/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Region" #include #include #include #include #include #include #include #include #include // ---------------------------------------------------------------------------- #define VALIDATE_REGIONS (false) #define VALIDATE_WITH_CORECG (false) // ---------------------------------------------------------------------------- #if VALIDATE_WITH_CORECG #include #endif namespace android { // ---------------------------------------------------------------------------- enum { op_nand = region_operator::op_nand, op_and = region_operator::op_and, op_or = region_operator::op_or, op_xor = region_operator::op_xor }; enum { direction_LTR, direction_RTL }; const Region Region::INVALID_REGION(Rect::INVALID_RECT); // ---------------------------------------------------------------------------- Region::Region() { mStorage.add(Rect(0,0)); } Region::Region(const Region& rhs) : mStorage(rhs.mStorage) { #if VALIDATE_REGIONS validate(rhs, "rhs copy-ctor"); #endif } Region::Region(const Rect& rhs) { mStorage.add(rhs); } Region::~Region() { } /** * Copy rects from the src vector into the dst vector, resolving vertical T-Junctions along the way * * First pass through, divideSpanRTL will be set because the 'previous span' (indexing into the dst * vector) will be reversed. Each rectangle in the original list, starting from the bottom, will be * compared with the span directly below, and subdivided as needed to resolve T-junctions. * * The resulting temporary vector will be a completely reversed copy of the original, without any * bottom-up T-junctions. * * Second pass through, divideSpanRTL will be false since the previous span will index into the * final, correctly ordered region buffer. Each rectangle will be compared with the span directly * above it, and subdivided to resolve any remaining T-junctions. */ static void reverseRectsResolvingJunctions(const Rect* begin, const Rect* end, Vector& dst, int spanDirection) { dst.clear(); const Rect* current = end - 1; int lastTop = current->top; // add first span immediately do { dst.add(*current); current--; } while (current->top == lastTop && current >= begin); int beginLastSpan = -1; int endLastSpan = -1; int top = -1; int bottom = -1; // for all other spans, split if a t-junction exists in the span directly above while (current >= begin) { if (current->top != (current + 1)->top) { // new span if ((spanDirection == direction_RTL && current->bottom != (current + 1)->top) || (spanDirection == direction_LTR && current->top != (current + 1)->bottom)) { // previous span not directly adjacent, don't check for T junctions beginLastSpan = INT_MAX; } else { beginLastSpan = endLastSpan + 1; } endLastSpan = static_cast(dst.size()) - 1; top = current->top; bottom = current->bottom; } int left = current->left; int right = current->right; for (int prevIndex = beginLastSpan; prevIndex <= endLastSpan; prevIndex++) { // prevIndex can't be -1 here because if endLastSpan is set to a // value greater than -1 (allowing the loop to execute), // beginLastSpan (and therefore prevIndex) will also be increased const Rect prev = dst[static_cast(prevIndex)]; if (spanDirection == direction_RTL) { // iterating over previous span RTL, quit if it's too far left if (prev.right <= left) break; if (prev.right > left && prev.right < right) { dst.add(Rect(prev.right, top, right, bottom)); right = prev.right; } if (prev.left > left && prev.left < right) { dst.add(Rect(prev.left, top, right, bottom)); right = prev.left; } // if an entry in the previous span is too far right, nothing further left in the // current span will need it if (prev.left >= right) { beginLastSpan = prevIndex; } } else { // iterating over previous span LTR, quit if it's too far right if (prev.left >= right) break; if (prev.left > left && prev.left < right) { dst.add(Rect(left, top, prev.left, bottom)); left = prev.left; } if (prev.right > left && prev.right < right) { dst.add(Rect(left, top, prev.right, bottom)); left = prev.right; } // if an entry in the previous span is too far left, nothing further right in the // current