/* ** ** Copyright 2009, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include <stdlib.h> #include <stdio.h> #include "context.h" #include "fp.h" #include "state.h" #include "matrix.h" #include "vertex.h" #include "light.h" #include "primitives.h" #include "texture.h" #include "BufferObjectManager.h" #include "TextureObjectManager.h" #include <hardware/gralloc.h> #include <hardware/copybit.h> #include <private/ui/android_natives_priv.h> #include <ui/GraphicBuffer.h> #include <ui/Region.h> #include <ui/Rect.h> #define DEBUG_COPYBIT false // ---------------------------------------------------------------------------- namespace android { static void textureToCopyBitImage( const GGLSurface* surface, int32_t opFormat, android_native_buffer_t* buffer, copybit_image_t* img) { img->w = surface->stride; img->h = surface->height; img->format = opFormat; img->base = surface->data; img->handle = (native_handle_t *)buffer->handle; } struct clipRectRegion : public copybit_region_t { clipRectRegion(ogles_context_t* c) { scissor_t const* scissor = &c->rasterizer.state.scissor; r.l = scissor->left; r.t = scissor->top; r.r = scissor->right; r.b = scissor->bottom; next = iterate; } private: static int iterate(copybit_region_t const * self, copybit_rect_t* rect) { *rect = static_cast<clipRectRegion const*>(self)->r; const_cast<copybit_region_t *>(self)->next = iterate_done; return 1; } static int iterate_done(copybit_region_t const *, copybit_rect_t*) { return 0; } public: copybit_rect_t r; }; static bool supportedCopybitsFormat(int format) { switch (format) { case COPYBIT_FORMAT_RGBA_8888: case COPYBIT_FORMAT_RGBX_8888: case COPYBIT_FORMAT_RGB_888: case COPYBIT_FORMAT_RGB_565: case COPYBIT_FORMAT_BGRA_8888: case COPYBIT_FORMAT_RGBA_5551: case COPYBIT_FORMAT_RGBA_4444: return true; default: return false; } } static bool hasAlpha(int format) { switch (format) { case COPYBIT_FORMAT_RGBA_8888: case COPYBIT_FORMAT_BGRA_8888: case COPYBIT_FORMAT_RGBA_5551: case COPYBIT_FORMAT_RGBA_4444: return true; default: return false; } } static inline int fixedToByte(GGLfixed val) { return (val - (val >> 8)) >> 8; } /** * Performs a quick check of the rendering state. If this function returns * false we cannot use the copybit driver. */ static bool checkContext(ogles_context_t* c) { // By convention copybitQuickCheckContext() has already returned true. // avoid checking the same information again. if (c->copybits.blitEngine == NULL) { LOGD_IF(DEBUG_COPYBIT, "no copybit hal"); return false; } if (c->rasterizer.state.enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_FOG)) { LOGD_IF(DEBUG_COPYBIT, "depth test and/or fog"); return false; } // Note: The drawSurfaceBuffer is only set for destination // surfaces types that are supported by the hardware and // do not have an alpha channel. So we don't have to re-check that here. static const int tmu = 0; texture_unit_t& u(c->textures.tmu[tmu]); EGLTextureObject* textureObject = u.texture; if (!supportedCopybitsFormat(textureObject->surface.format)) { LOGD_IF(DEBUG_COPYBIT, "texture format not supported"); return false; } return true; } static bool copybit(GLint x, GLint y, GLint w, GLint h, EGLTextureObject* textureObject, const GLint* crop_rect, int transform, ogles_context_t* c) { status_t err = NO_ERROR; // We assume checkContext has already been called and has already // returned true. const GGLSurface& cbSurface = c->rasterizer.state.buffers.color.s; y = cbSurface.height - (y + h); const GLint Ucr = crop_rect[0]; const GLint Vcr = crop_rect[1]; const GLint Wcr = crop_rect[2]; const GLint Hcr = crop_rect[3]; GLint screen_w = w; GLint screen_h = h; int32_t dsdx = Wcr << 16; // dsdx = ((Wcr/screen_w)/Wt)*Wt int32_t dtdy = Hcr << 16; // dtdy = -((Hcr/screen_h)/Ht)*Ht if (transform & COPYBIT_TRANSFORM_ROT_90) { swap(screen_w, screen_h); } if (dsdx!