/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "KeyCharacterMap" #include #include #if HAVE_ANDROID_OS #include #endif #include #include #include #include #include #include #include #include // Enables debug output for the parser. #define DEBUG_PARSER 0 // Enables debug output for parser performance. #define DEBUG_PARSER_PERFORMANCE 0 // Enables debug output for mapping. #define DEBUG_MAPPING 0 namespace android { static const char* WHITESPACE = " \t\r"; static const char* WHITESPACE_OR_PROPERTY_DELIMITER = " \t\r,:"; struct Modifier { const char* label; int32_t metaState; }; static const Modifier modifiers[] = { { "shift", AMETA_SHIFT_ON }, { "lshift", AMETA_SHIFT_LEFT_ON }, { "rshift", AMETA_SHIFT_RIGHT_ON }, { "alt", AMETA_ALT_ON }, { "lalt", AMETA_ALT_LEFT_ON }, { "ralt", AMETA_ALT_RIGHT_ON }, { "ctrl", AMETA_CTRL_ON }, { "lctrl", AMETA_CTRL_LEFT_ON }, { "rctrl", AMETA_CTRL_RIGHT_ON }, { "meta", AMETA_META_ON }, { "lmeta", AMETA_META_LEFT_ON }, { "rmeta", AMETA_META_RIGHT_ON }, { "sym", AMETA_SYM_ON }, { "fn", AMETA_FUNCTION_ON }, { "capslock", AMETA_CAPS_LOCK_ON }, { "numlock", AMETA_NUM_LOCK_ON }, { "scrolllock", AMETA_SCROLL_LOCK_ON }, }; #if DEBUG_MAPPING static String8 toString(const char16_t* chars, size_t numChars) { String8 result; for (size_t i = 0; i < numChars; i++) { result.appendFormat(i == 0 ? "%d" : ", %d", chars[i]); } return result; } #endif // --- KeyCharacterMap --- sp KeyCharacterMap::sEmpty = new KeyCharacterMap(); KeyCharacterMap::KeyCharacterMap() : mType(KEYBOARD_TYPE_UNKNOWN) { } KeyCharacterMap::KeyCharacterMap(const KeyCharacterMap& other) : RefBase(), mType(other.mType), mKeysByScanCode(other.mKeysByScanCode), mKeysByUsageCode(other.mKeysByUsageCode) { for (size_t i = 0; i < other.mKeys.size(); i++) { mKeys.add(other.mKeys.keyAt(i), new Key(*other.mKeys.valueAt(i))); } } KeyCharacterMap::~KeyCharacterMap() { for (size_t i = 0; i < mKeys.size(); i++) { Key* key = mKeys.editValueAt(i); delete key; } } status_t KeyCharacterMap::load(const String8& filename, Format format, sp* outMap) { outMap->clear(); Tokenizer* tokenizer; status_t status = Tokenizer::open(filename, &tokenizer); if (status) { ALOGE("Error %d opening key character map file %s.", status, filename.string()); } else { status = load(tokenizer, format, outMap); delete tokenizer; } return status; } status_t KeyCharacterMap::loadContents(const String8& filename, const char* contents, Format format, sp* outMap) { outMap->clear(); Tokenizer* tokenizer; status_t status = Tokenizer::fromContents(filename, contents, &tokenizer); if (status) { ALOGE("Error %d opening key character map.", status); } else { status = load(tokenizer, format, outMap); delete tokenizer; } return status; } status_t KeyCharacterMap::load(Tokenizer* tokenizer, Format format, sp* outMap) { status_t status = OK; sp map = new KeyCharacterMap(); if (!map.get()) { ALOGE("Error allocating key character map."); status = NO_MEMORY; } else { #if DEBUG_PARSER_PERFORMANCE nsecs_t startTime = systemTime(SYSTEM_TIME_MONOTONIC); #endif Parser parser(map.get(), tokenizer, format); status = parser.parse(); #if DEBUG_PARSER_PERFORMANCE nsecs_t elapsedTime = systemTime(SYSTEM_TIME_MONOTONIC) - startTime; ALOGD("Parsed key character map