span will need it if (prev.right <= left) { beginLastSpan = prevIndex; } } } if (left < right) { dst.add(Rect(left, top, right, bottom)); } current--; } } /** * Creates a new region with the same data as the argument, but divides rectangles as necessary to * remove T-Junctions * * Note: the output will not necessarily be a very efficient representation of the region, since it * may be that a triangle-based approach would generate significantly simpler geometry */ Region Region::createTJunctionFreeRegion(const Region& r) { if (r.isEmpty()) return r; if (r.isRect()) return r; Vector reversed; reverseRectsResolvingJunctions(r.begin(), r.end(), reversed, direction_RTL); Region outputRegion; reverseRectsResolvingJunctions(reversed.begin(), reversed.end(), outputRegion.mStorage, direction_LTR); outputRegion.mStorage.add(r.getBounds()); // to make region valid, mStorage must end with bounds #if VALIDATE_REGIONS validate(outputRegion, "T-Junction free region"); #endif return outputRegion; } Region& Region::operator = (const Region& rhs) { #if VALIDATE_REGIONS validate(*this, "this->operator="); validate(rhs, "rhs.operator="); #endif mStorage = rhs.mStorage; return *this; } Region& Region::makeBoundsSelf() { if (mStorage.size() >= 2) { const Rect bounds(getBounds()); mStorage.clear(); mStorage.add(bounds); } return *this; } bool Region::contains(const Point& point) const { return contains(point.x, point.y); } bool Region::contains(int x, int y) const { const_iterator cur = begin(); const_iterator const tail = end(); while (cur != tail) { if (y >= cur->top && y < cur->bottom && x >= cur->left && x < cur->right) { return true; } cur++; } return false; } void Region::clear() { mStorage.clear(); mStorage.add(Rect(0,0)); } void Region::set(const Rect& r) { mStorage.clear(); mStorage.add(r); } void Region::set(int32_t w, int32_t h) { mStorage.clear(); mStorage.add(Rect(w, h)); } void Region::set(uint32_t w, uint32_t h) { mStorage.clear(); mStorage.add(Rect(w, h)); } bool Region::isTriviallyEqual(const Region& region) const { return begin() == region.begin(); } // ---------------------------------------------------------------------------- void Region::addRectUnchecked(int l, int t, int r, int b) { Rect rect(l,t,r,b); size_t where = mStorage.size() - 1; mStorage.insertAt(rect, where, 1); } // ---------------------------------------------------------------------------- Region& Region::orSelf(const Rect& r) { return operationSelf(r, op_or); } Region& Region::xorSelf(const Rect& r) { return operationSelf(r, op_xor); } Region& Region::andSelf(const Rect& r) { return operationSelf(r, op_and); } Region& Region::subtractSelf(const Rect& r) { return operationSelf(r, op_nand); } Region& Region::operationSelf(const Rect& r, int op) { Region lhs(*this); boolean_operation(op, *this, lhs, r); return *this; } // ---------------------------------------------------------------------------- Region& Region::orSelf(const Region& rhs) { return operationSelf(rhs, op_or); } Region& Region::xorSelf(const Region& rhs) { return operationSelf(rhs, op_xor); } Region& Region::andSelf(const Region& rhs) { return operationSelf(rhs, op_and); } Region& Region::subtractSelf(const Region& rhs) { return operationSelf(rhs, op_nand); } Region& Region::operationSelf(const Region& rhs, int op) { Region lhs(*this); boolean_operation(op, *this, lhs, rhs); return *this; } Region& Region::translateSelf(int x, int y) { if (x|y) translate(*this, x, y); return *this; } // ---------------------------------------------------------------------------- const Region Region::merge(const Rect& rhs) const { return operation(rhs, op_or); } const Region Region::mergeExclusive(const Rect& rhs) const { return operation(rhs, op_xor); } const Region Region::intersect(const Rect& rhs) const { return operation(rhs, op_and); } const Region Region::subtract(const Rect& rhs) const { return operation(rhs, op_nand); } const Region Region::operation(const Rect& rhs, int op) const { Region result; boolean_operation(op, result, *this, rhs); return result; } // ---------------------------------------------------------------------------- const