/* San Angeles Observation OpenGL ES version example * Copyright 2004-2005 Jetro Lauha * All rights reserved. * Web: http://iki.fi/jetro/ * * This source is free software; you can redistribute it and/or * modify it under the terms of EITHER: * (1) The GNU Lesser General Public License as published by the Free * Software Foundation; either version 2.1 of the License, or (at * your option) any later version. The text of the GNU Lesser * General Public License is included with this source in the * file LICENSE-LGPL.txt. * (2) The BSD-style license that is included with this source in * the file LICENSE-BSD.txt. * * This source is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * LICENSE-LGPL.txt and LICENSE-BSD.txt for more details. * * $Id: demo.c,v 1.10 2005/02/08 20:54:39 tonic Exp $ * $Revision: 1.10 $ */ #include <stdlib.h> #include <math.h> #include <float.h> #include <assert.h> #include <GLES/gl.h> #include "app.h" #include "shapes.h" #include "cams.h" // Total run length is 20 * camera track base unit length (see cams.h). #define RUN_LENGTH (20 * CAMTRACK_LEN) #undef PI #define PI 3.1415926535897932f #define RANDOM_UINT_MAX 65535 static unsigned long sRandomSeed = 0; static void seedRandom(unsigned long seed) { sRandomSeed = seed; } static unsigned long randomUInt() { sRandomSeed = sRandomSeed * 0x343fd + 0x269ec3; return sRandomSeed >> 16; } // Capped conversion from float to fixed. static long floatToFixed(float value) { if (value < -32768) value = -32768; if (value > 32767) value = 32767; return (long)(value * 65536); } #define FIXED(value) floatToFixed(value) // Definition of one GL object in this demo. typedef struct { /* Vertex array and color array are enabled for all objects, so their * pointers must always be valid and non-NULL. Normal array is not * used by the ground plane, so when its pointer is NULL then normal * array usage is disabled. * * Vertex array is supposed to use GL_FIXED datatype and stride 0 * (i.e. tightly packed array). Color array is supposed to have 4 * components per color with GL_UNSIGNED_BYTE datatype and stride 0. * Normal array is supposed to use GL_FIXED datatype and stride 0. */ GLfixed *vertexArray; GLubyte *colorArray; GLfixed *normalArray; GLint vertexComponents; GLsizei count; } GLOBJECT; static long sStartTick = 0; static long sTick = 0; static int sCurrentCamTrack = 0; static long sCurrentCamTrackStartTick = 0; static long sNextCamTrackStartTick = 0x7fffffff; static GLOBJECT *sSuperShapeObjects[SUPERSHAPE_COUNT] = { NULL }; static GLOBJECT *sGroundPlane = NULL; typedef struct { float x, y, z; } VECTOR3; static void freeGLObject(GLOBJECT *object) { if (object == NULL) return; free(object->normalArray); free(object->colorArray); free(object->vertexArray); free(object); } static GLOBJECT * newGLObject(long vertices, int vertexComponents, int useNormalArray) { GLOBJECT *result; result = (GLOBJECT *)malloc(sizeof(GLOBJECT)); if (result == NULL) return NULL; result->count = vertices; result->vertexComponents = vertexComponents; result->vertexArray = (GLfixed *)malloc(vertices * vertexComponents * sizeof(GLfixed)); result->colorArray = (GLubyte *)malloc(vertices * 4 * sizeof(GLubyte)); if (useNormalArray) { result->normalArray = (GLfixed *)malloc(vertices * 3 * sizeof(GLfixed)); } else result->normalArray = NULL; if (result->vertexArray == NULL || result->colorArray == NULL || (useNormalArray && result->normalArray == NULL)) { freeGLObject(result); return NULL; } return result; } static void drawGLObject(GLOBJECT *object) { assert(object != NULL); glVertexPointer(object->vertexComponents, GL_FIXED, 0, object->vertexArray); glColorPointer(4, GL_UNSIGNED_BYTE, 0, object->colorArray); // Already done in initialization: //glEnableClientState(GL_VERTEX_ARRAY); //glEnableClientState(GL_COLOR_ARRAY); if (object->normalArray) { glNormalPointer(GL_FIXED, 0, object->normalArray); glEnableClientState(GL_NORMAL_ARRAY); } else glDisableClientState(GL_NORMAL_ARRAY); glDrawArrays(GL_TRIANGLES, 0, object->count); } static void vector3Sub(VECTOR3 *dest, VECTOR3 *v1, VECTOR3 *v2) { dest->x = v1->x - v2->x; dest->y = v1->y - v2->y; dest->z = v1->z - v2->z; } static void superShapeMap(VECTOR3 *point, float r1, float r2, float t, float p) { // sphere-mapping of supershape parameters point->x = (float)(cos(t) * cos(p) / r1 / r2); point->y = (float)(sin(t) * cos(p) / r1 / r2); point->z = (float)(sin(p) / r2); } static float ssFunc(const float t, const float *p) { return (float)(pow(pow(fabs(cos(p[0] * t / 4)) / p[1], p[4]) + pow(fabs(sin(p[0] * t / 4)) / p[2], p[5]), 1 / p[3])); } // Creates and returns a supershape object. // Based on Paul Bourke's POV-Ray implementation. // http://astronomy.swin.edu.au/~pbourke/povray/supershape/ static GLOBJECT * createSuperShape(const float *params) { const int resol1 = (int)params[SUPERSHAPE_PARAMS - 3]; const int resol2 = (int)params[SUPERSHAPE_PARAMS - 2]; // latitude 0 to pi/2 for no mirrored bottom // (latitudeBegin==0 for -pi/2 to pi/2 originally) const int latitudeBegin = resol2 / 4; const int latitudeEnd = resol2 / 2; // non-inclusive const int longitudeCount = resol1; const int latitudeCount = latitudeEnd - latitudeBegin; const long triangleCount = longitudeCount * latitudeCount * 2; const long vertices = triangleCount * 3; GLOBJECT *result; float baseColor[3]; int a, longitude, latitude; long currentVertex, currentQuad; result = newGLObject(vertices, 3, 1); if (result == NULL) return NULL; for (a = 0; a < 3; ++a) baseColor[a] = ((randomUInt() % 155) + 100) / 255.f; currentQuad = 0; currentVertex = 0; // longitude -pi to pi for (longitude = 0; longitude < longitudeCount; ++longitude) { // latitude 0 to pi/2 for (latitude = latitudeBegin; latitude < latitudeEnd; ++latitude) { float t1 = -PI + longitude * 2 * PI / resol1; float t2 = -PI + (longitude + 1) * 2 * PI / resol1; float p1 = -PI / 2 + latitude * 2 * PI / resol2; float p2 = -PI / 2 + (latitude + 1) * 2 * PI / resol2; float r0, r1, r2, r3; r0 = ssFunc(t1, params); r1 = ssFunc(p1, ¶ms[6]); r2 = ssFunc(t2, params); r3 = ssFunc(p2, ¶ms[6]); if (r0 != 0 && r1 != 0 && r2 != 0 && r3 != 0) { VECTOR3 pa, pb, pc, pd; VECTOR3 v1, v2, n; float ca; int i; //float