=screen_w || dtdy!=screen_h) { // in most cases the divide is not needed dsdx /= screen_w; dtdy /= screen_h; } dtdy = -dtdy; // see equation of dtdy above // copybit doesn't say anything about filtering, so we can't // discriminate. On msm7k, copybit will always filter. // the code below handles min/mag filters, we keep it as a reference. #ifdef MIN_MAG_FILTER int32_t texelArea = gglMulx(dtdy, dsdx); if (texelArea < FIXED_ONE && textureObject->mag_filter != GL_LINEAR) { // Non-linear filtering on a texture enlargement. LOGD_IF(DEBUG_COPYBIT, "mag filter is not GL_LINEAR"); return false; } if (texelArea > FIXED_ONE && textureObject->min_filter != GL_LINEAR) { // Non-linear filtering on an texture shrink. LOGD_IF(DEBUG_COPYBIT, "min filter is not GL_LINEAR"); return false; } #endif const uint32_t enables = c->rasterizer.state.enables; int planeAlpha = 255; bool alphaPlaneWorkaround = false; static const int tmu = 0; texture_t& tev(c->rasterizer.state.texture[tmu]); int32_t opFormat = textureObject->surface.format; const bool srcTextureHasAlpha = hasAlpha(opFormat); if (!srcTextureHasAlpha) { planeAlpha = fixedToByte(c->currentColorClamped.a); } const bool cbHasAlpha = hasAlpha(cbSurface.format); bool blending = false; if ((enables & GGL_ENABLE_BLENDING) && !(c->rasterizer.state.blend.src == GL_ONE && c->rasterizer.state.blend.dst == GL_ZERO)) { // Blending is OK if it is // the exact kind of blending that the copybits hardware supports. // Note: The hardware only supports // GL_SRC_ALPHA / GL_ONE_MINUS_SRC_ALPHA, // But the surface flinger uses GL_ONE / GL_ONE_MINUS_SRC_ALPHA. // We substitute GL_SRC_ALPHA / GL_ONE_MINUS_SRC_ALPHA in that case, // because the performance is worth it, even if the results are // not correct. if (!((c->rasterizer.state.blend.src == GL_SRC_ALPHA || c->rasterizer.state.blend.src == GL_ONE) && c->rasterizer.state.blend.dst == GL_ONE_MINUS_SRC_ALPHA && c->rasterizer.state.blend.alpha_separate == 0)) { // Incompatible blend mode. LOGD_IF(DEBUG_COPYBIT, "incompatible blend mode"); return false; } blending = true; } else { if (cbHasAlpha) { // NOTE: the result will be slightly wrong in this case because // the destination alpha channel will be set to 1.0 instead of // the iterated alpha value. *shrug*. } // disable plane blending and src blending for supported formats planeAlpha = 255; if (opFormat == COPYBIT_FORMAT_RGBA_8888) { opFormat = COPYBIT_FORMAT_RGBX_8888; } else { if (srcTextureHasAlpha) { LOGD_IF(DEBUG_COPYBIT, "texture format requires blending"); return false; } } } switch (tev.env) { case GGL_REPLACE: break; case GGL_MODULATE: // only cases allowed is: // RGB source, color={1,1,1,a} -> can be done with GL_REPLACE // RGBA source, color={1,1,1,1} -> can be done with GL_REPLACE if (blending) { if (c->currentColorClamped.r == c->currentColorClamped.a && c->currentColorClamped.g == c->currentColorClamped.a && c->currentColorClamped.b == c->currentColorClamped.a) { // TODO: RGBA source, color={1,1,1,a} / regular-blending // is equivalent alphaPlaneWorkaround = true; break; } } LOGD_IF(DEBUG_COPYBIT, "GGL_MODULATE"); return false; default: // Incompatible