/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "BufferQueue" #define ATRACE_TAG ATRACE_TAG_GRAPHICS //#define LOG_NDEBUG 0 #define GL_GLEXT_PROTOTYPES #define EGL_EGLEXT_PROTOTYPES #include #include #include #include #include #include #include #include // Macros for including the BufferQueue name in log messages #define ST_LOGV(x, ...) ALOGV("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) #define ST_LOGD(x, ...) ALOGD("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) #define ST_LOGI(x, ...) ALOGI("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) #define ST_LOGW(x, ...) ALOGW("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) #define ST_LOGE(x, ...) ALOGE("[%s] "x, mConsumerName.string(), ##__VA_ARGS__) #define ATRACE_BUFFER_INDEX(index) \ if (ATRACE_ENABLED()) { \ char ___traceBuf[1024]; \ snprintf(___traceBuf, 1024, "%s: %d", mConsumerName.string(), \ (index)); \ android::ScopedTrace ___bufTracer(ATRACE_TAG, ___traceBuf); \ } namespace android { // Get an ID that's unique within this process. static int32_t createProcessUniqueId() { static volatile int32_t globalCounter = 0; return android_atomic_inc(&globalCounter); } static const char* scalingModeName(int scalingMode) { switch (scalingMode) { case NATIVE_WINDOW_SCALING_MODE_FREEZE: return "FREEZE"; case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW: return "SCALE_TO_WINDOW"; case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP: return "SCALE_CROP"; default: return "Unknown"; } } BufferQueue::BufferQueue(const sp& allocator) : mDefaultWidth(1), mDefaultHeight(1), mMaxAcquiredBufferCount(1), mDefaultMaxBufferCount(2), mOverrideMaxBufferCount(0), mConsumerControlledByApp(false), mDequeueBufferCannotBlock(false), mUseAsyncBuffer(true), mConnectedApi(NO_CONNECTED_API), mAbandoned(false), mFrameCounter(0), mBufferHasBeenQueued(false), mDefaultBufferFormat(PIXEL_FORMAT_RGBA_8888), mConsumerUsageBits(0), mTransformHint(0) { // Choose a name using the PID and a process-unique ID. mConsumerName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId()); ST_LOGV("BufferQueue"); if (allocator == NULL) { sp composer(ComposerService::getComposerService()); mGraphicBufferAlloc = composer->createGraphicBufferAlloc(); if (mGraphicBufferAlloc == 0) { ST_LOGE("createGraphicBufferAlloc() failed in BufferQueue()"); } } else { mGraphicBufferAlloc = allocator; } } BufferQueue::~BufferQueue() { ST_LOGV("~BufferQueue"); } status_t BufferQueue::setDefaultMaxBufferCountLocked(int count) { const int minBufferCount = mUseAsyncBuffer ? 2 : 1; if (count < minBufferCount || count > NUM_BUFFER_SLOTS) return BAD_VALUE; mDefaultMaxBufferCount = count; mDequeueCondition.broadcast(); return NO_ERROR; } void BufferQueue::setConsumerName(const String8& name) { Mutex::Autolock lock(mMutex); mConsumerName = name; } status_t BufferQueue::setDefaultBufferFormat(uint32_t defaultFormat) { Mutex::Autolock lock(mMutex); mDefaultBufferFormat = defaultFormat; return NO_ERROR; } status_t BufferQueue::setConsumerUsageBits(uint32_t usage) { Mutex::Autolock lock(mMutex); mConsumerUsageBits = usage; return NO_ERROR; } status_t BufferQueue::setTransformHint(uint32_t hint) { ST_LOGV("setTransformHint: %02x", hint); Mutex::Autolock lock(mMutex); mTransformHint = hint; return NO_ERROR; } status_t BufferQueue::setBufferCount(int bufferCount) { ST_LOGV("setBufferCount: count=%d", bufferCount); sp listener; { Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("setBufferCount: BufferQueue has been abandoned!"); return NO_INIT; } if (bufferCount > NUM_BUFFER_SLOTS) { ST_LOGE("setBufferCount: bufferCount too large (max %d)", NUM_BUFFER_SLOTS); return BAD_VALUE; } // Error out if the user has dequeued buffers for (int i=0 ; ionBuffersReleased(); } return NO_ERROR; } int BufferQueue::query(int what, int* outValue) { ATRACE_CALL(); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("query: BufferQueue has been abandoned!"); return NO_INIT; } int value; switch (what) { case NATIVE_WINDOW_WIDTH: value = mDefaultWidth; break; case NATIVE_WINDOW_HEIGHT: value = mDefaultHeight; break; case NATIVE_WINDOW_FORMAT: value = mDefaultBufferFormat; break; case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS: value = getMinUndequeuedBufferCount(false); break; case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND: value = (mQueue.size() >= 2); break; default: return BAD_VALUE; } outValue[0] = value; return NO_ERROR; } status_t BufferQueue::requestBuffer(int slot, sp* buf) { ATRACE_CALL(); ST_LOGV("requestBuffer: slot=%d", slot); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("requestBuffer: BufferQueue has been abandoned!"); return NO_INIT; } if (slot < 0 || slot >= NUM_BUFFER_SLOTS) { ST_LOGE("requestBuffer: slot index out of range [0, %d]: %d", NUM_BUFFER_SLOTS, slot); return BAD_VALUE; } else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) { ST_LOGE("requestBuffer: slot %d is not owned by the client (state=%d)", slot, mSlots[slot].mBufferState); return BAD_VALUE; } mSlots[slot].mRequestBufferCalled = true; *buf = mSlots[slot].mGraphicBuffer; return NO_ERROR; } status_t BufferQueue::dequeueBuffer(int *outBuf, sp* outFence, bool async, uint32_t w, uint32_t h, uint32_t format, uint32_t usage) { ATRACE_CALL(); ST_LOGV("dequeueBuffer: w=%d h=%d fmt=%#x usage=%#x", w, h, format, usage); if ((w && !h) || (!w && h)) { ST_LOGE("dequeueBuffer: invalid size: w=%u, h=%u", w, h); return BAD_VALUE; } status_t returnFlags(OK); EGLDisplay dpy = EGL_NO_DISPLAY; EGLSyncKHR eglFence = EGL_NO_SYNC_KHR; { // Scope for the lock Mutex::Autolock lock(mMutex); if (format == 0) { format = mDefaultBufferFormat; } // turn on usage bits the consumer requested usage |= mConsumerUsageBits; int found = -1; bool tryAgain = true; while (tryAgain) { if (mAbandoned) { ST_LOGE("dequeueBuffer: BufferQueue has been abandoned!"); return NO_INIT; } const int maxBufferCount = getMaxBufferCountLocked(async); if (async && mOverrideMaxBufferCount) { // FIXME: some drivers are manually setting the buffer-count (which they // shouldn't), so we do this extra test here to handle that case. // This is TEMPORARY, until we get this fixed. if (mOverrideMaxBufferCount < maxBufferCount) { ST_LOGE("dequeueBuffer: async mode is invalid with buffercount override"); return BAD_VALUE; } } // Free up any buffers that are in slots beyond the max buffer // count. for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) { assert(mSlots[i].mBufferState == BufferSlot::FREE); if (mSlots[i].mGraphicBuffer != NULL) { freeBufferLocked(i); returnFlags |= IGraphicBufferProducer::RELEASE_ALL_BUFFERS; } } // look for a free buffer to give to the client found = INVALID_BUFFER_SLOT; int dequeuedCount = 0; int acquiredCount = 0; for (int i = 0; i < maxBufferCount; i++) { const int state = mSlots[i].mBufferState; switch (state) { case BufferSlot::DEQUEUED: dequeuedCount++; break; case BufferSlot::ACQUIRED: acquiredCount++; break; case BufferSlot::FREE: /* We return the oldest of the free buffers to avoid * stalling the producer if possible. This is because * the consumer may still have pending reads of the * buffers in flight. */ if ((found < 0) || mSlots[i].mFrameNumber < mSlots[found].mFrameNumber) { found = i; } break; } } // clients are not allowed to dequeue more than one buffer // if they didn't set a buffer count. if (!mOverrideMaxBufferCount && dequeuedCount) { ST_LOGE("dequeueBuffer: can't dequeue multiple buffers without " "setting the buffer count"); return -EINVAL; } // See whether a buffer has been queued since the last // setBufferCount so we know whether to perform the min undequeued // buffers check below. if (mBufferHasBeenQueued) { // make sure the client is not trying to dequeue more buffers // than allowed. const int newUndequeuedCount = maxBufferCount - (dequeuedCount+1); const int minUndequeuedCount = getMinUndequeuedBufferCount(async); if (newUndequeuedCount < minUndequeuedCount) { ST_LOGE("dequeueBuffer: min undequeued buffer count (%d) " "exceeded (dequeued=%d undequeudCount=%d)", minUndequeuedCount, dequeuedCount, newUndequeuedCount); return -EBUSY; } } // If no buffer is found, wait for a buffer to be released or for // the max buffer count to change. tryAgain = found == INVALID_BUFFER_SLOT; if (tryAgain) { // return an error if we're in "cannot block" mode (producer and consumer // are controlled by the application) -- however, the consumer is allowed // to acquire briefly an extra buffer (which could cause us to have to wait here) // and that's okay because we know the wait will be brief (it happens // if we dequeue a buffer while the consumer has acquired one but not released // the old one yet -- for e.g.: see GLConsumer::updateTexImage()). if (mDequeueBufferCannotBlock && (acquiredCount <= mMaxAcquiredBufferCount)) { ST_LOGE("dequeueBuffer: would block! returning an error instead."); return WOULD_BLOCK; } mDequeueCondition.wait(mMutex); } } if (found == INVALID_BUFFER_SLOT) { // This should not happen. ST_LOGE("dequeueBuffer: no available buffer slots"); return -EBUSY; } const int buf = found; *outBuf = found; ATRACE_BUFFER_INDEX(buf); const bool useDefaultSize = !w && !h; if (useDefaultSize) { // use the default size w = mDefaultWidth; h = mDefaultHeight; } mSlots[buf].mBufferState = BufferSlot::DEQUEUED; const sp& buffer(mSlots[buf].mGraphicBuffer); if ((buffer == NULL) || (uint32_t(buffer->width) != w) || (uint32_t(buffer->height) != h) || (uint32_t(buffer->format) != format) || ((uint32_t(buffer->usage) & usage) != usage)) { mSlots[buf].mAcquireCalled = false; mSlots[buf].mGraphicBuffer = NULL; mSlots[buf].mRequestBufferCalled = false; mSlots[buf].mEglFence = EGL_NO_SYNC_KHR; mSlots[buf].mFence = Fence::NO_FENCE; mSlots[buf].mEglDisplay = EGL_NO_DISPLAY; returnFlags |= IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION; } dpy = mSlots[buf].mEglDisplay; eglFence = mSlots[buf].mEglFence; *outFence = mSlots[buf].mFence; mSlots[buf].mEglFence = EGL_NO_SYNC_KHR; mSlots[buf].mFence = Fence::NO_FENCE; } // end lock scope if (returnFlags & IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION) { status_t error; sp graphicBuffer( mGraphicBufferAlloc->createGraphicBuffer( w, h, format, usage, &error)); if (graphicBuffer == 0) { ST_LOGE("dequeueBuffer: SurfaceComposer::createGraphicBuffer " "failed"); return error; } { // Scope for the lock Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("dequeueBuffer: BufferQueue has been abandoned!"); return NO_INIT; } mSlots[*outBuf].mFrameNumber = ~0; mSlots[*outBuf].mGraphicBuffer = graphicBuffer; } } if (eglFence != EGL_NO_SYNC_KHR) { EGLint result = eglClientWaitSyncKHR(dpy, eglFence, 0, 1000000000); // If something goes wrong, log the error, but return the buffer without // synchronizing access to it. It's too late at this point to abort the // dequeue operation. if (result == EGL_FALSE) { ST_LOGE("dequeueBuffer: error waiting for fence: %#x", eglGetError()); } else if (result == EGL_TIMEOUT_EXPIRED_KHR) { ST_LOGE("dequeueBuffer: timeout waiting for fence"); } eglDestroySyncKHR(dpy, eglFence); } ST_LOGV("dequeueBuffer: returning slot=%d/%llu buf=%p flags=%#x", *outBuf, mSlots[*outBuf].mFrameNumber, mSlots[*outBuf].mGraphicBuffer->handle, returnFlags); return returnFlags; } status_t BufferQueue::queueBuffer(int buf, const QueueBufferInput& input, QueueBufferOutput* output) { ATRACE_CALL(); ATRACE_BUFFER_INDEX(buf); Rect crop; uint32_t transform; int scalingMode; int64_t timestamp; bool async; sp fence; input.deflate(×tamp, &crop, &scalingMode, &transform, &async, &fence); if (fence == NULL) { ST_LOGE("queueBuffer: fence is NULL"); return BAD_VALUE; } switch (scalingMode) { case NATIVE_WINDOW_SCALING_MODE_FREEZE: case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW: case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP: case NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP: break; default: ST_LOGE("unknown