lenSq, invLenSq; superShapeMap(&pa, r0, r1, t1, p1); superShapeMap(&pb, r2, r1, t2, p1); superShapeMap(&pc, r2, r3, t2, p2); superShapeMap(&pd, r0, r3, t1, p2); // kludge to set lower edge of the object to fixed level if (latitude == latitudeBegin + 1) pa.z = pb.z = 0; vector3Sub(&v1, &pb, &pa); vector3Sub(&v2, &pd, &pa); // Calculate normal with cross product. /* i j k i j * v1.x v1.y v1.z | v1.x v1.y * v2.x v2.y v2.z | v2.x v2.y */ n.x = v1.y * v2.z - v1.z * v2.y; n.y = v1.z * v2.x - v1.x * v2.z; n.z = v1.x * v2.y - v1.y * v2.x; /* Pre-normalization of the normals is disabled here because * they will be normalized anyway later due to automatic * normalization (GL_NORMALIZE). It is enabled because the * objects are scaled with glScale. */ /* lenSq = n.x * n.x + n.y * n.y + n.z * n.z; invLenSq = (float)(1 / sqrt(lenSq)); n.x *= invLenSq; n.y *= invLenSq; n.z *= invLenSq; */ ca = pa.z + 0.5f; for (i = currentVertex * 3; i < (currentVertex + 6) * 3; i += 3) { result->normalArray[i] = FIXED(n.x); result->normalArray[i + 1] = FIXED(n.y); result->normalArray[i + 2] = FIXED(n.z); } for (i = currentVertex * 4; i < (currentVertex + 6) * 4; i += 4) { int a, color[3]; for (a = 0; a < 3; ++a) { color[a] = (int)(ca * baseColor[a] * 255); if (color[a] > 255) color[a] = 255; } result->colorArray[i] = (GLubyte)color[0]; result->colorArray[i + 1] = (GLubyte)color[1]; result->colorArray[i + 2] = (GLubyte)color[2]; result->colorArray[i + 3] = 0; } result->vertexArray[currentVertex * 3] = FIXED(pa.x); result->vertexArray[currentVertex * 3 + 1] = FIXED(pa.y); result->vertexArray[currentVertex * 3 + 2] = FIXED(pa.z); ++currentVertex; result->vertexArray[currentVertex * 3] = FIXED(pb.x); result->vertexArray[currentVertex * 3 + 1] = FIXED(pb.y); result->vertexArray[currentVertex * 3 + 2] = FIXED(pb.z); ++currentVertex; result->vertexArray[currentVertex * 3] = FIXED(pd.x); result->vertexArray[currentVertex * 3 + 1] = FIXED(pd.y); result->vertexArray[currentVertex * 3 + 2] = FIXED(pd.z); ++currentVertex; result->vertexArray[currentVertex * 3] = FIXED(pb.x); result->vertexArray[currentVertex * 3 + 1] = FIXED(pb.y); result->vertexArray[currentVertex * 3 + 2] = FIXED(pb.z); ++currentVertex; result->vertexArray[currentVertex * 3] = FIXED(pc.x); result->vertexArray[currentVertex * 3 + 1] = FIXED(pc.y); result->vertexArray[currentVertex * 3 + 2] = FIXED(pc.z); ++currentVertex; result->vertexArray[currentVertex * 3] = FIXED(pd.x); result->vertexArray[currentVertex * 3 + 1] = FIXED(pd.y); result->vertexArray[currentVertex * 3 + 2] = FIXED(pd.z); ++currentVertex; } // r0 && r1 && r2 && r3 ++currentQuad; } // latitude } // longitude // Set number of vertices in object to the actual amount created. result->count = currentVertex; return result; } static GLOBJECT * createGroundPlane() { const int scale = 4; const int yBegin = -15, yEnd = 15; // ends are non-inclusive const int xBegin = -15, xEnd = 15; const long triangleCount = (yEnd - yBegin) * (xEnd - xBegin) * 2; const long vertices = triangleCount * 3; GLOBJECT *result; int x, y; long currentVertex, currentQuad; result = newGLObject(vertices, 2, 