryService::cleanup(c->getUid()); if (c->needsWakeLock()) { checkWakeLockStateLocked(); } } Sensor SensorService::getSensorFromHandle(int handle) const { return mSensorMap.valueFor(handle)->getSensor(); } status_t SensorService::enable(const sp& connection, int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags) { if (mInitCheck != NO_ERROR) return mInitCheck; SensorInterface* sensor = mSensorMap.valueFor(handle); if (sensor == NULL) { return BAD_VALUE; } if (!verifyCanAccessSensor(sensor->getSensor(), "Tried enabling")) { return BAD_VALUE; } Mutex::Autolock _l(mLock); SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec == 0) { rec = new SensorRecord(connection); mActiveSensors.add(handle, rec); if (sensor->isVirtual()) { mActiveVirtualSensors.add(handle, sensor); } } else { if (rec->addConnection(connection)) { // this sensor is already activated, but we are adding a connection that uses it. // Immediately send down the last known value of the requested sensor if it's not a // "continuous" sensor. if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) { // NOTE: The wake_up flag of this event may get set to // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event. sensors_event_t& event(mLastEventSeen.editValueFor(handle)); if (event.version == sizeof(sensors_event_t)) { if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) { acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME); mWakeLockAcquired = true; ALOGD_IF(DEBUG_CONNECTIONS, "acquired wakelock for on_change sensor %s", WAKE_LOCK_NAME); } connection->sendEvents(&event, 1, NULL); if (!connection->needsWakeLock() && mWakeLockAcquired) { checkWakeLockStateLocked(); } } } } } if (connection->addSensor(handle)) { BatteryService::enableSensor(connection->getUid(), handle); // the sensor was added (which means it wasn't already there) // so, see if this connection becomes active if (mActiveConnections.indexOf(connection) < 0) { mActiveConnections.add(connection); } } else { ALOGW("sensor %08x already enabled in connection %p (ignoring)", handle, connection.get()); } nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); if (samplingPeriodNs < minDelayNs) { samplingPeriodNs = minDelayNs; } ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d" "rate=%" PRId64 " timeout== %" PRId64"", handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs); status_t err = sensor->batch(connection.get(), handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs); // Call flush() before calling activate() on the sensor. Wait for a first flush complete // event before sending events on this connection. Ignore one-shot sensors which don't // support flush(). Also if this sensor isn't already active, don't call flush(). if (err == NO_ERROR && sensor->getSensor().getReportingMode() != AREPORTING_MODE_ONE_SHOT && rec->getNumConnections() > 1) { connection->setFirstFlushPending(handle, true); status_t err_flush = sensor->flush(connection.get(), handle); // Flush may return error if the underlying h/w sensor uses an older HAL. if (err_flush == NO_ERROR) { rec->addPendingFlushConnection(connection.get()); } else { connection->setFirstFlushPending(handle, false); } } if (err == NO_ERROR) { ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle); err = sensor->activate(connection.get(), true); } if (err == NO_ERROR && sensor->getSensor().isWakeUpSensor()) { // Add the file descriptor to the Looper for receiving acknowledgments; int ret = mLooper->addFd(connection->getSensorChannel()->getSendFd(), 0, ALOOPER_EVENT_INPUT, connection.get(), NULL); } if (err != NO_ERROR) { // batch/activate has failed, reset our state. cleanupWithoutDisableLocked(connection, handle); } return err; } status_t SensorService::disable(const sp& connection, int handle) { if (mInitCheck != NO_ERROR) return mInitCheck; Mutex::Autolock _l(mLock); status_t err = cleanupWithoutDisableLocked(connection, handle); if (err == NO_ERROR) { SensorInterface* sensor = mSensorMap.valueFor(handle); err = sensor ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE); } return err; } status_t SensorService::cleanupWithoutDisable( const sp& connection, int handle) { Mutex::Autolock _l(mLock); return cleanupWithoutDisableLocked(connection, handle); } status_t SensorService::cleanupWithoutDisableLocked( const sp& connection, int handle) { SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec) { // see if this connection becomes inactive if (connection->removeSensor(handle)) { BatteryService::disableSensor(connection->getUid(), handle); } if (connection->hasAnySensor() == false) { mActiveConnections.remove(connection); } // see if this sensor becomes inactive if (rec->removeConnection(connection)) { mActiveSensors.removeItem(handle); mActiveVirtualSensors.removeItem(handle); delete rec; } return NO_ERROR; } return BAD_VALUE; } status_t SensorService::setEventRate(const sp& connection, int handle, nsecs_t ns) { if (mInitCheck != NO_ERROR) return mInitCheck; SensorInterface* sensor = mSensorMap.valueFor(handle); if (!sensor) return BAD_VALUE; if (!verifyCanAccessSensor(sensor->getSensor(), "Tried configuring")) { return BAD_VALUE; } if (ns < 0) return BAD_VALUE; nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs(); if (ns < minDelayNs) { ns = minDelayNs; } return sensor->setDelay(connection.get(), handle, ns); } status_t SensorService::flushSensor(const sp& connection) { if (mInitCheck != NO_ERROR) return mInitCheck; SensorDevice& dev(SensorDevice::getInstance()); const int halVersion = dev.getHalDeviceVersion(); status_t err(NO_ERROR); Mutex::Autolock _l(mLock); // Loop through all sensors for this connection and call flush on each of them. for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) { const int handle = connection->mSensorInfo.keyAt(i); SensorInterface* sensor = mSensorMap.valueFor(handle); if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { ALOGE("flush called on a one-shot sensor"); err = INVALID_OPERATION; continue; } SensorEventConnection::FlushInfo& flushInfo = connection->mSensorInfo.editValueFor(handle); if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) { // For older devices just increment pending flush count which will send a trivial // flush complete event. flushInfo.mPendingFlushEventsToSend++; } else { status_t err_flush = sensor->flush(connection.get(), handle); if (err_flush == NO_ERROR) { SensorRecord* rec = mActiveSensors.valueFor(handle); if (rec != NULL) rec->addPendingFlushConnection(connection); } err = (err_flush != NO_ERROR) ? err_flush : err; } } return err; } bool SensorService::canAccessSensor(const Sensor& sensor) { return (sensor.getRequiredPermission().isEmpty()) || PermissionCache::checkCallingPermission(String16(sensor.getRequiredPermission())); } bool SensorService::verifyCanAccessSensor(const Sensor& sensor, const char* operation) { if (canAccessSensor(sensor)) { return true; } else { String8 errorMessage; errorMessage.appendFormat( "%s a sensor (%s) without holding its required permission: %s", operation, sensor.getName().string(), sensor.getRequiredPermission().string()); return false; } } void SensorService::checkWakeLockState() { Mutex::Autolock _l(mLock); checkWakeLockStateLocked(); } void SensorService::checkWakeLockStateLocked() { if (!mWakeLockAcquired) { return; } bool releaseLock = true; for (size_t i=0 ; i connection(mActiveConnections[i].promote()); if (connection != 0) { if (connection->needsWakeLock()) { releaseLock = false; break; } } } if (releaseLock) { ALOGD_IF(DEBUG_CONNECTIONS, "releasing wakelock %s", WAKE_LOCK_NAME); release_wake_lock(WAKE_LOCK_NAME); mWakeLockAcquired = false; } } // --------------------------------------------------------------------------- SensorService::SensorRecord::SensorRecord( const sp& connection) { mConnections.add(connection); } bool SensorService::SensorRecord::addConnection( const sp& connection) { if (mConnections.indexOf(connection) < 0) { mConnections.add(connection); return true; } return false; } bool SensorService::SensorRecord::removeConnection( const wp& connection) { ssize_t index = mConnections.indexOf(connection); if (index >= 0) { mConnections.removeItemsAt(index, 1); } // Remove this connections from the queue of flush() calls made on this sensor. for (Vector< wp >::iterator it = mPendingFlushConnections.begin(); it != mPendingFlushConnections.end();) { if (it->unsafe_get() == connection.unsafe_get()) { it = mPendingFlushConnections.erase(it); } else { ++it; } } return mConnections.size() ? false : true; } void SensorService::SensorRecord::addPendingFlushConnection( const sp& connection) { mPendingFlushConnections.add(connection); } void SensorService::SensorRecord::removeFirstPendingFlushConnection() { if (mPendingFlushConnections.size() > 0) { mPendingFlushConnections.removeAt(0); } } SensorService::SensorEventConnection * SensorService::SensorRecord::getFirstPendingFlushConnection() { if (mPendingFlushConnections.size() > 0) { return mPendingFlushConnections[0].unsafe_get(); } return NULL; } // --------------------------------------------------------------------------- SensorService::SensorEventConnection::SensorEventConnection( const sp& service, uid_t uid) : mService(service), mUid(uid), mWakeLockRefCount(0), mEventCache(NULL), mCacheSize(0), mMaxCacheSize(0) { const SensorDevice& device(SensorDevice::getInstance()); mChannel = new BitTube(mService->mSocketBufferSize); #if DEBUG_CONNECTIONS mEventsReceived = mEventsSentFromCache = mEventsSent = 0; mTotalAcksNeeded = mTotalAcksReceived = 0; #endif } SensorService::SensorEventConnection::~SensorEventConnection() { ALOGD_IF(DEBUG_CONNECTIONS, "~SensorEventConnection(%p)", this); if (mEventCache != NULL) { delete mEventCache; } mService->cleanupConnection(this); } void SensorService::SensorEventConnection::onFirstRef() { LooperCallback::onFirstRef(); } bool SensorService::SensorEventConnection::needsWakeLock() { Mutex::Autolock _l(mConnectionLock); return mWakeLockRefCount > 0; } void SensorService::SensorEventConnection::dump(String8& result) { Mutex::Autolock _l(mConnectionLock); result.appendFormat("\t %d WakeLockRefCount \n", mWakeLockRefCount); for (size_t i = 0; i < mSensorInfo.size(); ++i) { const FlushInfo& flushInfo = mSensorInfo.valueAt(i); result.appendFormat("\t %s 0x%08x | status: %s | pending flush events %d | uid %d|" "cache size: %d max cache size %d\n", mService->getSensorName(mSensorInfo.keyAt(i)).string(), mSensorInfo.keyAt(i), flushInfo.mFirstFlushPending ? "First flush pending" : "active", flushInfo.mPendingFlushEventsToSend, mUid, mCacheSize, mMaxCacheSize); #if DEBUG_CONNECTIONS result.appendFormat("\t events recvd: %d | sent %d | cache %d | dropped %d |" " total_acks_needed %d | total_acks_recvd %d\n", mEventsReceived, mEventsSent, mEventsSentFromCache, mEventsReceived - (mEventsSentFromCache + mEventsSent + mCacheSize), mTotalAcksNeeded, mTotalAcksReceived); #endif } } bool SensorService::SensorEventConnection::addSensor(int32_t handle) { Mutex::Autolock _l(mConnectionLock); if (!verifyCanAccessSensor(mService->getSensorFromHandle(handle), "Tried adding")) { return false; } if (mSensorInfo.indexOfKey(handle) < 0) { mSensorInfo.add(handle, FlushInfo()); return true; } return false; } bool SensorService::SensorEventConnection::removeSensor(int32_t handle) { Mutex::Autolock _l(mConnectionLock); if (mSensorInfo.removeItem(handle) >= 