file '%s' %d lines in %0.3fms.", tokenizer->getFilename().string(), tokenizer->getLineNumber(), elapsedTime / 1000000.0); #endif if (!status) { *outMap = map; } } return status; } sp KeyCharacterMap::combine(const sp& base, const sp& overlay) { if (overlay == NULL) { return base; } if (base == NULL) { return overlay; } sp map = new KeyCharacterMap(*base.get()); for (size_t i = 0; i < overlay->mKeys.size(); i++) { int32_t keyCode = overlay->mKeys.keyAt(i); Key* key = overlay->mKeys.valueAt(i); ssize_t oldIndex = map->mKeys.indexOfKey(keyCode); if (oldIndex >= 0) { delete map->mKeys.valueAt(oldIndex); map->mKeys.editValueAt(oldIndex) = new Key(*key); } else { map->mKeys.add(keyCode, new Key(*key)); } } for (size_t i = 0; i < overlay->mKeysByScanCode.size(); i++) { map->mKeysByScanCode.replaceValueFor(overlay->mKeysByScanCode.keyAt(i), overlay->mKeysByScanCode.valueAt(i)); } for (size_t i = 0; i < overlay->mKeysByUsageCode.size(); i++) { map->mKeysByUsageCode.replaceValueFor(overlay->mKeysByUsageCode.keyAt(i), overlay->mKeysByUsageCode.valueAt(i)); } return map; } sp KeyCharacterMap::empty() { return sEmpty; } int32_t KeyCharacterMap::getKeyboardType() const { return mType; } char16_t KeyCharacterMap::getDisplayLabel(int32_t keyCode) const { char16_t result = 0; const Key* key; if (getKey(keyCode, &key)) { result = key->label; } #if DEBUG_MAPPING ALOGD("getDisplayLabel: keyCode=%d ~ Result %d.", keyCode, result); #endif return result; } char16_t KeyCharacterMap::getNumber(int32_t keyCode) const { char16_t result = 0; const Key* key; if (getKey(keyCode, &key)) { result = key->number; } #if DEBUG_MAPPING ALOGD("getNumber: keyCode=%d ~ Result %d.", keyCode, result); #endif return result; } char16_t KeyCharacterMap::getCharacter(int32_t keyCode, int32_t metaState) const { char16_t result = 0; const Key* key; const Behavior* behavior; if (getKeyBehavior(keyCode, metaState, &key, &behavior)) { result = behavior->character; } #if DEBUG_MAPPING ALOGD("getCharacter: keyCode=%d, metaState=0x%08x ~ Result %d.", keyCode, metaState, result); #endif return result; } bool KeyCharacterMap::getFallbackAction(int32_t keyCode, int32_t metaState, FallbackAction* outFallbackAction) const { outFallbackAction->keyCode = 0; outFallbackAction->metaState = 0; bool result = false; const Key* key; const Behavior* behavior; if (getKeyBehavior(keyCode, metaState, &key, &behavior)) { if (behavior->fallbackKeyCode) { outFallbackAction->keyCode = behavior->fallbackKeyCode; outFallbackAction->metaState = metaState & ~behavior->metaState; result = true; } } #if DEBUG_MAPPING ALOGD("getFallbackKeyCode: keyCode=%d, metaState=0x%08x ~ Result %s, " "fallback keyCode=%d, fallback metaState=0x%08x.", keyCode, metaState, result ? "true" : "false", outFallbackAction->keyCode, outFallbackAction->metaState); #endif return result; } char16_t KeyCharacterMap::getMatch(int32_t keyCode, const char16_t* chars, size_t numChars, int32_t metaState) const { char16_t result = 0; const Key* key; if (getKey(keyCode, &key)) { // Try to find the most general behavior that maps to this character. // For example, the base key behavior will usually be last in the list. // However, if we find a perfect meta state match for one behavior then use