Region Region::merge(const Region& rhs) const { return operation(rhs, op_or); } const Region Region::mergeExclusive(const Region& rhs) const { return operation(rhs, op_xor); } const Region Region::intersect(const Region& rhs) const { return operation(rhs, op_and); } const Region Region::subtract(const Region& rhs) const { return operation(rhs, op_nand); } const Region Region::operation(const Region& rhs, int op) const { Region result; boolean_operation(op, result, *this, rhs); return result; } const Region Region::translate(int x, int y) const { Region result; translate(result, *this, x, y); return result; } // ---------------------------------------------------------------------------- Region& Region::orSelf(const Region& rhs, int dx, int dy) { return operationSelf(rhs, dx, dy, op_or); } Region& Region::xorSelf(const Region& rhs, int dx, int dy) { return operationSelf(rhs, dx, dy, op_xor); } Region& Region::andSelf(const Region& rhs, int dx, int dy) { return operationSelf(rhs, dx, dy, op_and); } Region& Region::subtractSelf(const Region& rhs, int dx, int dy) { return operationSelf(rhs, dx, dy, op_nand); } Region& Region::operationSelf(const Region& rhs, int dx, int dy, int op) { Region lhs(*this); boolean_operation(op, *this, lhs, rhs, dx, dy); return *this; } // ---------------------------------------------------------------------------- const Region Region::merge(const Region& rhs, int dx, int dy) const { return operation(rhs, dx, dy, op_or); } const Region Region::mergeExclusive(const Region& rhs, int dx, int dy) const { return operation(rhs, dx, dy, op_xor); } const Region Region::intersect(const Region& rhs, int dx, int dy) const { return operation(rhs, dx, dy, op_and); } const Region Region::subtract(const Region& rhs, int dx, int dy) const { return operation(rhs, dx, dy, op_nand); } const Region Region::operation(const Region& rhs, int dx, int dy, int op) const { Region result; boolean_operation(op, result, *this, rhs, dx, dy); return result; } // ---------------------------------------------------------------------------- // This is our region rasterizer, which merges rects and spans together // to obtain an optimal region. class Region::rasterizer : public region_operator::region_rasterizer { Rect bounds; Vector& storage; Rect* head; Rect* tail; Vector span; Rect* cur; public: rasterizer(Region& reg) : bounds(INT_MAX, 0, INT_MIN, 0), storage(reg.mStorage), head(), tail(), cur() { storage.clear(); } virtual ~rasterizer(); virtual void operator()(const Rect& rect); private: template static inline T min(T rhs, T lhs) { return rhs < lhs ? rhs : lhs; } template static inline T max(T rhs, T lhs) { return rhs > lhs ? rhs : lhs; } void flushSpan(); }; Region::rasterizer::~rasterizer() { if (span.size()) { flushSpan(); } if (storage.size()) { bounds.top = storage.itemAt(0).top; bounds.bottom = storage.top().bottom; if (storage.size() == 1) { storage.clear(); } } else { bounds.left = 0; bounds.right = 0; } storage.add(bounds); } void Region::rasterizer::operator()(const Rect& rect) { //ALOGD(">>> %3d, %3d, %3d, %3d", // rect.left, rect.top, rect.right, rect.bottom); if (span.size()) { if (cur->top != rect.top) { flushSpan(); } else if (cur->right == rect.left) { cur->right = rect.right; return; } } span.add(rect); cur = span.editArray() + (span.size() - 1); } void Region::rasterizer::flushSpan() { bool merge = false; if (tail-head == ssize_t(span.size())) { Rect const* p = span.editArray(); Rect const* q = head; if (p->top == q->bottom) { merge = true; while (q != tail) { if ((p->left != q->left) || (p->right != q->right)) { merge = false; break; } p++, q++; } } } if (merge) { const int bottom = span[0].bottom; Rect* r = head; while (r != tail) { r->bottom = bottom; r++; } } else { bounds.left = min(span.itemAt(0).left, bounds.left); bounds.right = max(span.top().right, bounds.right); storage.appendVector(span); tail = storage.editArray() + storage.size(); head = tail - span.size(); } span.clear(); } bool Region::validate(const Region& reg, const char* name, bool silent) { bool result = true; const_iterator