0) { return true; } return false; } bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const { Mutex::Autolock _l(mConnectionLock); return mSensorInfo.indexOfKey(handle) >= 0; } bool SensorService::SensorEventConnection::hasAnySensor() const { Mutex::Autolock _l(mConnectionLock); return mSensorInfo.size() ? true : false; } bool SensorService::SensorEventConnection::hasOneShotSensors() const { Mutex::Autolock _l(mConnectionLock); for (size_t i = 0; i < mSensorInfo.size(); ++i) { const int handle = mSensorInfo.keyAt(i); if (mService->getSensorFromHandle(handle).getReportingMode() == AREPORTING_MODE_ONE_SHOT) { return true; } } return false; } void SensorService::SensorEventConnection::setFirstFlushPending(int32_t handle, bool value) { Mutex::Autolock _l(mConnectionLock); ssize_t index = mSensorInfo.indexOfKey(handle); if (index >= 0) { FlushInfo& flushInfo = mSensorInfo.editValueAt(index); flushInfo.mFirstFlushPending = value; } } status_t SensorService::SensorEventConnection::sendEvents( sensors_event_t* buffer, size_t numEvents, sensors_event_t* scratch, SensorEventConnection const * const * mapFlushEventsToConnections) { // filter out events not for this connection size_t count = 0; Mutex::Autolock _l(mConnectionLock); if (scratch) { size_t i=0; while (i(buffer); count = numEvents; } sendPendingFlushEventsLocked(); // Early return if there are no events for this connection. if (count == 0) { return status_t(NO_ERROR); } #if DEBUG_CONNECTIONS mEventsReceived += count; #endif if (mCacheSize != 0) { // There are some events in the cache which need to be sent first. Copy this buffer to // the end of cache. if (mCacheSize + count <= mMaxCacheSize) { memcpy(&mEventCache[mCacheSize], scratch, count * sizeof(sensors_event_t)); mCacheSize += count; } else { // Check if any new sensors have registered on this connection which may have increased // the max cache size that is desired. if (mCacheSize + count < computeMaxCacheSizeLocked()) { reAllocateCacheLocked(scratch, count); return status_t(NO_ERROR); } // Some events need to be dropped. int remaningCacheSize = mMaxCacheSize - mCacheSize; if (remaningCacheSize != 0) { memcpy(&mEventCache[mCacheSize], scratch, remaningCacheSize * sizeof(sensors_event_t)); } int numEventsDropped = count - remaningCacheSize; countFlushCompleteEventsLocked(mEventCache, numEventsDropped); // Drop the first "numEventsDropped" in the cache. memmove(mEventCache, &mEventCache[numEventsDropped], (mCacheSize - numEventsDropped) * sizeof(sensors_event_t)); // Copy the remainingEvents in scratch buffer to the end of cache. memcpy(&mEventCache[mCacheSize - numEventsDropped], scratch + remaningCacheSize, numEventsDropped * sizeof(sensors_event_t)); } return status_t(NO_ERROR); } int index_wake_up_event = findWakeUpSensorEventLocked(scratch, count); if (index_wake_up_event >= 0) { scratch[index_wake_up_event].flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK; ++mWakeLockRefCount; #if DEBUG_CONNECTIONS ++mTotalAcksNeeded; #endif } // NOTE: ASensorEvent and sensors_event_t are the same type. ssize_t size = SensorEventQueue::write(mChannel, reinterpret_cast(scratch), count); if (size < 0) { // Write error, copy events to local cache. if (index_wake_up_event >= 0) { // If there was a wake_up sensor_event, reset the flag. scratch[index_wake_up_event].flags &= ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK; --mWakeLockRefCount; #if DEBUG_CONNECTIONS --mTotalAcksNeeded; #endif } if (mEventCache == NULL) { mMaxCacheSize = computeMaxCacheSizeLocked(); mEventCache = new sensors_event_t[mMaxCacheSize]; mCacheSize = 0; } memcpy(&mEventCache[mCacheSize], scratch, count * sizeof(sensors_event_t)); mCacheSize += count; // Add this file descriptor to the looper to get a callback when this fd is available