that one. for (const Behavior* behavior = key->firstBehavior; behavior; behavior = behavior->next) { if (behavior->character) { for (size_t i = 0; i < numChars; i++) { if (behavior->character == chars[i]) { result = behavior->character; if ((behavior->metaState & metaState) == behavior->metaState) { goto ExactMatch; } break; } } } } ExactMatch: ; } #if DEBUG_MAPPING ALOGD("getMatch: keyCode=%d, chars=[%s], metaState=0x%08x ~ Result %d.", keyCode, toString(chars, numChars).string(), metaState, result); #endif return result; } bool KeyCharacterMap::getEvents(int32_t deviceId, const char16_t* chars, size_t numChars, Vector& outEvents) const { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); for (size_t i = 0; i < numChars; i++) { int32_t keyCode, metaState; char16_t ch = chars[i]; if (!findKey(ch, &keyCode, &metaState)) { #if DEBUG_MAPPING ALOGD("getEvents: deviceId=%d, chars=[%s] ~ Failed to find mapping for character %d.", deviceId, toString(chars, numChars).string(), ch); #endif return false; } int32_t currentMetaState = 0; addMetaKeys(outEvents, deviceId, metaState, true, now, ¤tMetaState); addKey(outEvents, deviceId, keyCode, currentMetaState, true, now); addKey(outEvents, deviceId, keyCode, currentMetaState, false, now); addMetaKeys(outEvents, deviceId, metaState, false, now, ¤tMetaState); } #if DEBUG_MAPPING ALOGD("getEvents: deviceId=%d, chars=[%s] ~ Generated %d events.", deviceId, toString(chars, numChars).string(), int32_t(outEvents.size())); for (size_t i = 0; i < outEvents.size(); i++) { ALOGD(" Key: keyCode=%d, metaState=0x%08x, %s.", outEvents[i].getKeyCode(), outEvents[i].getMetaState(), outEvents[i].getAction() == AKEY_EVENT_ACTION_DOWN ? "down" : "up"); } #endif return true; } status_t KeyCharacterMap::mapKey(int32_t scanCode, int32_t usageCode, int32_t* outKeyCode) const { if (usageCode) { ssize_t index = mKeysByUsageCode.indexOfKey(usageCode); if (index >= 0) { *outKeyCode = mKeysByUsageCode.valueAt(index); #if DEBUG_MAPPING ALOGD("mapKey: scanCode=%d, usageCode=0x%08x ~ Result keyCode=%d.", scanCode, usageCode, *outKeyCode); #endif return OK; } } if (scanCode) { ssize_t index = mKeysByScanCode.indexOfKey(scanCode); if (index >= 0) { *outKeyCode = mKeysByScanCode.valueAt(index); #if DEBUG_MAPPING ALOGD("mapKey: scanCode=%d, usageCode=0x%08x ~ Result keyCode=%d.", scanCode, usageCode, *outKeyCode); #endif return OK; } } #if DEBUG_MAPPING ALOGD("mapKey: scanCode=%d, usageCode=0x%08x ~ Failed.", scanCode, usageCode); #endif *outKeyCode = AKEYCODE_UNKNOWN; return NAME_NOT_FOUND; } void KeyCharacterMap::tryRemapKey(int32_t keyCode, int32_t metaState, int32_t *outKeyCode, int32_t *outMetaState) const { *outKeyCode = keyCode; *outMetaState = metaState; const Key* key; const Behavior* behavior; if (getKeyBehavior(keyCode, metaState, &key, &behavior)) { if (behavior->replacementKeyCode) { *outKeyCode = behavior->replacementKeyCode; int32_t newMetaState = metaState & ~behavior->metaState; // Reset dependent meta states. if (behavior->metaState & AMETA_ALT_ON) { newMetaState &= ~(AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON); } if (behavior->metaState & (AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON)) { newMetaState &= ~AMETA_ALT_ON; } if (behavior->metaState & AMETA_CTRL_ON) { newMetaState &= ~(AMETA_CTRL_LEFT_ON | AMETA_CTRL_RIGHT_ON); } if (behavior->metaState & (AMETA_CTRL_LEFT_ON | AMETA_CTRL_RIGHT_ON)) { newMetaState &= ~AMETA_CTRL_ON; } if (behavior->metaState & AMETA_SHIFT_ON) { newMetaState &= ~(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_RIGHT_ON); } if (behavior->metaState & (AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_RIGHT_ON)) { newMetaState &= ~AMETA_SHIFT_ON; } // ... and put universal bits back if needed *outMetaState = normalizeMetaState(newMetaState); } } #if DEBUG_MAPPING ALOGD("tryRemapKey: keyCode=%d, metaState=0x%08x ~ " "replacement keyCode=%d, replacement metaState=0x%08x.", keyCode, metaState, *outKeyCode, *outMetaState); #endif } bool KeyCharacterMap::getKey(int32_t keyCode, const Key** outKey) const { ssize_t index = mKeys.indexOfKey(keyCode); if (index >= 0) { *outKey = mKeys.valueAt(index); return true; } return false; } bool KeyCharacterMap::getKeyBehavior(int32_t keyCode, int32_t metaState, const Key** outKey, const Behavior** outBehavior) const { const Key* key; if (getKey(keyCode, &key)) { const Behavior* behavior = key->firstBehavior; while (behavior) { if (matchesMetaState(metaState, behavior->metaState)) { *outKey = key; *outBehavior = behavior; return true; } behavior = behavior->next; } } return false; } bool KeyCharacterMap::matchesMetaState(int32_t eventMetaState, int32_t behaviorMetaState) { // Behavior must have at least the set of meta states specified. // And if the key event has CTRL, ALT or META then the behavior must exactly // match those, taking into account that a behavior can specify that it handles // one, both or either of a left/right modifier pair. if ((eventMetaState & behaviorMetaState) == behaviorMetaState) { const int32_t EXACT_META_STATES = AMETA_CTRL_ON | AMETA_CTRL_LEFT_ON | AMETA_CTRL_RIGHT_ON | AMETA_ALT_ON | AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON | AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON; int32_t unmatchedMetaState = eventMetaState & ~behaviorMetaState & EXACT_META_STATES; if (behaviorMetaState & AMETA_CTRL_ON) { unmatchedMetaState &= ~(AMETA_CTRL_LEFT_ON | AMETA_CTRL_RIGHT_ON); } else if (behaviorMetaState & (AMETA_CTRL_LEFT_ON | AMETA_CTRL_RIGHT_ON)) { unmatchedMetaState &= ~AMETA_CTRL_ON; } if (behaviorMetaState & AMETA_ALT_ON) { unmatchedMetaState &= ~(AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON); } else if (behaviorMetaState & (AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON)) { unmatchedMetaState &= ~AMETA_ALT_ON; } if (behaviorMetaState & AMETA_META_ON) { unmatchedMetaState &= ~(AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON); } else if (behaviorMetaState & (AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON)) { unmatchedMetaState &= ~AMETA_META_ON; } return !unmatchedMetaState; } return false; } bool KeyCharacterMap::findKey(char16_t ch, int32_t* outKeyCode, int32_t* outMetaState) const { if (!ch) { return false; } for (size_t i = 0; i < mKeys.size(); i++) { const Key* key = mKeys.valueAt(i); // Try to find the most general behavior that maps to this character. // For example, the base key behavior will usually be last in the list. const Behavior* found = NULL; for (const Behavior* behavior = key->firstBehavior; behavior; behavior = behavior->next) { if (behavior->character == ch) { found = behavior; } } if (found) { *outKeyCode = mKeys.keyAt(i); *outMetaState = found->metaState; return true; } } return false; } void KeyCharacterMap::addKey(Vector& outEvents, int32_t deviceId, int32_t keyCode, int32_t metaState, bool down, nsecs_t time) { outEvents.push(); KeyEvent& event = outEvents.editTop(); event.initialize(deviceId, AINPUT_SOURCE_KEYBOARD, down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP, 0, keyCode, 0, metaState, 0, time, time); } void KeyCharacterMap::addMetaKeys(Vector& outEvents, int32_t deviceId, int32_t metaState, bool down, nsecs_t time, int32_t* currentMetaState) { // Add and remove meta keys symmetrically. if (down) { addLockedMetaKey(outEvents, deviceId, metaState, time, AKEYCODE_CAPS_LOCK, AMETA_CAPS_LOCK_ON, currentMetaState); addLockedMetaKey(outEvents, deviceId, metaState, time, AKEYCODE_NUM_LOCK, AMETA_NUM_LOCK_ON, currentMetaState); addLockedMetaKey(outEvents, deviceId, metaState, time, AKEYCODE_SCROLL_LOCK, AMETA_SCROLL_LOCK_ON, currentMetaState); addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, true, time, AKEYCODE_SHIFT_LEFT, AMETA_SHIFT_LEFT_ON, AKEYCODE_SHIFT_RIGHT, AMETA_SHIFT_RIGHT_ON, AMETA_SHIFT_ON, currentMetaState); addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, true, time, AKEYCODE_ALT_LEFT, AMETA_ALT_LEFT_ON, AKEYCODE_ALT_RIGHT, AMETA_ALT_RIGHT_ON, AMETA_ALT_ON, currentMetaState); addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, true, time, AKEYCODE_CTRL_LEFT, AMETA_CTRL_LEFT_ON, AKEYCODE_CTRL_RIGHT, AMETA_CTRL_RIGHT_ON, AMETA_CTRL_ON, currentMetaState); addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, true, time, AKEYCODE_META_LEFT, AMETA_META_LEFT_ON, AKEYCODE_META_RIGHT, AMETA_META_RIGHT_ON, AMETA_META_ON, currentMetaState); addSingleEphemeralMetaKey(outEvents, deviceId, metaState, true, time, AKEYCODE_SYM, AMETA_SYM_ON, currentMetaState); addSingleEphemeralMetaKey(outEvents, deviceId, metaState, true, time, AKEYCODE_FUNCTION, AMETA_FUNCTION_ON, currentMetaState); } else { addSingleEphemeralMetaKey(outEvents, deviceId, metaState, false, time, AKEYCODE_FUNCTION, AMETA_FUNCTION_ON, currentMetaState); addSingleEphemeralMetaKey(outEvents, deviceId, metaState, false, time, AKEYCODE_SYM, AMETA_SYM_ON, currentMetaState); addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, false, time, AKEYCODE_META_LEFT, AMETA_META_LEFT_ON, AKEYCODE_META_RIGHT, AMETA_META_RIGHT_ON, AMETA_META_ON, currentMetaState); addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, false, time, AKEYCODE_CTRL_LEFT, AMETA_CTRL_LEFT_ON, AKEYCODE_CTRL_RIGHT, AMETA_CTRL_RIGHT_ON, AMETA_CTRL_ON, currentMetaState); addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, false, time, AKEYCODE_ALT_LEFT, AMETA_ALT_LEFT_ON, AKEYCODE_ALT_RIGHT, AMETA_ALT_RIGHT_ON, AMETA_ALT_ON, currentMetaState); addDoubleEphemeralMetaKey(outEvents, deviceId, metaState, false, time, AKEYCODE_SHIFT_LEFT, AMETA_SHIFT_LEFT_ON, AKEYCODE_SHIFT_RIGHT, AMETA_SHIFT_RIGHT_ON, AMETA_SHIFT_ON, currentMetaState); addLockedMetaKey(outEvents, deviceId, metaState, time, AKEYCODE_SCROLL_LOCK, AMETA_SCROLL_LOCK_ON, currentMetaState); addLockedMetaKey(outEvents, deviceId, metaState, time, AKEYCODE_NUM_LOCK, AMETA_NUM_LOCK_ON, currentMetaState); addLockedMetaKey(outEvents, deviceId, metaState, time, AKEYCODE_CAPS_LOCK, AMETA_CAPS_LOCK_ON, currentMetaState); } } bool