/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clz.h" #include "Buffer.h" #include "BufferAllocator.h" #include "Layer.h" #include "LayerBlur.h" #include "LayerBuffer.h" #include "LayerDim.h" #include "SurfaceFlinger.h" #include "DisplayHardware/DisplayHardware.h" /* ideally AID_GRAPHICS would be in a semi-public header * or there would be a way to map a user/group name to its id */ #ifndef AID_GRAPHICS #define AID_GRAPHICS 1003 #endif #define DISPLAY_COUNT 1 namespace android { // --------------------------------------------------------------------------- void SurfaceFlinger::instantiate() { defaultServiceManager()->addService( String16("SurfaceFlinger"), new SurfaceFlinger()); } void SurfaceFlinger::shutdown() { // we should unregister here, but not really because // when (if) the service manager goes away, all the services // it has a reference to will leave too. } // --------------------------------------------------------------------------- SurfaceFlinger::LayerVector::LayerVector(const SurfaceFlinger::LayerVector& rhs) : lookup(rhs.lookup), layers(rhs.layers) { } ssize_t SurfaceFlinger::LayerVector::indexOf( const sp& key, size_t guess) const { if (guess=0) { const size_t idx = lookup.valueAt(i); LOGE_IF(layers[idx]!=key, "LayerVector[%p]: layers[%d]=%p, key=%p", this, int(idx), layers[idx].get(), key.get()); return idx; } return i; } ssize_t SurfaceFlinger::LayerVector::add( const sp& layer, Vector< sp >::compar_t cmp) { size_t count = layers.size(); ssize_t l = 0; ssize_t h = count-1; ssize_t mid; sp const* a = layers.array(); while (l <= h) { mid = l + (h - l)/2; const int c = cmp(a+mid, &layer); if (c == 0) { l = mid; break; } else if (c<0) { l = mid+1; } else { h = mid-1; } } size_t order = l; while (order= order) { lookup.editValueAt(i)++; } } layers.insertAt(layer, order); lookup.add(layer, order); return order; } ssize_t SurfaceFlinger::LayerVector::remove(const sp& layer) { const ssize_t keyIndex = lookup.indexOfKey(layer); if (keyIndex >= 0) { const size_t index = lookup.valueAt(keyIndex); LOGE_IF(layers[index]!=layer, "LayerVector[%p]: layers[%u]=%p, layer=%p", this, int(index), layers[index].get(), layer.get()); layers.removeItemsAt(index); lookup.removeItemsAt(keyIndex); const size_t count = lookup.size(); for (size_t i=0 ; i= size_t(index)) { lookup.editValueAt(i)--; } } return index; } return NAME_NOT_FOUND; } ssize_t SurfaceFlinger::LayerVector::reorder( const sp& layer, Vector< sp >::compar_t cmp) { // XXX: it's a little lame. but oh well... ssize_t err = remove(layer); if (err >=0) err = add(layer, cmp); return err; } // --------------------------------------------------------------------------- #if 0 #pragma mark - #endif SurfaceFlinger::SurfaceFlinger() : BnSurfaceComposer(), Thread(false), mTransactionFlags(0), mTransactionCount(0), mResizeTransationPending(false), mLayersRemoved(false), mBootTime(systemTime()), mHardwareTest("android.permission.HARDWARE_TEST"), mAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"), mDump("android.permission.DUMP"), mVisibleRegionsDirty(false), mDeferReleaseConsole(false), mFreezeDisplay(false), mFreezeCount(0), mFreezeDisplayTime(0), mDebugRegion(0), mDebugBackground(0), mDebugInSwapBuffers(0), mLastSwapBufferTime(0), mDebugInTransaction(0), mLastTransactionTime(0), mConsoleSignals(0), mSecureFrameBuffer(0) { init(); } void SurfaceFlinger::init() { LOGI("SurfaceFlinger is starting"); // debugging stuff... char value[PROPERTY_VALUE_MAX]; property_get("debug.sf.showupdates", value, "0"); mDebugRegion = atoi(value); property_get("debug.sf.showbackground", value, "0"); mDebugBackground = atoi(value); LOGI_IF(mDebugRegion, "showupdates enabled"); LOGI_IF(mDebugBackground, "showbackground enabled"); } SurfaceFlinger::~SurfaceFlinger() { glDeleteTextures(1, &mWormholeTexName); } overlay_control_device_t* SurfaceFlinger::getOverlayEngine() const { return graphicPlane(0).displayHardware().getOverlayEngine(); } sp SurfaceFlinger::getCblk() const { return mServerHeap; } sp SurfaceFlinger::createConnection() { Mutex::Autolock _l(mStateLock); uint32_t token = mTokens.acquire(); sp client = new Client(token, this); if (client->ctrlblk == 0) { mTokens.release(token); return 0; } status_t err = mClientsMap.add(token, client); if (err < 0) { mTokens.release(token); return 0; } sp bclient = new BClient(this, token, client->getControlBlockMemory()); return bclient; } void SurfaceFlinger::destroyConnection(ClientID cid) { Mutex::Autolock _l(mStateLock); sp client = mClientsMap.valueFor(cid); if (client != 0) { // free all the layers this client owns Vector< wp > layers(client->getLayers()); const size_t count = layers.size(); for (size_t i=0 ; i layer(layers[i].promote()); if (layer != 0) { purgatorizeLayer_l(layer); } } // the resources associated with this client will be freed // during the next transaction, after these surfaces have been // properly removed from the screen // remove this client from our ClientID->Client mapping. mClientsMap.removeItem(cid); // and add it to the list of disconnected clients mDisconnectedClients.add(client); // request a transaction setTransactionFlags(eTransactionNeeded); } } const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const { LOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy); const GraphicPlane& plane(mGraphicPlanes[dpy]); return plane; } GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) { return const_cast( const_cast(this)->graphicPlane(dpy)); } void SurfaceFlinger::bootFinished() { const nsecs_t now = systemTime(); const nsecs_t duration = now - mBootTime; LOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); property_set("ctl.stop", "bootanim"); } void