cur = reg.begin(); const_iterator const tail = reg.end(); const_iterator prev = cur; Rect b(*prev); while (cur != tail) { if (cur->isValid() == false) { // We allow this particular flavor of invalid Rect, since it is used // as a signal value in various parts of the system if (*cur != Rect::INVALID_RECT) { ALOGE_IF(!silent, "%s: region contains an invalid Rect", name); result = false; } } if (cur->right > region_operator::max_value) { ALOGE_IF(!silent, "%s: rect->right > max_value", name); result = false; } if (cur->bottom > region_operator::max_value) { ALOGE_IF(!silent, "%s: rect->right > max_value", name); result = false; } if (prev != cur) { b.left = b.left < cur->left ? b.left : cur->left; b.top = b.top < cur->top ? b.top : cur->top; b.right = b.right > cur->right ? b.right : cur->right; b.bottom = b.bottom > cur->bottom ? b.bottom : cur->bottom; if ((*prev < *cur) == false) { ALOGE_IF(!silent, "%s: region's Rects not sorted", name); result = false; } if (cur->top == prev->top) { if (cur->bottom != prev->bottom) { ALOGE_IF(!silent, "%s: invalid span %p", name, cur); result = false; } else if (cur->left < prev->right) { ALOGE_IF(!silent, "%s: spans overlap horizontally prev=%p, cur=%p", name, prev, cur); result = false; } } else if (cur->top < prev->bottom) { ALOGE_IF(!silent, "%s: spans overlap vertically prev=%p, cur=%p", name, prev, cur); result = false; } prev = cur; } cur++; } if (b != reg.getBounds()) { result = false; ALOGE_IF(!silent, "%s: invalid bounds [%d,%d,%d,%d] vs. [%d,%d,%d,%d]", name, b.left, b.top, b.right, b.bottom, reg.getBounds().left, reg.getBounds().top, reg.getBounds().right, reg.getBounds().bottom); } if (reg.mStorage.size() == 2) { result = false; ALOGE_IF(!silent, "%s: mStorage size is 2, which is never valid", name); } if (result == false && !silent) { reg.dump(name); CallStack stack(LOG_TAG); } return result; } void Region::boolean_operation(int op, Region& dst, const Region& lhs, const Region& rhs, int dx, int dy) { #if VALIDATE_REGIONS validate(lhs, "boolean_operation (before): lhs"); validate(rhs, "boolean_operation (before): rhs"); validate(dst, "boolean_operation (before): dst"); #endif size_t lhs_count; Rect const * const lhs_rects = lhs.getArray(&lhs_count); size_t rhs_count; Rect const * const rhs_rects = rhs.getArray(&rhs_count); region_operator::region lhs_region(lhs_rects, lhs_count); region_operator::region rhs_region(rhs_rects, rhs_count, dx, dy); region_operator operation(op, lhs_region, rhs_region); { // scope for rasterizer (dtor has side effects) rasterizer r(dst); operation(r); } #if VALIDATE_REGIONS validate(lhs, "boolean_operation: lhs"); validate(rhs, "boolean_operation: rhs"); validate(dst, "boolean_operation: dst"); #endif #if VALIDATE_WITH_CORECG SkRegion sk_lhs; SkRegion sk_rhs; SkRegion sk_dst; for (size_t i=0 ; ileft != it.rect().fLeft || head->top != it.rect().fTop || head->right != it.rect().fRight || head->bottom != it.rect().fBottom ) { same = false; break; } } else { same = false; break; } head++; it.next(); } if (head != tail) { same = false; } if(!same) { ALOGD("---\nregion boolean %s failed", name); lhs.dump("lhs"); rhs.dump("rhs"); dst.dump("dst"); ALOGD("should be"); SkRegion::Iterator it(sk_dst); while (!it.done()) { ALOGD(" [%3d, %3d, %3d, %3d]", it.rect().fLeft, it.rect().fTop, it.rect().fRight, it.rect().fBottom); it.next(); } } #endif } void Region::boolean_operation(int op, Region& dst, const Region& lhs, const Rect& rhs, int dx, int dy) { // We allow this particular flavor of invalid Rect, since it is used as a // signal value in various parts of the system if (!rhs.isValid() && rhs != Rect::INVALID_RECT) { ALOGE("Region::boolean_operation(op=%d) invalid Rect={%d,%d,%d,%d}", op, rhs.left, rhs.top, rhs.right, rhs.bottom); return; } #if VALIDATE_WITH_CORECG || VALIDATE_REGIONS boolean_operation(op, dst, lhs, Region(rhs), dx, dy); #else size_t lhs_count; Rect const * const lhs_rects = lhs.getArray(&lhs_count); region_operator::region lhs_region(lhs_rects, lhs_count); region_operator::region rhs_region(&rhs, 1, dx, dy); region_operator