texture environment. LOGD_IF(DEBUG_COPYBIT, "incompatible texture environment"); return false; } copybit_device_t* copybit = c->copybits.blitEngine; copybit_image_t src; textureToCopyBitImage(&textureObject->surface, opFormat, textureObject->buffer, &src); copybit_rect_t srect = { Ucr, Vcr + Hcr, Ucr + Wcr, Vcr }; /* * Below we perform extra passes needed to emulate things the h/w * cannot do. */ const GLfixed minScaleInv = gglDivQ(0x10000, c->copybits.minScale, 16); const GLfixed maxScaleInv = gglDivQ(0x10000, c->copybits.maxScale, 16); sp<GraphicBuffer> tempBitmap; if (dsdx < maxScaleInv || dsdx > minScaleInv || dtdy < maxScaleInv || dtdy > minScaleInv) { // The requested scale is out of the range the hardware // can support. LOGD_IF(DEBUG_COPYBIT, "scale out of range dsdx=%08x (Wcr=%d / w=%d), " "dtdy=%08x (Hcr=%d / h=%d), Ucr=%d, Vcr=%d", dsdx, Wcr, w, dtdy, Hcr, h, Ucr, Vcr); int32_t xscale=0x10000, yscale=0x10000; if (dsdx > minScaleInv) xscale = c->copybits.minScale; else if (dsdx < maxScaleInv) xscale = c->copybits.maxScale; if (dtdy > minScaleInv) yscale = c->copybits.minScale; else if (dtdy < maxScaleInv) yscale = c->copybits.maxScale; dsdx = gglMulx(dsdx, xscale); dtdy = gglMulx(dtdy, yscale); /* we handle only one step of resizing below. Handling an arbitrary * number is relatively easy (replace "if" above by "while"), but requires * two intermediate buffers and so far we never had the need. */ if (dsdx < maxScaleInv || dsdx > minScaleInv || dtdy < maxScaleInv || dtdy > minScaleInv) { LOGD_IF(DEBUG_COPYBIT, "scale out of range dsdx=%08x (Wcr=%d / w=%d), " "dtdy=%08x (Hcr=%d / h=%d), Ucr=%d, Vcr=%d", dsdx, Wcr, w, dtdy, Hcr, h, Ucr, Vcr); return false; } const int tmp_w = gglMulx(srect.r - srect.l, xscale, 16); const int tmp_h = gglMulx(srect.b - srect.t, yscale, 16); LOGD_IF(DEBUG_COPYBIT, "xscale=%08x, yscale=%08x, dsdx=%08x, dtdy=%08x, tmp_w=%d, tmp_h=%d", xscale, yscale, dsdx, dtdy, tmp_w, tmp_h); tempBitmap = new GraphicBuffer( tmp_w, tmp_h, src.format, GraphicBuffer::USAGE_HW_2D); err = tempBitmap->initCheck(); if (err == NO_ERROR) { copybit_image_t tmp_dst; copybit_rect_t tmp_rect; tmp_dst.w = tmp_w; tmp_dst.h = tmp_h; tmp_dst.format = tempBitmap->format; tmp_dst.handle = (native_handle_t*)tempBitmap->getNativeBuffer()->handle; tmp_rect.l = 0; tmp_rect.t = 0; tmp_rect.r = tmp_dst.w; tmp_rect.b = tmp_dst.h; region_iterator tmp_it(Region(Rect(tmp_rect.r, tmp_rect.b))); copybit->set_parameter(copybit, COPYBIT_TRANSFORM, 0); copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, 0xFF); copybit->set_parameter(copybit, COPYBIT_DITHER, COPYBIT_DISABLE); err = copybit->stretch(copybit, &tmp_dst, &src, &tmp_rect, &srect, &tmp_it); src = tmp_dst; srect = tmp_rect; } } copybit_image_t dst; textureToCopyBitImage(&cbSurface, cbSurface.format, c->copybits.drawSurfaceBuffer, &dst); copybit_rect_t drect = {x, y, x+w, y+h}; /* and now the alpha-plane hack. This handles the "Fade" case of a * texture with an alpha channel. */ if (alphaPlaneWorkaround) { sp<GraphicBuffer> tempCb = new GraphicBuffer( w, h, COPYBIT_FORMAT_RGB_565, GraphicBuffer::USAGE_HW_2D); err = tempCb->initCheck(); copybit_image_t tmpCbImg; copybit_rect_t tmpCbRect; copybit_rect_t tmpdrect = drect; tmpCbImg.w = w; tmpCbImg.h = h; tmpCbImg.format = tempCb->format; tmpCbImg.handle = (native_handle_t*)tempCb->getNativeBuffer()->handle; tmpCbRect.l = 0; tmpCbRect.t = 0; if (drect.l < 0) { tmpCbRect.l = -tmpdrect.l; tmpdrect.l = 0; } if (drect.t < 0) { tmpCbRect.t = -tmpdrect.t; tmpdrect.t = 0; } if (drect.l + tmpCbImg.w > dst.w) { tmpCbImg.w = dst.w - drect.l; tmpdrect.r = dst.w; } if (drect.t + tmpCbImg.h > dst.h) { tmpCbImg.h = dst.h - drect.t; tmpdrect.b = dst.h; } tmpCbRect.r = tmpCbImg.w; tmpCbRect.b = tmpCbImg.h; if (!err) { // first make a copy of the destination buffer region_iterator tmp_it(Region(Rect(w, h))); copybit->set_parameter(copybit, COPYBIT_TRANSFORM, 0); copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, 0xFF); copybit->set_parameter(copybit, COPYBIT_DITHER, COPYBIT_DISABLE); err = copybit->stretch(copybit, &tmpCbImg, &dst, &tmpCbRect, &tmpdrect, &tmp_it); } if (!err) { // then proceed as usual, but without the alpha plane copybit->set_parameter(copybit, COPYBIT_TRANSFORM, transform); copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, 0xFF); copybit->set_parameter(copybit, COPYBIT_DITHER, (enables & GGL_ENABLE_DITHER) ? COPYBIT_ENABLE : COPYBIT_DISABLE); clipRectRegion it(c); err = copybit->stretch(copybit, &dst, &src, &drect, &srect, &it); } if (!err) { // finally copy back the destination on top with 1-alphaplane int invPlaneAlpha = 0xFF - fixedToByte(c->currentColorClamped.a); clipRectRegion it(c); copybit->set_parameter(copybit, COPYBIT_TRANSFORM, 0); copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, invPlaneAlpha); copybit->set_parameter(copybit, COPYBIT_DITHER, COPYBIT_ENABLE); err = copybit->stretch(copybit, &dst, &tmpCbImg, &tmpdrect, &tmpCbRect, &it); } } else { copybit->set_parameter(copybit, COPYBIT_TRANSFORM, transform); copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA, planeAlpha); copybit->set_parameter(copybit, COPYBIT_DITHER, (enables & GGL_ENABLE_DITHER) ? COPYBIT_ENABLE : COPYBIT_DISABLE); clipRectRegion it(c); LOGD_IF(0, "dst={%d, %d, %d, %p, %p}, " "src={%d, %d, %d, %p, %p}, " "drect={%d,%d,%d,%d}, " "srect={%d,%d,%d,%d}, " "it={%d,%d,%d,%d}, " , dst.w, dst.h, dst.format, dst.base, dst.handle, src.w, src.h, src.format, src.base, src.handle, drect.l, drect.t, drect.r, drect.b, srect.l, srect.t, srect.r, srect.b, it.r.l, it.r.t, it.r.r, it.r.b ); err = copybit->stretch(copybit, &dst, &src, &drect, &srect, &it); } if (err != NO_ERROR) { c->textures.tmu[0].texture->try_copybit = false; } return err == NO_ERROR ? true : false; } /* * Try to draw a triangle fan with copybit, return false if we fail. */ bool drawTriangleFanWithCopybit_impl(ogles_context_t* c, GLint first, GLsizei count) { if (!checkContext(c)) { return false; } // FIXME: we should handle culling here c->arrays.compileElements(c, c->vc.vBuffer, 0, 4); // we detect if we're dealing with a rectangle, by comparing the // rectangles {v0,v2} and {v1,v3} which should be identical. // NOTE: we should check that the rectangle is window aligned, however // if we do that, the optimization won't be taken in a lot of cases. // Since this code is intended to be used with SurfaceFlinger only, // so it's okay... const vec4_t& v0 = c->vc.vBuffer[0].window; const vec4_t& v1 = c->vc.vBuffer[1].window; const vec4_t& v2 = c->vc.vBuffer[2].window; const vec4_t& v3 = c->vc.vBuffer[3].window; int l = min(v0.x, v2.x); int b = min(v0.y, v2.y); int r = max(v0.x, v2.x); int t = max(v0.y, v2.y); if ((l != min(v1.x, v3.x)) || (b != min(v1.y, v3.y)) || (r != max(v1.x, v3.x)) || (t != max(v1.y, v3.y))) { LOGD_IF(DEBUG_COPYBIT, "geometry not a rectangle"); return false; } // fetch and transform texture coordinates // NOTE: maybe it would be better to have a "compileElementsAll" method // that would ensure all vertex data are fetched and transformed const transform_t& tr = c->transforms.texture[0].transform; for (size_t i=0 ; i<4 ; i++) { const GLubyte* tp = c->arrays.texture[0].element(i); vertex_t* const v = &c->vc.vBuffer[i]; c->arrays.texture[0].fetch(c, v->texture[0].v, tp); // FIXME: we should bail if q!