SurfaceFlinger::onFirstRef() { run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY); // Wait for the main thread to be done with its initialization mReadyToRunBarrier.wait(); } static inline uint16_t pack565(int r, int g, int b) { return (r<<11)|(g<<5)|b; } status_t SurfaceFlinger::readyToRun() { LOGI( "SurfaceFlinger's main thread ready to run. " "Initializing graphics H/W..."); // we only support one display currently int dpy = 0; { // initialize the main display GraphicPlane& plane(graphicPlane(dpy)); DisplayHardware* const hw = new DisplayHardware(this, dpy); plane.setDisplayHardware(hw); } // create the shared control-block mServerHeap = new MemoryHeapBase(4096, MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap"); LOGE_IF(mServerHeap==0, "can't create shared memory dealer"); mServerCblk = static_cast(mServerHeap->getBase()); LOGE_IF(mServerCblk==0, "can't get to shared control block's address"); new(mServerCblk) surface_flinger_cblk_t; // initialize primary screen // (other display should be initialized in the same manner, but // asynchronously, as they could come and go. None of this is supported // yet). const GraphicPlane& plane(graphicPlane(dpy)); const DisplayHardware& hw = plane.displayHardware(); const uint32_t w = hw.getWidth(); const uint32_t h = hw.getHeight(); const uint32_t f = hw.getFormat(); hw.makeCurrent(); // initialize the shared control block mServerCblk->connected |= 1<displays + dpy; memset(dcblk, 0, sizeof(display_cblk_t)); dcblk->w = w; dcblk->h = h; dcblk->format = f; dcblk->orientation = ISurfaceComposer::eOrientationDefault; dcblk->xdpi = hw.getDpiX(); dcblk->ydpi = hw.getDpiY(); dcblk->fps = hw.getRefreshRate(); dcblk->density = hw.getDensity(); asm volatile ("":::"memory"); // Initialize OpenGL|ES glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, 0); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glPixelStorei(GL_UNPACK_ALIGNMENT, 4); glPixelStorei(GL_PACK_ALIGNMENT, 4); glEnableClientState(GL_VERTEX_ARRAY); glEnable(GL_SCISSOR_TEST); glShadeModel(GL_FLAT); glDisable(GL_DITHER); glDisable(GL_CULL_FACE); const uint16_t g0 = pack565(0x0F,0x1F,0x0F); const uint16_t g1 = pack565(0x17,0x2f,0x17); const uint16_t textureData[4] = { g0, g1, g1, g0 }; glGenTextures(1, &mWormholeTexName); glBindTexture(GL_TEXTURE_2D, mWormholeTexName); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, textureData); glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrthof(0, w, h, 0, 0, 1); LayerDim::initDimmer(this, w, h); mReadyToRunBarrier.open(); /* * We're now ready to accept clients... */ // start boot animation property_set("ctl.start", "bootanim"); return NO_ERROR; } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #pragma mark Events Handler #endif void SurfaceFlinger::waitForEvent() { while (true) { nsecs_t timeout = -1; if (UNLIKELY(isFrozen())) { // wait 5 seconds const nsecs_t freezeDisplayTimeout = ms2ns(5000); const nsecs_t now = systemTime(); if (mFreezeDisplayTime == 0) { mFreezeDisplayTime = now; } nsecs_t waitTime = freezeDisplayTimeout - (now - mFreezeDisplayTime); timeout = waitTime>0 ? waitTime : 0; } MessageList::value_type msg = mEventQueue.waitMessage(timeout); if (msg != 0) { mFreezeDisplayTime = 0; switch (msg->what) { case MessageQueue::INVALIDATE: // invalidate message, just return to the main loop return; } } else { // we timed out if (isFrozen()) { // we timed out and are still frozen LOGW("timeout expired mFreezeDisplay=%d, mFreezeCount=%d", mFreezeDisplay, mFreezeCount); mFreezeCount = 0; mFreezeDisplay = false; return; } } } } void SurfaceFlinger::signalEvent() { mEventQueue.invalidate(); } void SurfaceFlinger::signal() const { // this is the IPC call const_cast(this)->signalEvent(); } void SurfaceFlinger::signalDelayedEvent(nsecs_t delay) { mEventQueue.postMessage( new MessageBase(MessageQueue::INVALIDATE), delay); } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #pragma mark Main loop #endif bool SurfaceFlinger::threadLoop() { waitForEvent(); // check for transactions if (UNLIKELY(mConsoleSignals)) { handleConsoleEvents(); } if (LIKELY(mTransactionCount == 0)) { // if we're in a global transaction, don't do anything. const uint32_t mask = eTransactionNeeded | eTraversalNeeded; uint32_t transactionFlags = getTransactionFlags(mask); if (LIKELY(transactionFlags)) { handleTransaction(transactionFlags); } } // post surfaces (if needed) handlePageFlip(); const DisplayHardware& hw(graphicPlane(0).displayHardware()); if (LIKELY(hw.canDraw())) { // repaint the framebuffer (if needed) handleRepaint(); // release the clients before we flip ('cause flip might block) unlockClients(); postFramebuffer(); } else { // pretend we did the post unlockClients(); usleep(16667); // 60 fps period } return true; } void SurfaceFlinger::postFramebuffer() { if (isFrozen()) { // we are not allowed to draw, but pause a bit to make sure // apps don't end up using the whole CPU, if they depend on // surfaceflinger for synchronization. usleep(8333); // 8.3ms ~ 120fps return; } if (!mInvalidRegion.isEmpty()) { const DisplayHardware& hw(graphicPlane(0).displayHardware()); const nsecs_t now = systemTime(); mDebugInSwapBuffers = now; hw.flip(mInvalidRegion); mLastSwapBufferTime = systemTime() - now; mDebugInSwapBuffers = 0; mInvalidRegion.clear(); } } void SurfaceFlinger::handleConsoleEvents() { // something to do with the console const DisplayHardware& hw = graphicPlane(0).displayHardware(); int what = android_atomic_and(0, &mConsoleSignals); if (what & eConsoleAcquired) { hw.acquireScreen(); } if (mDeferReleaseConsole && hw.canDraw()) { // We got the release signal before the acquire signal