0); if (result == NULL) return NULL; currentQuad = 0; currentVertex = 0; for (y = yBegin; y < yEnd; ++y) { for (x = xBegin; x < xEnd; ++x) { GLubyte color; int i, a; color = (GLubyte)((randomUInt() & 0x5f) + 81); // 101 1111 for (i = currentVertex * 4; i < (currentVertex + 6) * 4; i += 4) { result->colorArray[i] = color; result->colorArray[i + 1] = color; result->colorArray[i + 2] = color; result->colorArray[i + 3] = 0; } // Axis bits for quad triangles: // x: 011100 (0x1c), y: 110001 (0x31) (clockwise) // x: 001110 (0x0e), y: 100011 (0x23) (counter-clockwise) for (a = 0; a < 6; ++a) { const int xm = x + ((0x1c >> a) & 1); const int ym = y + ((0x31 >> a) & 1); const float m = (float)(cos(xm * 2) * sin(ym * 4) * 0.75f); result->vertexArray[currentVertex * 2] = FIXED(xm * scale + m); result->vertexArray[currentVertex * 2 + 1] = FIXED(ym * scale + m); ++currentVertex; } ++currentQuad; } } return result; } static void drawGroundPlane() { glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glEnable(GL_BLEND); glBlendFunc(GL_ZERO, GL_SRC_COLOR); glDisable(GL_LIGHTING); drawGLObject(sGroundPlane); glEnable(GL_LIGHTING); glDisable(GL_BLEND); glEnable(GL_DEPTH_TEST); } static void drawFadeQuad() { static const GLfixed quadVertices[] = { -0x10000, -0x10000, 0x10000, -0x10000, -0x10000, 0x10000, 0x10000, -0x10000, 0x10000, 0x10000, -0x10000, 0x10000 }; const int beginFade = sTick - sCurrentCamTrackStartTick; const int endFade = sNextCamTrackStartTick - sTick; const int minFade = beginFade < endFade ? beginFade : endFade; if (minFade < 1024) { const GLfixed fadeColor = minFade << 6; glColor4x(fadeColor, fadeColor, fadeColor, 0); glDisable(GL_DEPTH_TEST); glEnable(GL_BLEND); glBlendFunc(GL_ZERO, GL_SRC_COLOR); glDisable(GL_LIGHTING); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glVertexPointer(2, GL_FIXED, 0, quadVertices); glDrawArrays(GL_TRIANGLES, 0, 6); glEnableClientState(GL_COLOR_ARRAY); glMatrixMode(GL_MODELVIEW); glEnable(GL_LIGHTING); glDisable(GL_BLEND); glEnable(GL_DEPTH_TEST); } } // Called from the app framework. void appInit() { int a; glEnable(GL_NORMALIZE); glEnable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glShadeModel(GL_FLAT); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); glEnable(GL_LIGHT2); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); seedRandom(15); for (a = 0; a < SUPERSHAPE_COUNT; ++a) { sSuperShapeObjects[a] = createSuperShape(sSuperShapeParams[a]); assert(sSuperShapeObjects[a] != NULL); } sGroundPlane = createGroundPlane(); assert(sGroundPlane != NULL); } // Called from the app framework. void appDeinit() { int a; for (a = 0; a < SUPERSHAPE_COUNT; ++a) freeGLObject(sSuperShapeObjects[a]); freeGLObject(sGroundPlane); } static void gluPerspective(GLfloat fovy, GLfloat aspect, GLfloat zNear, GLfloat zFar) { GLfloat xmin, xmax, ymin, ymax; ymax = zNear * (GLfloat)tan(fovy * PI / 360); ymin = -ymax; xmin = ymin * aspect; xmax = ymax * aspect; glFrustumx((GLfixed)(xmin * 65536), (GLfixed)(xmax * 65536), (GLfixed)(ymin * 65536), (GLfixed)(ymax * 65536), (GLfixed)(zNear * 65536), (GLfixed)(zFar * 65536)); } static