for // writing. mService->getLooper()->addFd(mChannel->getSendFd(), 0, ALOOPER_EVENT_OUTPUT | ALOOPER_EVENT_INPUT, this, NULL); return size; } #if DEBUG_CONNECTIONS if (size > 0) { mEventsSent += count; } #endif return size < 0 ? status_t(size) : status_t(NO_ERROR); } void SensorService::SensorEventConnection::reAllocateCacheLocked(sensors_event_t const* scratch, int count) { sensors_event_t *eventCache_new; const int new_cache_size = computeMaxCacheSizeLocked(); // Allocate new cache, copy over events from the old cache & scratch, free up memory. eventCache_new = new sensors_event_t[new_cache_size]; memcpy(eventCache_new, mEventCache, mCacheSize * sizeof(sensors_event_t)); memcpy(&eventCache_new[mCacheSize], scratch, count * sizeof(sensors_event_t)); ALOGD_IF(DEBUG_CONNECTIONS, "reAllocateCacheLocked maxCacheSize=%d %d", mMaxCacheSize, new_cache_size); delete mEventCache; mEventCache = eventCache_new; mCacheSize += count; mMaxCacheSize = new_cache_size; } void SensorService::SensorEventConnection::sendPendingFlushEventsLocked() { ASensorEvent flushCompleteEvent; flushCompleteEvent.type = SENSOR_TYPE_META_DATA; flushCompleteEvent.sensor = 0; // Loop through all the sensors for this connection and check if there are any pending // flush complete events to be sent. for (size_t i = 0; i < mSensorInfo.size(); ++i) { FlushInfo& flushInfo = mSensorInfo.editValueAt(i); while (flushInfo.mPendingFlushEventsToSend > 0) { flushCompleteEvent.meta_data.sensor = mSensorInfo.keyAt(i); ssize_t size = SensorEventQueue::write(mChannel, &flushCompleteEvent, 1); if (size < 0) { return; } ALOGD_IF(DEBUG_CONNECTIONS, "sent dropped flush complete event==%d ", flushCompleteEvent.meta_data.sensor); flushInfo.mPendingFlushEventsToSend--; } } } void SensorService::SensorEventConnection::writeToSocketFromCacheLocked() { // At a time write at most half the size of the receiver buffer in SensorEventQueue OR // half the size of the socket buffer allocated in BitTube whichever is smaller. const int maxWriteSize = helpers::min(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT/2, int(mService->mSocketBufferSize/(sizeof(sensors_event_t)*2))); // Send pending flush complete events (if any) sendPendingFlushEventsLocked(); for (int numEventsSent = 0; numEventsSent < mCacheSize;) { const int numEventsToWrite = helpers::min(mCacheSize - numEventsSent, maxWriteSize); int index_wake_up_event = findWakeUpSensorEventLocked(mEventCache + numEventsSent, numEventsToWrite); if (index_wake_up_event >= 0) { mEventCache[index_wake_up_event + numEventsSent].flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK; ++mWakeLockRefCount; #if DEBUG_CONNECTIONS ++mTotalAcksNeeded; #endif } ssize_t size = SensorEventQueue::write(mChannel, reinterpret_cast(mEventCache + numEventsSent), numEventsToWrite); if (size < 0) { if (index_wake_up_event >= 0) { // If there was a wake_up sensor_event, reset the flag. mEventCache[index_wake_up_event + numEventsSent].flags &= ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK; --mWakeLockRefCount; #if DEBUG_CONNECTIONS --mTotalAcksNeeded; #endif } memmove(mEventCache, &mEventCache[numEventsSent], (mCacheSize - numEventsSent) * sizeof(sensors_event_t)); ALOGD_IF(DEBUG_CONNECTIONS, "wrote %d events from cache size==%d ", numEventsSent, mCacheSize); mCacheSize -= numEventsSent; return; } numEventsSent += numEventsToWrite; #if DEBUG_CONNECTIONS mEventsSentFromCache += numEventsToWrite; #endif } ALOGD_IF(DEBUG_CONNECTIONS, "wrote all events from cache size=%d ", mCacheSize); // All events from the cache have been sent. Reset cache size to zero. mCacheSize = 0; // Poll only for ALOOPER_EVENT_INPUT(read) on the file descriptor. mService->getLooper()->addFd(mChannel->getSendFd(), 0, ALOOPER_EVENT_INPUT, this, NULL); } void