scaling mode: %d", scalingMode); return -EINVAL; } sp listener; { // scope for the lock Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("queueBuffer: BufferQueue has been abandoned!"); return NO_INIT; } const int maxBufferCount = getMaxBufferCountLocked(async); if (async && mOverrideMaxBufferCount) { // FIXME: some drivers are manually setting the buffer-count (which they // shouldn't), so we do this extra test here to handle that case. // This is TEMPORARY, until we get this fixed. if (mOverrideMaxBufferCount < maxBufferCount) { ST_LOGE("queueBuffer: async mode is invalid with buffercount override"); return BAD_VALUE; } } if (buf < 0 || buf >= maxBufferCount) { ST_LOGE("queueBuffer: slot index out of range [0, %d]: %d", maxBufferCount, buf); return -EINVAL; } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) { ST_LOGE("queueBuffer: slot %d is not owned by the client " "(state=%d)", buf, mSlots[buf].mBufferState); return -EINVAL; } else if (!mSlots[buf].mRequestBufferCalled) { ST_LOGE("queueBuffer: slot %d was enqueued without requesting a " "buffer", buf); return -EINVAL; } ST_LOGV("queueBuffer: slot=%d/%llu time=%#llx crop=[%d,%d,%d,%d] " "tr=%#x scale=%s", buf, mFrameCounter + 1, timestamp, crop.left, crop.top, crop.right, crop.bottom, transform, scalingModeName(scalingMode)); const sp& graphicBuffer(mSlots[buf].mGraphicBuffer); Rect bufferRect(graphicBuffer->getWidth(), graphicBuffer->getHeight()); Rect croppedCrop; crop.intersect(bufferRect, &croppedCrop); if (croppedCrop != crop) { ST_LOGE("queueBuffer: crop rect is not contained within the " "buffer in slot %d", buf); return -EINVAL; } mSlots[buf].mFence = fence; mSlots[buf].mBufferState = BufferSlot::QUEUED; mFrameCounter++; mSlots[buf].mFrameNumber = mFrameCounter; BufferItem item; item.mAcquireCalled = mSlots[buf].mAcquireCalled; item.mGraphicBuffer = mSlots[buf].mGraphicBuffer; item.mCrop = crop; item.mTransform = transform; item.mScalingMode = scalingMode; item.mTimestamp = timestamp; item.mFrameNumber = mFrameCounter; item.mBuf = buf; item.mFence = fence; item.mIsDroppable = mDequeueBufferCannotBlock || async; if (mQueue.empty()) { // when the queue is empty, we can ignore "mDequeueBufferCannotBlock", and // simply queue this buffer. mQueue.push_back(item); listener = mConsumerListener; } else { // when the queue is not empty, we need to look at the front buffer // state and see if we need to replace it. Fifo::iterator front(mQueue.begin()); if (front->mIsDroppable) { // buffer slot currently queued is marked free if still tracked if (stillTracking(front)) { mSlots[front->mBuf].mBufferState = BufferSlot::FREE; // reset the frame number of the freed buffer so that it is the first in // line to be dequeued again. mSlots[front->mBuf].mFrameNumber = 0; } // and we record the new buffer in the queued list *front = item; } else { mQueue.push_back(item); listener = mConsumerListener; } } mBufferHasBeenQueued = true; mDequeueCondition.broadcast(); output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, mQueue.size()); ATRACE_INT(mConsumerName.string(), mQueue.size()); } // scope for the lock // call back without lock held if (listener != 0) { listener->onFrameAvailable(); } return NO_ERROR; } void BufferQueue::cancelBuffer(int buf, const sp& fence) { ATRACE_CALL(); ST_LOGV("cancelBuffer: slot=%d", buf); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGW("cancelBuffer: BufferQueue has been abandoned!"); return; } if (buf < 0 || buf >= NUM_BUFFER_SLOTS) { ST_LOGE("cancelBuffer: slot index out of range [0, %d]: %d", NUM_BUFFER_SLOTS, buf); return; } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) { ST_LOGE("cancelBuffer: slot %d is not owned by the client (state=%d)", buf, mSlots[buf].mBufferState); return; } else if (fence == NULL) { ST_LOGE("cancelBuffer: fence is NULL"); return; } mSlots[buf].mBufferState = BufferSlot::FREE; mSlots[buf].mFrameNumber = 0; mSlots[buf].mFence = fence; mDequeueCondition.broadcast(); } status_t