=1 c->arrays.tex_transform[0](&tr, &v->texture[0], &v->texture[0]); } const vec4_t& t0 = c->vc.vBuffer[0].texture[0]; const vec4_t& t1 = c->vc.vBuffer[1].texture[0]; const vec4_t& t2 = c->vc.vBuffer[2].texture[0]; const vec4_t& t3 = c->vc.vBuffer[3].texture[0]; int txl = min(t0.x, t2.x); int txb = min(t0.y, t2.y); int txr = max(t0.x, t2.x); int txt = max(t0.y, t2.y); if ((txl != min(t1.x, t3.x)) || (txb != min(t1.y, t3.y)) || (txr != max(t1.x, t3.x)) || (txt != max(t1.y, t3.y))) { LOGD_IF(DEBUG_COPYBIT, "texcoord not a rectangle"); return false; } if ((txl != 0) || (txb != 0) || (txr != FIXED_ONE) || (txt != FIXED_ONE)) { // we could probably handle this case, if we wanted to LOGD_IF(DEBUG_COPYBIT, "texture is cropped: %08x,%08x,%08x,%08x", txl, txb, txr, txt); return false; } // at this point, we know we are dealing with a rectangle, so we // only need to consider 3 vertices for computing the jacobians const int dx01 = v1.x - v0.x; const int dx02 = v2.x - v0.x; const int dy01 = v1.y - v0.y; const int dy02 = v2.y - v0.y; const int ds01 = t1.S - t0.S; const int ds02 = t2.S - t0.S; const int dt01 = t1.T - t0.T; const int dt02 = t2.T - t0.T; const int area = dx01*dy02 - dy01*dx02; int dsdx, dsdy, dtdx, dtdy; if (area >= 0) { dsdx = ds01*dy02 - ds02*dy01; dtdx = dt01*dy02 - dt02*dy01; dsdy = ds02*dx01 - ds01*dx02; dtdy = dt02*dx01 - dt01*dx02; } else { dsdx = ds02*dy01 - ds01*dy02; dtdx = dt02*dy01 - dt01*dy02; dsdy = ds01*dx02 - ds02*dx01; dtdy = dt01*dx02 - dt02*dx01; } // here we rely on the fact that we know the transform is // a rigid-body transform AND that it can only rotate in 90 degrees // increments int transform = 0; if (dsdx == 0) { // 90 deg rotation case // [ 0 dtdx ] // [ dsdx 0 ] transform |= COPYBIT_TRANSFORM_ROT_90; // FIXME: not sure if FLIP_H and FLIP_V shouldn't be inverted if (dtdx > 0) transform |= COPYBIT_TRANSFORM_FLIP_H; if (dsdy < 0) transform |= COPYBIT_TRANSFORM_FLIP_V; } else { // [ dsdx 0 ] // [ 0 dtdy ] if (dsdx < 0) transform |= COPYBIT_TRANSFORM_FLIP_H; if (dtdy < 0) transform |= COPYBIT_TRANSFORM_FLIP_V; } //LOGD("l=%d, b=%d, w=%d, h=%d, tr=%d", x, y, w, h, transform); //LOGD("A=%f\tB=%f\nC=%f\tD=%f", // dsdx/65536.0, dtdx/65536.0, dsdy/65536.0, dtdy/65536.0); int x = l >> 4; int y = b >> 4; int w = (r-l) >> 4; int h = (t-b) >> 4; texture_unit_t& u(c->textures.tmu[0]); EGLTextureObject* textureObject = u.texture; GLint tWidth = textureObject->surface.width; GLint tHeight = textureObject->surface.height; GLint crop_rect[4] = {0, tHeight, tWidth, -tHeight}; const GGLSurface& cbSurface = c->rasterizer.state.buffers.color.s; y = cbSurface.height - (y + h); return copybit(x, y, w, h, textureObject, crop_rect, transform, c); } /* * Try to drawTexiOESWithCopybit, return false if we fail. */ bool drawTexiOESWithCopybit_impl(GLint x, GLint y, GLint z, GLint w, GLint h, ogles_context_t* c) { // quickly process empty rects if ((w|h) <= 0) { return true; } if (!checkContext(c)) { return false; } texture_unit_t& u(c->textures.tmu[0]); EGLTextureObject* textureObject = u.texture; return copybit(x, y, w, h, textureObject, textureObject->crop_rect, 0, c); } } // namespace android