SensorService::SensorEventConnection::countFlushCompleteEventsLocked( sensors_event_t* scratch, const int numEventsDropped) { ALOGD_IF(DEBUG_CONNECTIONS, "dropping %d events ", numEventsDropped); // Count flushComplete events in the events that are about to the dropped. These will be sent // separately before the next batch of events. for (int j = 0; j < numEventsDropped; ++j) { if (scratch[j].type == SENSOR_TYPE_META_DATA) { FlushInfo& flushInfo = mSensorInfo.editValueFor(scratch[j].meta_data.sensor); flushInfo.mPendingFlushEventsToSend++; ALOGD_IF(DEBUG_CONNECTIONS, "increment pendingFlushCount %d", flushInfo.mPendingFlushEventsToSend); } } return; } int SensorService::SensorEventConnection::findWakeUpSensorEventLocked( sensors_event_t const* scratch, const int count) { for (int i = 0; i < count; ++i) { if (mService->isWakeUpSensorEvent(scratch[i])) { return i; } } return -1; } sp SensorService::SensorEventConnection::getSensorChannel() const { return mChannel; } status_t SensorService::SensorEventConnection::enableDisable( int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags) { status_t err; if (enabled) { err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs, reservedFlags); } else { err = mService->disable(this, handle); } return err; } status_t SensorService::SensorEventConnection::setEventRate( int handle, nsecs_t samplingPeriodNs) { return mService->setEventRate(this, handle, samplingPeriodNs); } status_t SensorService::SensorEventConnection::flush() { return mService->flushSensor(this); } int SensorService::SensorEventConnection::handleEvent(int fd, int events, void* data) { if (events & ALOOPER_EVENT_HANGUP || events & ALOOPER_EVENT_ERROR) { return 0; } if (events & ALOOPER_EVENT_INPUT) { char buf; ssize_t ret = ::recv(fd, &buf, sizeof(buf), MSG_DONTWAIT); { Mutex::Autolock _l(mConnectionLock); --mWakeLockRefCount; #if DEBUG_CONNECTIONS ++mTotalAcksReceived; #endif } // Check if wakelock can be released by sensorservice. mConnectionLock needs to be released // here as checkWakeLockState() will need it. if (mWakeLockRefCount == 0) { mService->checkWakeLockState(); } // continue getting callbacks. return 1; } if (events & ALOOPER_EVENT_OUTPUT) { // send sensor data that is stored in mEventCache. Mutex::Autolock _l(mConnectionLock); writeToSocketFromCacheLocked(); } return 1; } int SensorService::SensorEventConnection::computeMaxCacheSizeLocked() const { int fifoWakeUpSensors = 0; int fifoNonWakeUpSensors = 0; for (size_t i = 0; i < mSensorInfo.size(); ++i) { const Sensor& sensor = mService->getSensorFromHandle(mSensorInfo.keyAt(i)); if (sensor.getFifoReservedEventCount() == sensor.getFifoMaxEventCount()) { // Each sensor has a reserved fifo. Sum up the fifo sizes for all wake up sensors and // non wake_up sensors. if (sensor.isWakeUpSensor()) { fifoWakeUpSensors += sensor.getFifoReservedEventCount(); } else { fifoNonWakeUpSensors += sensor.getFifoReservedEventCount(); } } else { // Shared fifo. Compute the max of the fifo sizes for wake_up and non_wake up sensors. if (sensor.isWakeUpSensor()) { fifoWakeUpSensors = fifoWakeUpSensors > sensor.getFifoMaxEventCount() ? fifoWakeUpSensors : sensor.getFifoMaxEventCount(); } else { fifoNonWakeUpSensors = fifoNonWakeUpSensors > sensor.getFifoMaxEventCount() ? fifoNonWakeUpSensors : sensor.getFifoMaxEventCount(); } } } if (fifoWakeUpSensors + fifoNonWakeUpSensors == 0) { // It is extremely unlikely that there is a write failure in non batch mode. Return a cache // size that is equal to that of the batch mode. // ALOGW("Write failure in non-batch mode"); return MAX_SOCKET_BUFFER_SIZE_BATCHED/sizeof(sensors_event_t); } return fifoWakeUpSensors + fifoNonWakeUpSensors; } // --------------------------------------------------------------------------- }; // namespace android