BufferQueue::connect(int api, bool producerControlledByApp, QueueBufferOutput* output) { ATRACE_CALL(); ST_LOGV("connect: api=%d", api); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("connect: BufferQueue has been abandoned!"); return NO_INIT; } if (mConsumerListener == NULL) { ST_LOGE("connect: BufferQueue has no consumer!"); return NO_INIT; } int err = NO_ERROR; switch (api) { case NATIVE_WINDOW_API_EGL: case NATIVE_WINDOW_API_CPU: case NATIVE_WINDOW_API_MEDIA: case NATIVE_WINDOW_API_CAMERA: if (mConnectedApi != NO_CONNECTED_API) { ST_LOGE("connect: already connected (cur=%d, req=%d)", mConnectedApi, api); err = -EINVAL; } else { mConnectedApi = api; output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, mQueue.size()); } break; default: err = -EINVAL; break; } mBufferHasBeenQueued = false; mDequeueBufferCannotBlock = mConsumerControlledByApp && producerControlledByApp; return err; } status_t BufferQueue::disconnect(int api) { ATRACE_CALL(); ST_LOGV("disconnect: api=%d", api); int err = NO_ERROR; sp listener; { // Scope for the lock Mutex::Autolock lock(mMutex); if (mAbandoned) { // it is not really an error to disconnect after the surface // has been abandoned, it should just be a no-op. return NO_ERROR; } switch (api) { case NATIVE_WINDOW_API_EGL: case NATIVE_WINDOW_API_CPU: case NATIVE_WINDOW_API_MEDIA: case NATIVE_WINDOW_API_CAMERA: if (mConnectedApi == api) { freeAllBuffersLocked(); mConnectedApi = NO_CONNECTED_API; mDequeueCondition.broadcast(); listener = mConsumerListener; } else { ST_LOGE("disconnect: connected to another api (cur=%d, req=%d)", mConnectedApi, api); err = -EINVAL; } break; default: ST_LOGE("disconnect: unknown API %d", api); err = -EINVAL; break; } } if (listener != NULL) { listener->onBuffersReleased(); } return err; } void BufferQueue::dump(String8& result) const { BufferQueue::dump(result, ""); } void BufferQueue::dump(String8& result, const char* prefix) const { Mutex::Autolock _l(mMutex); String8 fifo; int fifoSize = 0; Fifo::const_iterator i(mQueue.begin()); while (i != mQueue.end()) { fifo.appendFormat("%02d:%p crop=[%d,%d,%d,%d], " "xform=0x%02x, time=%#llx, scale=%s\n", i->mBuf, i->mGraphicBuffer.get(), i->mCrop.left, i->mCrop.top, i->mCrop.right, i->mCrop.bottom, i->mTransform, i->mTimestamp, scalingModeName(i->mScalingMode) ); i++; fifoSize++; } result.appendFormat( "%s-BufferQueue mMaxAcquiredBufferCount=%d, mDequeueBufferCannotBlock=%d, default-size=[%dx%d], " "default-format=%d, transform-hint=%02x, FIFO(%d)={%s}\n", prefix, mMaxAcquiredBufferCount, mDequeueBufferCannotBlock, mDefaultWidth, mDefaultHeight, mDefaultBufferFormat, mTransformHint, fifoSize, fifo.string()); struct { const char * operator()(int state) const { switch (state) { case BufferSlot::DEQUEUED: return "DEQUEUED"; case BufferSlot::QUEUED: return "QUEUED"; case BufferSlot::FREE: return "FREE"; case BufferSlot::ACQUIRED: return "ACQUIRED"; default: return "Unknown"; } } } stateName; // just trim the free buffers to not spam the dump int maxBufferCount = 0; for (int i=NUM_BUFFER_SLOTS-1 ; i>=0 ; i--) { const BufferSlot& slot(mSlots[i]); if ((slot.mBufferState != BufferSlot::FREE) || (slot.mGraphicBuffer != NULL)) { maxBufferCount = i+1; break; } } for (int i=0 ; i& buf(slot.mGraphicBuffer); result.appendFormat( "%s%s[%02d:%p] state=%-8s", prefix, (slot.mBufferState == BufferSlot::ACQUIRED)?">":" ", i, buf.get(), stateName(slot.mBufferState) ); if (buf != NULL) { result.appendFormat( ", %p [%4ux%4u:%4u,%3X]", buf->handle, buf->width, buf->height, buf->stride, buf->format); } result.append("\n"); } } void BufferQueue::freeBufferLocked(int slot) { ST_LOGV("freeBufferLocked: slot=%d", slot); mSlots[slot].mGraphicBuffer = 0; if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) { mSlots[slot].mNeedsCleanupOnRelease = true; } mSlots[slot].mBufferState = BufferSlot::FREE; mSlots[slot].mFrameNumber = 0; mSlots[slot].mAcquireCalled = false; // destroy fence as BufferQueue now takes