mDeferReleaseConsole = false; hw.releaseScreen(); } if (what & eConsoleReleased) { if (hw.canDraw()) { hw.releaseScreen(); } else { mDeferReleaseConsole = true; } } mDirtyRegion.set(hw.bounds()); } void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) { Vector< sp > ditchedLayers; { // scope for the lock Mutex::Autolock _l(mStateLock); const nsecs_t now = systemTime(); mDebugInTransaction = now; handleTransactionLocked(transactionFlags, ditchedLayers); mLastTransactionTime = systemTime() - now; mDebugInTransaction = 0; } // do this without lock held const size_t count = ditchedLayers.size(); for (size_t i=0 ; iditch(); } } } void SurfaceFlinger::handleTransactionLocked( uint32_t transactionFlags, Vector< sp >& ditchedLayers) { const LayerVector& currentLayers(mCurrentState.layersSortedByZ); const size_t count = currentLayers.size(); /* * Traversal of the children * (perform the transaction for each of them if needed) */ const bool layersNeedTransaction = transactionFlags & eTraversalNeeded; if (layersNeedTransaction) { for (size_t i=0 ; i& layer = currentLayers[i]; uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); if (!trFlags) continue; const uint32_t flags = layer->doTransaction(0); if (flags & Layer::eVisibleRegion) mVisibleRegionsDirty = true; if (flags & Layer::eRestartTransaction) { // restart the transaction, but back-off a little layer->setTransactionFlags(eTransactionNeeded); setTransactionFlags(eTraversalNeeded, ms2ns(8)); } } } /* * Perform our own transaction if needed */ if (transactionFlags & eTransactionNeeded) { if (mCurrentState.orientation != mDrawingState.orientation) { // the orientation has changed, recompute all visible regions // and invalidate everything. const int dpy = 0; const int orientation = mCurrentState.orientation; const uint32_t type = mCurrentState.orientationType; GraphicPlane& plane(graphicPlane(dpy)); plane.setOrientation(orientation); // update the shared control block const DisplayHardware& hw(plane.displayHardware()); volatile display_cblk_t* dcblk = mServerCblk->displays + dpy; dcblk->orientation = orientation; if (orientation & eOrientationSwapMask) { // 90 or 270 degrees orientation dcblk->w = hw.getHeight(); dcblk->h = hw.getWidth(); } else { dcblk->w = hw.getWidth(); dcblk->h = hw.getHeight(); } mVisibleRegionsDirty = true; mDirtyRegion.set(hw.bounds()); mFreezeDisplayTime = 0; } if (mCurrentState.freezeDisplay != mDrawingState.freezeDisplay) { // freezing or unfreezing the display -> trigger animation if needed mFreezeDisplay = mCurrentState.freezeDisplay; } if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) { // layers have been added mVisibleRegionsDirty = true; } // some layers might have been removed, so // we need to update the regions they're exposing. if (mLayersRemoved) { mLayersRemoved = false; mVisibleRegionsDirty = true; const LayerVector& previousLayers(mDrawingState.layersSortedByZ); const size_t count = previousLayers.size(); for (size_t i=0 ; i& layer(previousLayers[i]); if (currentLayers.indexOf( layer ) < 0) { // this layer is not visible anymore ditchedLayers.add(layer); mDirtyRegionRemovedLayer.orSelf(layer->visibleRegionScreen); } } } // get rid of all resources we don't need anymore // (layers and clients) free_resources_l(); } commitTransaction(); } sp SurfaceFlinger::getFreezeLock() const { return new FreezeLock(const_cast(this)); } void SurfaceFlinger::computeVisibleRegions( LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion) { const GraphicPlane& plane(graphicPlane(0)); const Transform& planeTransform(plane.transform()); Region aboveOpaqueLayers; Region aboveCoveredLayers; Region dirty; bool secureFrameBuffer = false; size_t i = currentLayers.size(); while (i--) { const sp& layer = currentLayers[i]; layer->validateVisibility(planeTransform); // start with the whole surface at its current location const Layer::State& s(layer->drawingState()); // handle hidden surfaces by setting the visible region to empty Region opaqueRegion; Region visibleRegion; Region coveredRegion; if (LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) { const bool translucent = layer->needsBlending(); const Rect bounds(layer->visibleBounds()); visibleRegion.set(bounds); coveredRegion = visibleRegion; // Remove the transparent area from the visible region if (translucent) { visibleRegion.subtractSelf(layer->transparentRegionScreen); } // compute the opaque region if (s.alpha==255 && !translucent && layer->getOrientation()>=0) { // the opaque region is the visible region opaqueRegion = visibleRegion; } } // subtract the opaque region covered by the layers above us visibleRegion.subtractSelf(aboveOpaqueLayers); coveredRegion.andSelf(aboveCoveredLayers); // compute this layer's dirty region if (layer->contentDirty) { // we need to invalidate the whole region dirty = visibleRegion; // as well, as the old visible region dirty.orSelf(layer->visibleRegionScreen); layer->contentDirty = false; } else { /* compute the exposed region: * exposed = what's VISIBLE and NOT COVERED now * but was COVERED before */ dirty = (visibleRegion - coveredRegion) & layer->coveredRegionScreen; } dirty.subtractSelf(aboveOpaqueLayers); // accumulate to the screen dirty region dirtyRegion.orSelf(dirty); // Update aboveOpaqueLayers/aboveCoveredLayers for next (lower) layer aboveOpaqueLayers.orSelf(opaqueRegion); aboveCoveredLayers.orSelf(visibleRegion); // Store the visible region is screen space layer->setVisibleRegion(visibleRegion); layer->setCoveredRegion(coveredRegion); // If a secure layer is partially visible, lock-down the screen! if (layer->isSecure() && !visibleRegion.isEmpty()) { secureFrameBuffer = true; } } // invalidate the areas where a layer was removed dirtyRegion.orSelf(mDirtyRegionRemovedLayer); mDirtyRegionRemovedLayer.clear(); mSecureFrameBuffer = secureFrameBuffer; opaqueRegion = aboveOpaqueLayers; } void SurfaceFlinger::commitTransaction() { mDrawingState = mCurrentState; mResizeTransationPending = false; mTransactionCV.broadcast(); } void SurfaceFlinger::handlePageFlip() { bool visibleRegions = mVisibleRegionsDirty; LayerVector& currentLayers = const_cast(mDrawingState.layersSortedByZ); visibleRegions |= lockPageFlip(currentLayers); const DisplayHardware& hw = graphicPlane(0).displayHardware(); const Region screenRegion(hw.bounds()); if (visibleRegions) { Region opaqueRegion; computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion); mWormholeRegion = screenRegion.subtract(opaqueRegion); mVisibleRegionsDirty = false; } unlockPageFlip(currentLayers); mDirtyRegion.andSelf(screenRegion); } bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers) { bool recomputeVisibleRegions = false; size_t count = currentLayers.size(); sp const* layers = currentLayers.array(); for (size_t i=0 ; i& layer = layers[i]; layer->lockPageFlip(recomputeVisibleRegions); } return recomputeVisibleRegions; } void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers) { const GraphicPlane& plane(graphicPlane(0)); const Transform& planeTransform(plane.transform()); size_t count = currentLayers.size(); sp const* layers = currentLayers.array(); for (size_t i=0 ; i& layer = layers[i]; layer->unlockPageFlip(planeTransform, mDirtyRegion); } } void SurfaceFlinger::handleRepaint() { // compute the invalid region mInvalidRegion.orSelf(mDirtyRegion); if (mInvalidRegion.isEmpty()) { // nothing to do return; } if (UNLIKELY(mDebugRegion)) { debugFlashRegions(); } // set the frame buffer const DisplayHardware& hw(graphicPlane(0).displayHardware()); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); uint32_t flags = hw.getFlags(); if ((flags & DisplayHardware::SWAP_RECTANGLE) || (flags & DisplayHardware::BUFFER_PRESERVED)) { // we can redraw only what's dirty, but since SWAP_RECTANGLE only // takes a rectangle, we must make sure to update that whole // rectangle in that case if (flags & DisplayHardware::SWAP_RECTANGLE) { // FIXME: we really should be able to pass a region to // SWAP_RECTANGLE so that we don't have to redraw all this. mDirtyRegion.set(mInvalidRegion.bounds()); } else { // in the BUFFER_PRESERVED case, obviously, we can update only // what's needed and nothing more. // NOTE: this is NOT a common case, as preserving the backbuffer // is costly and usually involves copying the whole update back. } } else { if (flags & DisplayHardware::UPDATE_ON_DEMAND) { // We need to redraw the rectangle that will be updated // (pushed to the framebuffer). // This is needed because UPDATE_ON_DEMAND only takes one // rectangle instead of a region (see DisplayHardware::flip()) mDirtyRegion.set(mInvalidRegion.bounds()); } else { // we need to redraw everything (the whole screen) mDirtyRegion.set(hw.bounds()); mInvalidRegion = mDirtyRegion; } } // compose all surfaces composeSurfaces(mDirtyRegion); // clear the dirty regions mDirtyRegion.clear(); } void SurfaceFlinger::composeSurfaces(const Region& dirty) { if (UNLIKELY(!mWormholeRegion.isEmpty())) { // should never happen unless the window manager has a bug // draw something... drawWormhole(); } const SurfaceFlinger& flinger(*this); const LayerVector& drawingLayers(mDrawingState.layersSortedByZ); const size_t count = drawingLayers.size(); sp const* const layers = drawingLayers.array(); for (size_t i=0 ; i& layer = layers[i]; const Region& visibleRegion(layer->visibleRegionScreen); if (!visibleRegion.isEmpty()) { const Region clip(dirty.intersect(visibleRegion)); if (!clip.isEmpty()) { layer->draw(clip); } } } } void SurfaceFlinger::unlockClients() { const LayerVector& drawingLayers(mDrawingState.layersSortedByZ); const size_t count = drawingLayers.size(); sp const* const layers = drawingLayers.array(); for (size_t i=0 ; i& layer = layers[i]; layer->finishPageFlip(); } } void SurfaceFlinger::debugFlashRegions() { const DisplayHardware& hw(graphicPlane(0).displayHardware()); const uint32_t flags = hw.getFlags(); if (!((flags & DisplayHardware::SWAP_RECTANGLE) || (flags & DisplayHardware::BUFFER_PRESERVED))) { const Region repaint((flags & DisplayHardware::UPDATE_ON_DEMAND) ? mDirtyRegion.bounds() : hw.bounds()); composeSurfaces(repaint); } glDisable(GL_TEXTURE_2D); glDisable(GL_BLEND); glDisable(GL_DITHER); glDisable(GL_SCISSOR_TEST); static int toggle = 0; toggle = 1 - toggle; if (toggle) { glColor4x(0x10000, 0, 0x10000, 0x10000); } else { glColor4x(0x10000, 0x10000, 0, 0x10000); } Region::const_iterator it = mDirtyRegion.begin(); Region::const_iterator const end = mDirtyRegion.end(); while (it != end) { const Rect& r = *it++; GLfloat vertices[][2] = { { r.left, r.top }, { r.left, r.bottom }, { r.right, r.bottom }, { r.right, r.top } }; glVertexPointer(2, GL_FLOAT, 0, vertices); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); } if (mInvalidRegion.isEmpty()) { mDirtyRegion.dump("mDirtyRegion"); mInvalidRegion.dump("mInvalidRegion"); } hw.flip(mInvalidRegion); if (mDebugRegion > 1) usleep(mDebugRegion * 1000); glEnable(GL_SCISSOR_TEST); //mDirtyRegion.dump("mDirtyRegion"); } void SurfaceFlinger::drawWormhole() const { const Region region(mWormholeRegion.intersect(mDirtyRegion)); if (region.isEmpty()) return; const DisplayHardware& hw(graphicPlane(0).displayHardware()); const int32_t width = hw.getWidth(); const int32_t height = hw.getHeight(); glDisable(GL_BLEND); glDisable(GL_DITHER); if (LIKELY(!mDebugBackground)) { glClearColorx(0,0,0,0); Region::const_iterator it = region.begin(); Region::const_iterator const end = region.end(); while (it != end) { const Rect& r = *it++; const GLint sy = height - (r.top + r.height()); glScissor(r.left, sy, r.width(), r.height()); glClear(GL_COLOR_BUFFER_BIT); } } else { const GLshort vertices[][2] = { { 0, 0 }, { width, 0 }, { width, height }, { 0, height } }; const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } }; glVertexPointer(2, GL_SHORT, 0, vertices); glTexCoordPointer(2, GL_SHORT, 0, tcoords); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, mWormholeTexName); glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glMatrixMode(GL_TEXTURE); glLoadIdentity(); glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1); Region::const_iterator it = region.begin(); Region::const_iterator const end = region.end(); while (it != end) { const Rect& r = *it++; const GLint sy = height - (r.top + r.height()); glScissor(r.left, sy, r.width(), r.height()); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); } glDisableClientState(GL_TEXTURE_COORD_ARRAY); } } void SurfaceFlinger::debugShowFPS() const { static int mFrameCount; static int mLastFrameCount = 0; static nsecs_t mLastFpsTime = 0; static float mFps = 0; mFrameCount++; nsecs_t now = systemTime(); nsecs_t diff = now - mLastFpsTime; if (diff > ms2ns(250)) { mFps = ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff; mLastFpsTime = now; mLastFrameCount = mFrameCount; } // XXX: mFPS has the value we want } status_t SurfaceFlinger::addLayer(const sp& layer) { Mutex::Autolock _l(mStateLock); addLayer_l(layer); setTransactionFlags(eTransactionNeeded|eTraversalNeeded); return NO_ERROR; } status_t SurfaceFlinger::removeLayer(const sp& layer) { Mutex::Autolock _l(mStateLock); status_t err = purgatorizeLayer_l(layer); if (err == NO_ERROR) setTransactionFlags(eTransactionNeeded); return err; } status_t SurfaceFlinger::invalidateLayerVisibility(const sp& layer) { layer->forceVisibilityTransaction(); setTransactionFlags(eTraversalNeeded); return NO_ERROR; } status_t SurfaceFlinger::addLayer_l(const sp& layer) { if (layer == 0) return BAD_VALUE; ssize_t i = mCurrentState.layersSortedByZ.add( layer, &LayerBase::compareCurrentStateZ); sp lbc = LayerBase::dynamicCast< LayerBaseClient* >(layer.get()); if (lbc != 0) { mLayerMap.add(lbc->serverIndex(), lbc); } return NO_ERROR; } status_t SurfaceFlinger::removeLayer_l(const sp& layerBase) { ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase); if (index >= 0) { mLayersRemoved = true; sp layer = LayerBase::dynamicCast< LayerBaseClient* >(layerBase.get()); if (layer != 0) { mLayerMap.removeItem(layer->serverIndex()); } return NO_ERROR; } return status_t(index); } status_t SurfaceFlinger::purgatorizeLayer_l(const sp& layerBase) { // remove the layer from the main list (through a transaction). ssize_t err = removeLayer_l(layerBase); // it's possible that we don't find a layer, because it might // have been destroyed already -- this is not technically an error // from the user because there is a race between BClient::destroySurface(), // ~BClient() and ~ISurface(). return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err; } void SurfaceFlinger::free_resources_l() { // free resources associated with disconnected clients Vector< sp >& disconnectedClients(mDisconnectedClients); const size_t count = disconnectedClients.size(); for (size_t i=0 ; i client = disconnectedClients[i]; mTokens.release(client->cid); } disconnectedClients.clear(); } uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) { return android_atomic_and(~flags, &mTransactionFlags) & flags; } uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags, nsecs_t delay) { uint32_t old = android_atomic_or(flags, &mTransactionFlags); if ((old & flags)==0) { // wake the server up if (delay > 0) { signalDelayedEvent(delay); } else { signalEvent(); } } return old; } void SurfaceFlinger::openGlobalTransaction() { android_atomic_inc(&mTransactionCount); } void SurfaceFlinger::closeGlobalTransaction() { if (android_atomic_dec(&mTransactionCount) == 1) { signalEvent(); // if there is a transaction with a resize, wait for it to // take effect before returning. Mutex::Autolock _l(mStateLock); while (mResizeTransationPending) { mTransactionCV.wait(mStateLock); } } } status_t SurfaceFlinger::freezeDisplay(DisplayID dpy, uint32_t flags) { if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) return BAD_VALUE; Mutex::Autolock _l(mStateLock); mCurrentState.freezeDisplay = 1; setTransactionFlags(eTransactionNeeded); // flags is intended to communicate some sort of animation behavior // (for instance fading) return NO_ERROR; } status_t SurfaceFlinger::unfreezeDisplay(DisplayID dpy, uint32_t flags) { if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) return BAD_VALUE; Mutex::Autolock _l(mStateLock); mCurrentState.freezeDisplay = 0; setTransactionFlags(eTransactionNeeded); // flags is intended to communicate some sort of animation behavior // (for instance fading) return NO_ERROR; } int SurfaceFlinger::setOrientation(DisplayID dpy, int orientation, uint32_t flags) { if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) return BAD_VALUE; Mutex::Autolock _l(mStateLock); if (mCurrentState.orientation != orientation) { if (uint32_t(orientation)<=eOrientation270 || orientation==42) { mCurrentState.orientationType = flags; mCurrentState.orientation = orientation; setTransactionFlags(eTransactionNeeded); mTransactionCV.wait(mStateLock); } else { orientation = BAD_VALUE; } } return orientation; } sp SurfaceFlinger::createSurface(ClientID clientId, int pid, ISurfaceFlingerClient::surface_data_t* params, DisplayID d, uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) { sp layer; sp surfaceHandle; if (int32_t(w|h) < 0) { LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)", int(w), int(h)); return surfaceHandle; } Mutex::Autolock _l(mStateLock); sp client = mClientsMap.valueFor(clientId); if (UNLIKELY(client == 0)) { LOGE("createSurface() failed, client not found (id=%d)", clientId); return surfaceHandle; } //LOGD("createSurface for pid %d (%d x %d)", pid, w, h); int32_t id = client->generateId(pid); if (uint32_t(id) >= NUM_LAYERS_MAX) { LOGE("createSurface() failed, generateId = %d", id); return surfaceHandle; } switch (flags & eFXSurfaceMask) { case eFXSurfaceNormal: if (UNLIKELY(flags & ePushBuffers)) { layer = createPushBuffersSurfaceLocked(client, d, id, w, h, flags); } else { layer = createNormalSurfaceLocked(client, d, id, w, h, flags, format); } break; case eFXSurfaceBlur: layer = createBlurSurfaceLocked(client, d, id, w, h, flags); break; case eFXSurfaceDim: layer = createDimSurfaceLocked(client, d, id, w, h, flags); break; } if (layer != 0) { setTransactionFlags(eTransactionNeeded); surfaceHandle = layer->getSurface(); if (surfaceHandle != 0) { params->token = surfaceHandle->getToken(); params->identity = surfaceHandle->getIdentity(); params->width = w; params->height = h; params->format = format; } } return surfaceHandle; } sp SurfaceFlinger::createNormalSurfaceLocked( const sp& client, DisplayID display, int32_t id, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format) { // initialize the surfaces switch (format) { // TODO: take h/w into account case PIXEL_FORMAT_TRANSPARENT: case PIXEL_FORMAT_TRANSLUCENT: format = PIXEL_FORMAT_RGBA_8888; break; case PIXEL_FORMAT_OPAQUE: format = PIXEL_FORMAT_RGB_565; break; } sp layer = new Layer(this, display, client, id); status_t err = layer->setBuffers(w, h, format, flags); if (LIKELY(err == NO_ERROR)) { layer->initStates(w, h, flags); addLayer_l(layer); } else { LOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err)); layer.clear(); } return layer; } sp SurfaceFlinger::createBlurSurfaceLocked( const sp& client, DisplayID display, int32_t id, uint32_t w, uint32_t h, uint32_t flags) { sp layer = new LayerBlur(this, display, client, id); layer->initStates(w, h, flags); addLayer_l(layer); return layer; } sp SurfaceFlinger::createDimSurfaceLocked( const sp& client, DisplayID display, int32_t id, uint32_t w, uint32_t h, uint32_t flags) { sp layer = new LayerDim(this, display, client, id); layer->initStates(w, h, flags); addLayer_l(layer); return layer; } sp SurfaceFlinger::createPushBuffersSurfaceLocked( const sp& client, DisplayID display, int32_t id, uint32_t w, uint32_t h, uint32_t flags) { sp layer = new LayerBuffer(this, display, client, id); layer->initStates(w, h, flags); addLayer_l(layer); return layer; } status_t SurfaceFlinger::removeSurface(SurfaceID index) { /* * called by the window manager, when a surface should be marked for * destruction. * * The surface is removed from the current and drawing lists, but placed * in the purgatory queue, so it's not destroyed right-away (we need * to wait for all client's references to go away first). */ status_t err = NAME_NOT_FOUND; Mutex::Autolock _l(mStateLock); sp layer = getLayerUser_l(index); if (layer != 0) { err = purgatorizeLayer_l(layer); if (err == NO_ERROR) { layer->onRemoved(); setTransactionFlags(eTransactionNeeded); } } return err; } status_t SurfaceFlinger::destroySurface(const sp& layer) { // called by ~ISurface() when all references are gone class MessageDestroySurface : public MessageBase { SurfaceFlinger* flinger; sp layer; public: MessageDestroySurface( SurfaceFlinger* flinger, const sp& layer) : flinger(flinger), layer(layer) { } virtual bool handler() { sp l(layer); layer.clear(); // clear it outside of the lock; Mutex::Autolock _l(flinger->mStateLock); /* * remove the layer from the current list -- chances are that it's * not in the list anyway, because it should have been removed * already upon request of the client (eg: window manager). * However, a buggy client could have not done that. * Since we know we don't have any more clients, we don't need * to use the purgatory. */ status_t err = flinger->removeLayer_l(l); LOGE_IF(err<0 && err != NAME_NOT_FOUND, "error removing layer=%p (%s)", l.get(), strerror(-err)); return true; } }; mEventQueue.postMessage( new MessageDestroySurface(this, layer) ); return NO_ERROR; } status_t SurfaceFlinger::setClientState( ClientID cid, int32_t count, const layer_state_t* states) { Mutex::Autolock _l(mStateLock); uint32_t flags = 0; cid <<= 16; for (int i=0 ; i layer(getLayerUser_l(s.surface | cid)); if (layer != 0) { const uint32_t what = s.what; if (what & ePositionChanged) { if (layer->setPosition(s.x, s.y)) flags |= eTraversalNeeded; } if (what & eLayerChanged) { if (layer->setLayer(s.z)) { mCurrentState.layersSortedByZ.reorder( layer, &Layer::compareCurrentStateZ); // we need traversal (state changed) // AND transaction (list changed) flags |= eTransactionNeeded|eTraversalNeeded; } } if (what & eSizeChanged) { if (layer->setSize(s.w, s.h)) { flags |= eTraversalNeeded; mResizeTransationPending = true; } } if (what & eAlphaChanged) { if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f))) flags |= eTraversalNeeded; } if (what & eMatrixChanged) { if (layer->setMatrix(s.matrix)) flags |= eTraversalNeeded; } if (what & eTransparentRegionChanged) { if (layer->setTransparentRegionHint(s.transparentRegion)) flags |= eTraversalNeeded; } if (what & eVisibilityChanged) { if (layer->setFlags(s.flags, s.mask)) flags |= eTraversalNeeded; } } } if (flags) { setTransactionFlags(flags); } return