KeyCharacterMap::addSingleEphemeralMetaKey(Vector& outEvents, int32_t deviceId, int32_t metaState, bool down, nsecs_t time, int32_t keyCode, int32_t keyMetaState, int32_t* currentMetaState) { if ((metaState & keyMetaState) == keyMetaState) { *currentMetaState = updateMetaState(keyCode, down, *currentMetaState); addKey(outEvents, deviceId, keyCode, *currentMetaState, down, time); return true; } return false; } void KeyCharacterMap::addDoubleEphemeralMetaKey(Vector& outEvents, int32_t deviceId, int32_t metaState, bool down, nsecs_t time, int32_t leftKeyCode, int32_t leftKeyMetaState, int32_t rightKeyCode, int32_t rightKeyMetaState, int32_t eitherKeyMetaState, int32_t* currentMetaState) { bool specific = false; specific |= addSingleEphemeralMetaKey(outEvents, deviceId, metaState, down, time, leftKeyCode, leftKeyMetaState, currentMetaState); specific |= addSingleEphemeralMetaKey(outEvents, deviceId, metaState, down, time, rightKeyCode, rightKeyMetaState, currentMetaState); if (!specific) { addSingleEphemeralMetaKey(outEvents, deviceId, metaState, down, time, leftKeyCode, eitherKeyMetaState, currentMetaState); } } void KeyCharacterMap::addLockedMetaKey(Vector& outEvents, int32_t deviceId, int32_t metaState, nsecs_t time, int32_t keyCode, int32_t keyMetaState, int32_t* currentMetaState) { if ((metaState & keyMetaState) == keyMetaState) { *currentMetaState = updateMetaState(keyCode, true, *currentMetaState); addKey(outEvents, deviceId, keyCode, *currentMetaState, true, time); *currentMetaState = updateMetaState(keyCode, false, *currentMetaState); addKey(outEvents, deviceId, keyCode, *currentMetaState, false, time); } } #if HAVE_ANDROID_OS sp KeyCharacterMap::readFromParcel(Parcel* parcel) { sp map = new KeyCharacterMap(); map->mType = parcel->readInt32(); size_t numKeys = parcel->readInt32(); if (parcel->errorCheck()) { return NULL; } for (size_t i = 0; i < numKeys; i++) { int32_t keyCode = parcel->readInt32(); char16_t label = parcel->readInt32(); char16_t number = parcel->readInt32(); if (parcel->errorCheck()) { return NULL; } Key* key = new Key(); key->label = label; key->number = number; map->mKeys.add(keyCode, key); Behavior* lastBehavior = NULL; while (parcel->readInt32()) { int32_t metaState = parcel->readInt32(); char16_t character = parcel->readInt32(); int32_t fallbackKeyCode = parcel->readInt32(); int32_t replacementKeyCode = parcel->readInt32(); if (parcel->errorCheck()) { return NULL; } Behavior* behavior = new Behavior(); behavior->metaState = metaState; behavior->character = character; behavior->fallbackKeyCode = fallbackKeyCode; behavior->replacementKeyCode = replacementKeyCode; if (lastBehavior) { lastBehavior->next = behavior; } else { key->firstBehavior = behavior; } lastBehavior = behavior; } if (parcel->errorCheck()) { return NULL; } } return map; } void KeyCharacterMap::writeToParcel(Parcel* parcel) const { parcel->writeInt32(mType); size_t numKeys = mKeys.size(); parcel->writeInt32(numKeys); for (size_t i = 0; i < numKeys; i++) { int32_t