ownership if (mSlots[slot].mEglFence != EGL_NO_SYNC_KHR) { eglDestroySyncKHR(mSlots[slot].mEglDisplay, mSlots[slot].mEglFence); mSlots[slot].mEglFence = EGL_NO_SYNC_KHR; } mSlots[slot].mFence = Fence::NO_FENCE; } void BufferQueue::freeAllBuffersLocked() { mBufferHasBeenQueued = false; for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { freeBufferLocked(i); } } status_t BufferQueue::acquireBuffer(BufferItem *buffer, nsecs_t expectedPresent) { ATRACE_CALL(); Mutex::Autolock _l(mMutex); // Check that the consumer doesn't currently have the maximum number of // buffers acquired. We allow the max buffer count to be exceeded by one // buffer, so that the consumer can successfully set up the newly acquired // buffer before releasing the old one. int numAcquiredBuffers = 0; for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { if (mSlots[i].mBufferState == BufferSlot::ACQUIRED) { numAcquiredBuffers++; } } if (numAcquiredBuffers >= mMaxAcquiredBufferCount+1) { ST_LOGE("acquireBuffer: max acquired buffer count reached: %d (max=%d)", numAcquiredBuffers, mMaxAcquiredBufferCount); return INVALID_OPERATION; } // check if queue is empty // In asynchronous mode the list is guaranteed to be one buffer // deep, while in synchronous mode we use the oldest buffer. if (mQueue.empty()) { return NO_BUFFER_AVAILABLE; } Fifo::iterator front(mQueue.begin()); // If expectedPresent is specified, we may not want to return a buffer yet. // If it's specified and there's more than one buffer queued, we may // want to drop a buffer. if (expectedPresent != 0) { const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second // The "expectedPresent" argument indicates when the buffer is expected // to be presented on-screen. If the buffer's desired-present time // is earlier (less) than expectedPresent, meaning it'll be displayed // on time or possibly late if we show it ASAP, we acquire and return // it. If we don't want to display it until after the expectedPresent // time, we return PRESENT_LATER without acquiring it. // // To be safe, we don't defer acquisition if expectedPresent is // more than one second in the future beyond the desired present time // (i.e. we'd be holding the buffer for a long time). // // NOTE: code assumes monotonic time values from the system clock are // positive. while (mQueue.size() > 1) { // If entry[1] is timely, drop entry[0] (and repeat). We apply // an additional criteria here: we only drop the earlier buffer if // our desiredPresent falls within +/- 1 second of the expected // present. Otherwise, bogus desiredPresent times (e.g. 0 or // a small relative timestamp), which normally mean "ignore the // timestamp and acquire immediately", would cause us to drop // frames. // // We may want to add an additional criteria: don't drop the // earlier buffer if entry[1]'s fence hasn't signaled yet. // // (Vector front is [0], back is [size()-1]) const BufferItem& bi(mQueue[1]); nsecs_t desiredPresent = bi.mTimestamp; if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC || desiredPresent > expectedPresent) { // This buffer is set to display in the near future, or // desiredPresent is garbage. Either way we don't want to // drop the previous buffer just to get this on screen sooner. ST_LOGV("pts nodrop: des=%lld expect=%lld (%lld) now=%lld", desiredPresent, expectedPresent, desiredPresent - expectedPresent, systemTime(CLOCK_MONOTONIC)); break; } ST_LOGV("pts drop: queue1des=%lld expect=%lld size=%d", desiredPresent, expectedPresent, mQueue.size()); if (stillTracking(front)) { // front buffer is still in mSlots, so mark the slot as free mSlots[front->mBuf].mBufferState = BufferSlot::FREE; } mQueue.erase(front); front = mQueue.begin(); } // See if the front buffer is due. nsecs_t desiredPresent = front->mTimestamp; if (desiredPresent > expectedPresent && desiredPresent < expectedPresent + MAX_REASONABLE_NSEC) { ST_LOGV("pts defer: des=%lld expect=%lld (%lld) now=%lld", desiredPresent, expectedPresent, desiredPresent - expectedPresent, systemTime(CLOCK_MONOTONIC)); return PRESENT_LATER; } ST_LOGV("pts accept: des=%lld expect=%lld (%lld) now=%lld", desiredPresent, expectedPresent, desiredPresent - expectedPresent, systemTime(CLOCK_MONOTONIC)); } int buf = front->mBuf; *buffer = *front; ATRACE_BUFFER_INDEX(buf); ST_LOGV("acquireBuffer: acquiring { slot=%d/%llu, buffer=%p }", front->mBuf, front->mFrameNumber, front->mGraphicBuffer->handle); // if front buffer still being tracked update slot state if (stillTracking(front)) { mSlots[buf].mAcquireCalled = true; mSlots[buf].mNeedsCleanupOnRelease = false; mSlots[buf].mBufferState = BufferSlot::ACQUIRED; mSlots[buf].mFence = Fence::NO_FENCE; } // If the buffer has previously been acquired by the consumer, set // mGraphicBuffer to NULL to avoid unnecessarily remapping this // buffer on the consumer side. if (buffer->mAcquireCalled) { buffer->mGraphicBuffer = NULL; } mQueue.erase(front); mDequeueCondition.broadcast(); ATRACE_INT(mConsumerName.string(), mQueue.size()); return NO_ERROR; } status_t BufferQueue::releaseBuffer( int buf, uint64_t frameNumber, EGLDisplay display, EGLSyncKHR eglFence, const sp& fence) { ATRACE_CALL(); ATRACE_BUFFER_INDEX(buf); if (buf == INVALID_BUFFER_SLOT || fence == NULL) { return BAD_VALUE; } Mutex::Autolock _l(mMutex); // If the frame number has changed because buffer has been reallocated, // we can ignore this releaseBuffer for the old buffer. if (frameNumber != mSlots[buf].mFrameNumber) { return STALE_BUFFER_SLOT; } // Internal state consistency checks: // Make sure this buffers hasn't been queued while we were owning it (acquired) Fifo::iterator front(mQueue.begin()); Fifo::const_iterator const end(mQueue.end()); while (front != end) { if (front->mBuf == buf) { LOG_ALWAYS_FATAL("[%s] received new buffer(#%lld) on slot #%d that has not yet been " "acquired", mConsumerName.string(), frameNumber, buf); break; // never reached } front++; } // The buffer can now only be released if its in the acquired state if (mSlots[buf].mBufferState == BufferSlot::ACQUIRED) { mSlots[buf].mEglDisplay = display; mSlots[buf].mEglFence = eglFence; mSlots[buf].mFence = fence; mSlots[buf].mBufferState = BufferSlot::FREE; } else if (mSlots[buf].mNeedsCleanupOnRelease) { ST_LOGV("releasing a stale buf %d its state was %d", buf, mSlots[buf].mBufferState); mSlots[buf].mNeedsCleanupOnRelease = false; return STALE_BUFFER_SLOT; } else { ST_LOGE("attempted to release buf %d but its state was %d", buf, mSlots[buf].mBufferState); return -EINVAL; } mDequeueCondition.broadcast(); return NO_ERROR; } status_t BufferQueue::consumerConnect(const sp& consumerListener, bool controlledByApp) { ST_LOGV("consumerConnect"); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("consumerConnect: BufferQueue has been abandoned!"); return NO_INIT; } if (consumerListener == NULL) { ST_LOGE("consumerConnect: consumerListener may not be NULL"); return BAD_VALUE; } mConsumerListener = consumerListener; mConsumerControlledByApp = controlledByApp; return NO_ERROR; } status_t BufferQueue::consumerDisconnect() { ST_LOGV("consumerDisconnect"); Mutex::Autolock lock(mMutex); if (mConsumerListener == NULL) { ST_LOGE("consumerDisconnect: No consumer is connected!"); return -EINVAL; } mAbandoned = true; mConsumerListener = NULL; mQueue.clear(); freeAllBuffersLocked(); mDequeueCondition.broadcast(); return NO_ERROR; } status_t BufferQueue::getReleasedBuffers(uint32_t* slotMask) { ST_LOGV("getReleasedBuffers"); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("getReleasedBuffers: BufferQueue has been abandoned!"); return NO_INIT; } uint32_t mask = 0; for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { if (!mSlots[i].mAcquireCalled) { mask |= 1 << i; } } // Remove buffers in flight (on the queue) from the mask where acquire has // been called, as the consumer will not receive the buffer address, so // it should not free these slots. Fifo::iterator front(mQueue.begin()); while (front != mQueue.end()) { if (front->mAcquireCalled) mask &= ~(1 << front->mBuf); front++; } *slotMask = mask; ST_LOGV("getReleasedBuffers: returning mask %#x", mask); return NO_ERROR; } status_t BufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h) { ST_LOGV("setDefaultBufferSize: w=%d, h=%d", w, h); if (!w || !h) { ST_LOGE("setDefaultBufferSize: dimensions cannot be 0 (w=%d, h=%d)", w, h); return BAD_VALUE; } Mutex::Autolock lock(mMutex); mDefaultWidth = w; mDefaultHeight = h; return NO_ERROR; } status_t BufferQueue::setDefaultMaxBufferCount(int bufferCount) { ATRACE_CALL(); Mutex::Autolock lock(mMutex); return setDefaultMaxBufferCountLocked(bufferCount); } status_t BufferQueue::disableAsyncBuffer() { ATRACE_CALL(); Mutex::Autolock lock(mMutex); if (mConsumerListener != NULL) { ST_LOGE("disableAsyncBuffer: consumer already connected!"); return INVALID_OPERATION; } mUseAsyncBuffer = false; return NO_ERROR; } status_t BufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) { ATRACE_CALL(); Mutex::Autolock lock(mMutex); if (maxAcquiredBuffers < 1 || maxAcquiredBuffers > MAX_MAX_ACQUIRED_BUFFERS) { ST_LOGE("setMaxAcquiredBufferCount: invalid count specified: %d", maxAcquiredBuffers); return BAD_VALUE; } if (mConnectedApi != NO_CONNECTED_API) { return INVALID_OPERATION; } mMaxAcquiredBufferCount = maxAcquiredBuffers; return NO_ERROR; } int BufferQueue::getMinUndequeuedBufferCount(bool async) const { // if dequeueBuffer is allowed to error out, we don't have to // add an extra buffer. if (!mUseAsyncBuffer) return mMaxAcquiredBufferCount; // we're in async mode, or we want to prevent the app to // deadlock itself, we throw-in an extra buffer to guarantee it. if (mDequeueBufferCannotBlock || async) return mMaxAcquiredBufferCount+1; return mMaxAcquiredBufferCount; } int BufferQueue::getMinMaxBufferCountLocked(bool async) const { return getMinUndequeuedBufferCount(async) + 1; } int BufferQueue::getMaxBufferCountLocked(bool async) const { int minMaxBufferCount = getMinMaxBufferCountLocked(async); int maxBufferCount = mDefaultMaxBufferCount; if (maxBufferCount < minMaxBufferCount) { maxBufferCount = minMaxBufferCount; } if (mOverrideMaxBufferCount != 0) { assert(mOverrideMaxBufferCount >= minMaxBufferCount); maxBufferCount = mOverrideMaxBufferCount; } // Any buffers that are dequeued by the producer or sitting in the queue // waiting to be consumed need to have their slots preserved. Such // buffers will temporarily keep the max buffer count up until the slots // no longer need to be preserved. for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) { BufferSlot::BufferState state = mSlots[i].mBufferState; if (state == BufferSlot::QUEUED || state == BufferSlot::DEQUEUED) { maxBufferCount = i + 1; } } return maxBufferCount; } bool BufferQueue::stillTracking(const BufferItem *item) const { const BufferSlot &slot = mSlots[item->mBuf]; ST_LOGV("stillTracking?: item: { slot=%d/%llu, buffer=%p }, " "slot: { slot=%d/%llu, buffer=%p }", item->mBuf, item->mFrameNumber, (item->mGraphicBuffer.get() ? item->mGraphicBuffer->handle : 0), item->mBuf, slot.mFrameNumber, (slot.mGraphicBuffer.get() ? slot.mGraphicBuffer->handle : 0)); // Compare item with its original buffer slot. We can check the slot // as the buffer would not be moved to a different slot by the producer. return (slot.mGraphicBuffer != NULL && item->mGraphicBuffer->handle == slot.mGraphicBuffer->handle); } BufferQueue::ProxyConsumerListener::ProxyConsumerListener( const wp& consumerListener): mConsumerListener(consumerListener) {} BufferQueue::ProxyConsumerListener::~ProxyConsumerListener() {} void BufferQueue::ProxyConsumerListener::onFrameAvailable() { sp listener(mConsumerListener.promote()); if (listener != NULL) { listener->onFrameAvailable(); } } void BufferQueue::ProxyConsumerListener::onBuffersReleased() { sp listener(mConsumerListener.promote()); if (listener != NULL) { listener->onBuffersReleased(); } } }; // namespace android