NO_ERROR; } sp SurfaceFlinger::getLayerUser_l(SurfaceID s) const { sp layer = mLayerMap.valueFor(s); return layer; } void SurfaceFlinger::screenReleased(int dpy) { // this may be called by a signal handler, we can't do too much in here android_atomic_or(eConsoleReleased, &mConsoleSignals); signalEvent(); } void SurfaceFlinger::screenAcquired(int dpy) { // this may be called by a signal handler, we can't do too much in here android_atomic_or(eConsoleAcquired, &mConsoleSignals); signalEvent(); } status_t SurfaceFlinger::dump(int fd, const Vector& args) { const size_t SIZE = 1024; char buffer[SIZE]; String8 result; if (!mDump.checkCalling()) { snprintf(buffer, SIZE, "Permission Denial: " "can't dump SurfaceFlinger from pid=%d, uid=%d\n", IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); result.append(buffer); } else { // figure out if we're stuck somewhere const nsecs_t now = systemTime(); const nsecs_t inSwapBuffers(mDebugInSwapBuffers); const nsecs_t inTransaction(mDebugInTransaction); nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0; nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0; // Try to get the main lock, but don't insist if we can't // (this would indicate SF is stuck, but we want to be able to // print something in dumpsys). int retry = 3; while (mStateLock.tryLock()<0 && --retry>=0) { usleep(1000000); } const bool locked(retry >= 0); if (!locked) { snprintf(buffer, SIZE, "SurfaceFlinger appears to be unresponsive, " "dumping anyways (no locks held)\n"); result.append(buffer); } size_t s = mClientsMap.size(); char name[64]; for (size_t i=0 ; i client = mClientsMap.valueAt(i); sprintf(name, " Client (id=0x%08x)", client->cid); client->dump(name); } const LayerVector& currentLayers = mCurrentState.layersSortedByZ; const size_t count = currentLayers.size(); for (size_t i=0 ; i& layer = currentLayers[i]; const Layer::State& s = layer->drawingState(); snprintf(buffer, SIZE, "+ %s %p\n" " " "z=%9d, pos=(%4d,%4d), size=(%4d,%4d), " "needsBlending=%1d, invalidate=%1d, " "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n", layer->getTypeID(), layer.get(), s.z, layer->tx(), layer->ty(), s.w, s.h, layer->needsBlending(), layer->contentDirty, s.alpha, s.flags, s.transform[0], s.transform[1], s.transform[2], s.transform[3]); result.append(buffer); buffer[0] = 0; /*** LayerBaseClient ***/ sp lbc = LayerBase::dynamicCast< LayerBaseClient* >(layer.get()); if (lbc != 0) { sp client(lbc->client.promote()); snprintf(buffer, SIZE, " " "id=0x%08x, client=0x%08x, identity=%u\n", lbc->clientIndex(), client.get() ? client->cid : 0, lbc->getIdentity()); result.append(buffer); buffer[0] = 0; } /*** Layer ***/ sp l = LayerBase::dynamicCast< Layer* >(layer.get()); if (l != 0) { result.append( l->lcblk->dump(" ") ); sp buf0(l->getBuffer(0)); sp buf1(l->getBuffer(1)); uint32_t w0=0, h0=0, s0=0; uint32_t w1=0, h1=0, s1=0; if (buf0 != 0) { w0 = buf0->getWidth(); h0 = buf0->getHeight(); s0 = buf0->getStride(); } if (buf1 != 0) { w1 = buf1->getWidth(); h1 = buf1->getHeight(); s1 = buf1->getStride(); } snprintf(buffer, SIZE, " " "format=%2d, [%3ux%3u:%3u] [%3ux%3u:%3u]," " freezeLock=%p\n", l->pixelFormat(), w0, h0, s0, w1, h1, s1, l->getFreezeLock().get()); result.append(buffer); buffer[0] = 0; } s.transparentRegion.dump(result, "transparentRegion"); layer->transparentRegionScreen.dump(result, "transparentRegionScreen"); layer->visibleRegionScreen.dump(result, "visibleRegionScreen"); } mWormholeRegion.dump(result, "WormholeRegion"); const DisplayHardware& hw(graphicPlane(0).displayHardware()); snprintf(buffer, SIZE, " display frozen: %s, freezeCount=%d, orientation=%d, canDraw=%d\n", mFreezeDisplay?"yes":"no", mFreezeCount, mCurrentState.orientation, hw.canDraw()); result.append(buffer); snprintf(buffer, SIZE, " last eglSwapBuffers() time: %f us\n" " last transaction time : %f us\n", mLastSwapBufferTime/1000.0, mLastTransactionTime/1000.0); result.append(buffer); if (inSwapBuffersDuration || !locked) { snprintf(buffer, SIZE, " eglSwapBuffers time: %f us\n", inSwapBuffersDuration/1000.0); result.append(buffer); } if (inTransactionDuration || !locked) { snprintf(buffer, SIZE, " transaction time: %f us\n", inTransactionDuration/1000.0); result.append(buffer); } snprintf(buffer, SIZE, " client count: %d\n", mClientsMap.size()); result.append(buffer); const BufferAllocator& alloc(BufferAllocator::get()); alloc.dump(result); if (locked) { mStateLock.unlock(); } } write(fd, result.string(), result.size()); return NO_ERROR; } status_t SurfaceFlinger::onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { switch (code) { case CREATE_CONNECTION: case OPEN_GLOBAL_TRANSACTION: case CLOSE_GLOBAL_TRANSACTION: case SET_ORIENTATION: case FREEZE_DISPLAY: case UNFREEZE_DISPLAY: case BOOT_FINISHED: { // codes that require permission check IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); if ((uid != AID_GRAPHICS) && !mAccessSurfaceFlinger.check(pid, uid)) { LOGE("Permission Denial: " "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } } } status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags); if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) { CHECK_INTERFACE(ISurfaceComposer, data, reply); if (UNLIKELY(!mHardwareTest.checkCalling())) { IPCThreadState* ipc = IPCThreadState::self(); const int pid = ipc->getCallingPid(); const int uid = ipc->getCallingUid(); LOGE("Permission Denial: " "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); return PERMISSION_DENIED; } int n; switch (code) { case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE return NO_ERROR; case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE return NO_ERROR; case 1002: // SHOW_UPDATES n = data.readInt32(); mDebugRegion = n ? n : (mDebugRegion ? 