operation(op, lhs_region, rhs_region); { // scope for rasterizer (dtor has side effects) rasterizer r(dst); operation(r); } #endif } void Region::boolean_operation(int op, Region& dst, const Region& lhs, const Region& rhs) { boolean_operation(op, dst, lhs, rhs, 0, 0); } void Region::boolean_operation(int op, Region& dst, const Region& lhs, const Rect& rhs) { boolean_operation(op, dst, lhs, rhs, 0, 0); } void Region::translate(Region& reg, int dx, int dy) { if ((dx || dy) && !reg.isEmpty()) { #if VALIDATE_REGIONS validate(reg, "translate (before)"); #endif size_t count = reg.mStorage.size(); Rect* rects = reg.mStorage.editArray(); while (count) { rects->offsetBy(dx, dy); rects++; count--; } #if VALIDATE_REGIONS validate(reg, "translate (after)"); #endif } } void Region::translate(Region& dst, const Region& reg, int dx, int dy) { dst = reg; translate(dst, dx, dy); } // ---------------------------------------------------------------------------- size_t Region::getFlattenedSize() const { return sizeof(uint32_t) + mStorage.size() * sizeof(Rect); } status_t Region::flatten(void* buffer, size_t size) const { #if VALIDATE_REGIONS validate(*this, "Region::flatten"); #endif if (size < getFlattenedSize()) { return NO_MEMORY; } // Cast to uint32_t since the size of a size_t can vary between 32- and // 64-bit processes FlattenableUtils::write(buffer, size, static_cast(mStorage.size())); for (auto rect : mStorage) { status_t result = rect.flatten(buffer, size); if (result != NO_ERROR) { return result; } FlattenableUtils::advance(buffer, size, sizeof(rect)); } return NO_ERROR; } status_t Region::unflatten(void const* buffer, size_t size) { if (size < sizeof(uint32_t)) { return NO_MEMORY; } uint32_t numRects = 0; FlattenableUtils::read(buffer, size, numRects); if (size < numRects * sizeof(Rect)) { return NO_MEMORY; } if (numRects > (UINT32_MAX / sizeof(Rect))) { android_errorWriteWithInfoLog(0x534e4554, "29983260", -1, NULL, 0); return NO_MEMORY; } Region result; result.mStorage.clear(); for (size_t r = 0; r < numRects; ++r) { Rect rect; status_t status = rect.unflatten(buffer, size); if (status != NO_ERROR) { return status; } FlattenableUtils::advance(buffer, size, sizeof(rect)); result.mStorage.push_back(rect); } #if VALIDATE_REGIONS validate(result, "Region::unflatten"); #endif if (!result.validate(result, "Region::unflatten", true)) { ALOGE("Region::unflatten() failed, invalid region"); return BAD_VALUE; } mStorage = result.mStorage; return NO_ERROR; } // ---------------------------------------------------------------------------- Region::const_iterator Region::begin() const { return mStorage.array(); } Region::const_iterator Region::end() const { size_t numRects = isRect() ? 1 : mStorage.size() - 1; return mStorage.array() + numRects; } Rect const* Region::getArray(size_t* count) const { if (count) *count = static_cast(end() - begin()); return begin(); } SharedBuffer const* Region::getSharedBuffer(size_t* count) const { // We can get to the SharedBuffer of a Vector because Rect has // a trivial destructor. SharedBuffer const* sb = SharedBuffer::bufferFromData(mStorage.array()); if (count) { size_t numRects = isRect() ? 1 : mStorage.size() - 1; count[0] = numRects; } sb->acquire(); return sb; } // ---------------------------------------------------------------------------- void Region::dump(String8& out, const char* what, uint32_t /* flags */) const { const_iterator head = begin(); const_iterator const tail = end(); out.appendFormat(" Region %s (this=%p, count=%" PRIdPTR ")\n", what, this, tail - head); while (head != tail) { out.appendFormat(" [%3d, %3d, %3d, %3d]\n", head->left, head->top, head->right, head->bottom); ++head; } } void Region::dump(const char* what, uint32_t /* flags */) const { const_iterator head = begin(); const_iterator const tail = end(); ALOGD(" Region %s (this=%p, count=%" PRIdPTR ")\n", what, this, tail-head); while (head != tail) { ALOGD(" [%3d, %3d, %3d, %3d]\n", head->left, head->top, head->right, head->bottom); head++; } } // ---------------------------------------------------------------------------- }; // namespace android