void prepareFrame(int width, int height) { glViewport(0, 0, width, height); glClearColorx((GLfixed)(0.1f * 65536), (GLfixed)(0.2f * 65536), (GLfixed)(0.3f * 65536), 0x10000); glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45, (float)width / height, 0.5f, 150); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } static void configureLightAndMaterial() { static GLfixed light0Position[] = { -0x40000, 0x10000, 0x10000, 0 }; static GLfixed light0Diffuse[] = { 0x10000, 0x6666, 0, 0x10000 }; static GLfixed light1Position[] = { 0x10000, -0x20000, -0x10000, 0 }; static GLfixed light1Diffuse[] = { 0x11eb, 0x23d7, 0x5999, 0x10000 }; static GLfixed light2Position[] = { -0x10000, 0, -0x40000, 0 }; static GLfixed light2Diffuse[] = { 0x11eb, 0x2b85, 0x23d7, 0x10000 }; static GLfixed materialSpecular[] = { 0x10000, 0x10000, 0x10000, 0x10000 }; glLightxv(GL_LIGHT0, GL_POSITION, light0Position); glLightxv(GL_LIGHT0, GL_DIFFUSE, light0Diffuse); glLightxv(GL_LIGHT1, GL_POSITION, light1Position); glLightxv(GL_LIGHT1, GL_DIFFUSE, light1Diffuse); glLightxv(GL_LIGHT2, GL_POSITION, light2Position); glLightxv(GL_LIGHT2, GL_DIFFUSE, light2Diffuse); glMaterialxv(GL_FRONT_AND_BACK, GL_SPECULAR, materialSpecular); glMaterialx(GL_FRONT_AND_BACK, GL_SHININESS, 60 << 16); glEnable(GL_COLOR_MATERIAL); } static void drawModels(float zScale) { const int translationScale = 9; int x, y; seedRandom(9); glScalex(1 << 16, 1 << 16, (GLfixed)(zScale * 65536)); for (y = -5; y <= 5; ++y) { for (x = -5; x <= 5; ++x) { float buildingScale; GLfixed fixedScale; int curShape = randomUInt() % SUPERSHAPE_COUNT; buildingScale = sSuperShapeParams[curShape][SUPERSHAPE_PARAMS - 1]; fixedScale = (GLfixed)(buildingScale * 65536); glPushMatrix(); glTranslatex((x * translationScale) * 65536, (y * translationScale) * 65536, 0); glRotatex((GLfixed)((randomUInt() % 360) << 16), 0, 0, 1 << 16); glScalex(fixedScale, fixedScale, fixedScale); drawGLObject(sSuperShapeObjects[curShape]); glPopMatrix(); } } for (x = -2; x <= 2; ++x) { const int shipScale100 = translationScale * 500; const int offs100 = x * shipScale100 + (sTick % shipScale100); float offs = offs100 * 0.01f; GLfixed fixedOffs = (GLfixed)(offs * 65536); glPushMatrix(); glTranslatex(fixedOffs, -4 * 65536, 2 << 16); drawGLObject(sSuperShapeObjects[SUPERSHAPE_COUNT - 1]); glPopMatrix(); glPushMatrix(); glTranslatex(-4 * 65536, fixedOffs, 4 << 16); glRotatex(90 << 16, 0, 0, 1 << 16); drawGLObject(sSuperShapeObjects[SUPERSHAPE_COUNT - 1]); glPopMatrix(); } } /* Following gluLookAt implementation is adapted from the * Mesa 3D Graphics library. http://www.mesa3d.org */ static void gluLookAt(GLfloat eyex, GLfloat eyey, GLfloat eyez, GLfloat centerx, GLfloat centery, GLfloat centerz, GLfloat upx, GLfloat upy, GLfloat upz) { GLfloat m[16]; GLfloat x[3], y[3], z[3]; GLfloat mag; /* Make rotation matrix */ /* Z vector */ z[0] = eyex - centerx; z[1] = eyey - centery; z[2] = eyez - centerz; mag = (float)sqrt(z[0] * z[0] + z[1] * z[1] + z[2] * z[2]); if (mag) { /* mpichler, 19950515 */ z[0] /= mag; z[1] /= mag; z[2] /= mag; } /* Y vector */ y[0] = upx; y[1] = upy; y[2] = upz; /* X vector = Y cross Z */ x[0] = y[1] * z[2] - y[2] * z[1]; x[1] = -y[0] * z[2] + y[2] * z[0]; x[2] = y[0] * z[1] - y[1] * z[0]; /* Recompute Y = Z cross X */ y[0] = z[1] * x[2] - z[2] * x[1]; y[1] = -z[0] * x[2] + z[2] * x[0]; y[2] = z[0] * x[1] - z[1] * x[0]; /* mpichler, 19950515 */ /* cross product gives area of parallelogram, which is < 1.0 for * non-perpendicular unit-length vectors; so normalize x, y here */ mag = (float)sqrt(x[0] * x[0] + x[1] * x[1] + x[2] * x[2]); if (mag) { x[0] /= mag; x[1] /= mag; x[2] /= mag; } mag = (float)sqrt(y[0] * y[0] + y[1] * y[1] + y[2] * y[2]); if (mag) { y[0] /= mag; y[1] /= mag; y[2] /= mag; } #define M(row,col) m[col*4+row] M(0, 0) = x[0]; M(0, 1) = x[1]; M(0, 2) = x[2]; M(0, 3) = 0.0; M(1, 0) = y[0]; M(1, 1) = y[1]; M(1, 2) = y[2]; M(1, 3) = 0.0; M(2, 0) = z[0]; M(2, 1) = z[1]; M(2, 2) = z[2]; M(2, 3) = 0.0; M(3, 0) = 0.0; M(3, 1) = 0.0; M(3, 2) = 0.0; M(3, 3) = 1.0; #undef M { int a; GLfixed fixedM[16]; for (a = 0; a < 16; ++a) fixedM[a] = (GLfixed)(m[a] * 65536); glMultMatrixx(fixedM); } /* Translate Eye to Origin */ glTranslatex((GLfixed)(-eyex * 65536), (GLfixed)(-eyey * 65536), (GLfixed)(-eyez * 65536)); } static void camTrack() { float lerp[5]; float eX, eY, eZ, cX, cY, cZ; float trackPos; CAMTRACK *cam; long currentCamTick; int a; if (sNextCamTrackStartTick <= sTick) { ++sCurrentCamTrack; sCurrentCamTrackStartTick = sNextCamTrackStartTick; } sNextCamTrackStartTick = sCurrentCamTrackStartTick + sCamTracks[sCurrentCamTrack].len * CAMTRACK_LEN; cam = &sCamTracks[sCurrentCamTrack]; currentCamTick = sTick - sCurrentCamTrackStartTick; trackPos = (float)currentCamTick / (CAMTRACK_LEN * cam->len); for (a = 0; a < 5; ++a) lerp[a] = (cam->src[a] + cam->dest[a] * trackPos) * 0.01f; if (cam->dist) { float dist = cam->dist * 0.1f; cX = lerp[0]; cY = lerp[1]; cZ = lerp[2]; eX = cX - (float)cos(lerp[3]) * dist; eY = cY - (float)sin(lerp[3]) * dist; eZ = cZ - lerp[4]; } else { eX = lerp[0]; eY = lerp[1]; eZ = lerp[2]; cX = eX + (float)cos(lerp[3]); cY = eY + (float)sin(lerp[3]); cZ = eZ + lerp[4]; } gluLookAt(eX, eY, eZ, cX, cY, cZ, 0, 0, 1); } // Called from the app framework. /* The tick is current time in milliseconds, width and height * are the image dimensions to be rendered. */ void appRender(long tick, int width, int height) { if (sStartTick == 0) sStartTick = tick; if (!gAppAlive) return; // Actual tick value is "blurred" a little bit. sTick = (sTick + tick - sStartTick) >> 1; // Terminate application after running through the demonstration once. if (sTick >= RUN_LENGTH) { gAppAlive = 0; return; } // Prepare OpenGL ES for rendering of the frame. prepareFrame(width, height); // Update the camera position and set the lookat. camTrack(); // Configure environment. configureLightAndMaterial(); // Draw the reflection by drawing models with negated Z-axis. glPushMatrix(); drawModels(-1); glPopMatrix(); // Blend the ground plane to the window. drawGroundPlane(); // Draw all the models normally. drawModels(1); // Draw fade quad over whole window (when changing cameras). drawFadeQuad(); }