0 : 1); return NO_ERROR; case 1003: // SHOW_BACKGROUND n = data.readInt32(); mDebugBackground = n ? 1 : 0; return NO_ERROR; case 1004:{ // repaint everything Mutex::Autolock _l(mStateLock); const DisplayHardware& hw(graphicPlane(0).displayHardware()); mDirtyRegion.set(hw.bounds()); // careful that's not thread-safe signalEvent(); return NO_ERROR; } case 1005:{ // force transaction setTransactionFlags(eTransactionNeeded|eTraversalNeeded); return NO_ERROR; } case 1007: // set mFreezeCount mFreezeCount = data.readInt32(); return NO_ERROR; case 1010: // interrogate. reply->writeInt32(0); reply->writeInt32(0); reply->writeInt32(mDebugRegion); reply->writeInt32(mDebugBackground); return NO_ERROR; case 1013: { Mutex::Autolock _l(mStateLock); const DisplayHardware& hw(graphicPlane(0).displayHardware()); reply->writeInt32(hw.getPageFlipCount()); } return NO_ERROR; } } return err; } // --------------------------------------------------------------------------- #if 0 #pragma mark - #endif Client::Client(ClientID clientID, const sp& flinger) : ctrlblk(0), cid(clientID), mPid(0), mBitmap(0), mFlinger(flinger) { const int pgsize = getpagesize(); const int cblksize = ((sizeof(SharedClient)+(pgsize-1))&~(pgsize-1)); mCblkHeap = new MemoryHeapBase(cblksize, 0, "SurfaceFlinger Client control-block"); ctrlblk = static_cast(mCblkHeap->getBase()); if (ctrlblk) { // construct the shared structure in-place. new(ctrlblk) SharedClient; } } Client::~Client() { if (ctrlblk) { ctrlblk->~SharedClient(); // destroy our shared-structure. } } int32_t Client::generateId(int pid) { const uint32_t i = clz( ~mBitmap ); if (i >= NUM_LAYERS_MAX) { return NO_MEMORY; } mPid = pid; mInUse.add(uint8_t(i)); mBitmap |= 1<<(31-i); return i; } status_t Client::bindLayer(const sp& layer, int32_t id) { ssize_t idx = mInUse.indexOf(id); if (idx < 0) return NAME_NOT_FOUND; return mLayers.insertAt(layer, idx); } void Client::free(int32_t id) { ssize_t idx = mInUse.remove(uint8_t(id)); if (idx >= 0) { mBitmap &= ~(1<<(31-id)); mLayers.removeItemsAt(idx); } } bool Client::isValid(int32_t i) const { return (uint32_t(i) Client::getLayerUser(int32_t i) const { sp lbc; ssize_t idx = mInUse.indexOf(uint8_t(i)); if (idx >= 0) { lbc = mLayers[idx].promote(); LOGE_IF(lbc==0, "getLayerUser(i=%d), idx=%d is dead", int(i), int(idx)); } return lbc; } void Client::dump(const char* what) { } // --------------------------------------------------------------------------- #if 0 #pragma mark - #endif BClient::BClient(SurfaceFlinger *flinger, ClientID cid, const sp& cblk) : mId(cid), mFlinger(flinger), mCblk(cblk) { } BClient::~BClient() { // destroy all resources attached to this client mFlinger->destroyConnection(mId); } sp BClient::getControlBlock() const { return mCblk; } sp BClient::createSurface( ISurfaceFlingerClient::surface_data_t* params, int pid, DisplayID display, uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) { return mFlinger->createSurface(mId, pid, params, display, w, h, format, flags); } status_t BClient::destroySurface(SurfaceID sid) { sid |= (mId << 16); // add the client-part to id return mFlinger->removeSurface(sid); } status_t BClient::setState(int32_t count, const layer_state_t* states) { return mFlinger->setClientState(mId, count, states); } // --------------------------------------------------------------------------- GraphicPlane::GraphicPlane() : mHw(0) { } GraphicPlane::~GraphicPlane() { delete mHw; } bool GraphicPlane::initialized() const { return mHw ? true : false; } void GraphicPlane::setDisplayHardware(DisplayHardware *hw) { mHw = hw; } void GraphicPlane::setTransform(const Transform& tr) { mTransform = tr; mGlobalTransform = mOrientationTransform * mTransform; } status_t GraphicPlane::orientationToTransfrom( int orientation, int w, int h, Transform* tr) { float a, b, c, d, x, y; switch (orientation) { case ISurfaceComposer::eOrientationDefault: a=1; b=0; c=0; d=1; x=0; y=0; break; case ISurfaceComposer::eOrientation90: a=0; b=-1; c=1; d=0; x=w; y=0; break; case ISurfaceComposer::eOrientation180: a=-1; b=0; c=0; d=-1; x=w; y=h; break; case ISurfaceComposer::eOrientation270: a=0; b=1; c=-1; d=0; x=0; y=h; break; default: return BAD_VALUE; } tr->set(a, b, c, d); tr->set(x, y); return NO_ERROR; } status_t GraphicPlane::setOrientation(int orientation) { const DisplayHardware& hw(displayHardware()); const float w = hw.getWidth(); const float h = hw.getHeight(); if (orientation == ISurfaceComposer::eOrientationDefault) { // make sure the default orientation is optimal mOrientationTransform.reset(); mOrientation = orientation; mGlobalTransform = mTransform; return NO_ERROR; } // If the rotation can be handled in hardware, this is where // the magic should happen. if (UNLIKELY(orientation == 42)) { float a, b, c, d, x, y; const float r = (3.14159265f / 180.0f) * 42.0f; const float si = sinf(r); const float co = cosf(r); a=co; b=-si; c=si; d=co; x = si*(h*0.5f) + (1-co)*(w*0.5f); y =-si*(w*0.5f) + (1-co)*(h*0.5f); mOrientationTransform.set(a, b, c, d); mOrientationTransform.set(x, y); } else { GraphicPlane::orientationToTransfrom(orientation, w, h, &mOrientationTransform); } mOrientation = orientation; mGlobalTransform = mOrientationTransform * mTransform; return NO_ERROR; } const DisplayHardware& GraphicPlane::displayHardware() const { return *mHw; } const Transform& GraphicPlane::transform() const { return mGlobalTransform; } EGLDisplay GraphicPlane::getEGLDisplay() const { return mHw->getEGLDisplay(); } // --------------------------------------------------------------------------- }; // namespace android