keyCode = mKeys.keyAt(i); const Key* key = mKeys.valueAt(i); parcel->writeInt32(keyCode); parcel->writeInt32(key->label); parcel->writeInt32(key->number); for (const Behavior* behavior = key->firstBehavior; behavior != NULL; behavior = behavior->next) { parcel->writeInt32(1); parcel->writeInt32(behavior->metaState); parcel->writeInt32(behavior->character); parcel->writeInt32(behavior->fallbackKeyCode); parcel->writeInt32(behavior->replacementKeyCode); } parcel->writeInt32(0); } } #endif // --- KeyCharacterMap::Key --- KeyCharacterMap::Key::Key() : label(0), number(0), firstBehavior(NULL) { } KeyCharacterMap::Key::Key(const Key& other) : label(other.label), number(other.number), firstBehavior(other.firstBehavior ? new Behavior(*other.firstBehavior) : NULL) { } KeyCharacterMap::Key::~Key() { Behavior* behavior = firstBehavior; while (behavior) { Behavior* next = behavior->next; delete behavior; behavior = next; } } // --- KeyCharacterMap::Behavior --- KeyCharacterMap::Behavior::Behavior() : next(NULL), metaState(0), character(0), fallbackKeyCode(0), replacementKeyCode(0) { } KeyCharacterMap::Behavior::Behavior(const Behavior& other) : next(other.next ? new Behavior(*other.next) : NULL), metaState(other.metaState), character(other.character), fallbackKeyCode(other.fallbackKeyCode), replacementKeyCode(other.replacementKeyCode) { } // --- KeyCharacterMap::Parser --- KeyCharacterMap::Parser::Parser(KeyCharacterMap* map, Tokenizer* tokenizer, Format format) : mMap(map), mTokenizer(tokenizer), mFormat(format), mState(STATE_TOP) { } KeyCharacterMap::Parser::~Parser() { } status_t KeyCharacterMap::Parser::parse() { while (!mTokenizer->isEof()) { #if DEBUG_PARSER ALOGD("Parsing %s: '%s'.", mTokenizer->getLocation().string(), mTokenizer->peekRemainderOfLine().string()); #endif mTokenizer->skipDelimiters(WHITESPACE); if (!mTokenizer->isEol() && mTokenizer->peekChar() != '#') { switch (mState) { case STATE_TOP: { String8 keywordToken = mTokenizer->nextToken(WHITESPACE); if (keywordToken == "type") { mTokenizer->skipDelimiters(WHITESPACE); status_t status = parseType(); if (status) return status; } else if (keywordToken == "map") { mTokenizer->skipDelimiters(WHITESPACE); status_t status = parseMap(); if (status) return status; } else if (keywordToken == "key") { mTokenizer->skipDelimiters(WHITESPACE); status_t status = parseKey(); if (status) return status; } else { ALOGE("%s: Expected keyword, got '%s'.", mTokenizer->getLocation().string(), keywordToken.string()); return BAD_VALUE; } break; } case STATE_KEY: { status_t status = parseKeyProperty(); if (status) return status; break; } } mTokenizer->skipDelimiters(WHITESPACE); if (!mTokenizer->isEol() && mTokenizer->peekChar() != '#') { ALOGE("%s: Expected end of line or trailing comment, got '%s'.", mTokenizer->getLocation().string(), mTokenizer->peekRemainderOfLine().string()); return BAD_VALUE; } } mTokenizer->nextLine(); } if (mState != STATE_TOP) { ALOGE("%s: Unterminated key description at end of file.", mTokenizer->getLocation().string()); return BAD_VALUE; } if (mMap->mType == KEYBOARD_TYPE_UNKNOWN) { ALOGE("%s: Keyboard layout missing required keyboard 'type' declaration.", mTokenizer->getLocation().string()); return BAD_VALUE; } if (mFormat == FORMAT_BASE) { if (mMap->mType == KEYBOARD_TYPE_OVERLAY) { ALOGE("%s: Base keyboard layout must specify a keyboard 'type' other than 'OVERLAY'.", mTokenizer->getLocation().string()); return BAD_VALUE; } } else if (mFormat == FORMAT_OVERLAY) { if (mMap->mType != KEYBOARD_TYPE_OVERLAY) { ALOGE("%s: Overlay keyboard layout missing required keyboard " "'type OVERLAY' declaration.", mTokenizer->getLocation().string()); return BAD_VALUE; } } return NO_ERROR; } status_t KeyCharacterMap::Parser::parseType() { if (mMap->mType != KEYBOARD_TYPE_UNKNOWN) { ALOGE("%s: Duplicate keyboard 'type' declaration.", mTokenizer->getLocation().string()); return BAD_VALUE; } KeyboardType type; String8 typeToken = mTokenizer->nextToken(WHITESPACE); if (typeToken == "NUMERIC") { type = KEYBOARD_TYPE_NUMERIC; } else if (typeToken == "PREDICTIVE") { type = KEYBOARD_TYPE_PREDICTIVE; } else if (typeToken == "ALPHA") { type = KEYBOARD_TYPE_ALPHA; } else if (typeToken == "FULL") { type = KEYBOARD_TYPE_FULL; } else if (typeToken == "SPECIAL_FUNCTION") { type = KEYBOARD_TYPE_SPECIAL_FUNCTION; } else if (typeToken == "OVERLAY") { type = KEYBOARD_TYPE_OVERLAY; } else { ALOGE("%s: Expected keyboard type label, got '%s'.", mTokenizer->getLocation().string(), typeToken.string()); return BAD_VALUE; } #if DEBUG_PARSER ALOGD("Parsed type: type=%d.", type); #endif mMap->mType = type; return NO_ERROR; } status_t KeyCharacterMap::Parser::parseMap() { String8 keywordToken = mTokenizer->nextToken(WHITESPACE); if (keywordToken == "key") { mTokenizer->skipDelimiters(WHITESPACE); return parseMapKey(); } ALOGE("%s: Expected keyword after 'map', got '%s'.", mTokenizer->getLocation().string(), keywordToken.string()); return BAD_VALUE; } status_t KeyCharacterMap::Parser::parseMapKey() { String8 codeToken = mTokenizer->nextToken(WHITESPACE); bool mapUsage = false; if (codeToken == "usage") { mapUsage = true; mTokenizer->skipDelimiters(WHITESPACE); codeToken = mTokenizer->nextToken(WHITESPACE); } char* end; int32_t code = int32_t(strtol(codeToken.string(), &end, 0)); if (*end) { ALOGE("%s: Expected key %s number, got '%s'.", mTokenizer->getLocation().string(), mapUsage ? "usage" : "scan code", codeToken.string()); return BAD_VALUE; } KeyedVector& map = mapUsage ? mMap->mKeysByUsageCode : mMap->mKeysByScanCode; if (map.indexOfKey(code) >= 0) { ALOGE("%s: Duplicate entry for key %s '%s'.", mTokenizer->getLocation().string(), mapUsage ? "usage" : "scan code", codeToken.string()); return BAD_VALUE; } mTokenizer->skipDelimiters(WHITESPACE); String8 keyCodeToken = mTokenizer->nextToken(WHITESPACE); int32_t keyCode = getKeyCodeByLabel(keyCodeToken.string()); if (!keyCode) { ALOGE("%s: Expected key code label, got '%s'.", mTokenizer->getLocation().string(), keyCodeToken.string()); return BAD_VALUE; } #if DEBUG_PARSER ALOGD("Parsed map key %s: code=%d, keyCode=%d.", mapUsage ? "usage" : "scan code", code, keyCode); #endif map.add(code, keyCode); return NO_ERROR; } status_t KeyCharacterMap::Parser::parseKey() { String8 keyCodeToken = mTokenizer->nextToken(WHITESPACE); int32_t keyCode = getKeyCodeByLabel(keyCodeToken.string()); if (!keyCode) { ALOGE("%s: Expected key code label, got '%s'.", mTokenizer->getLocation().string(), keyCodeToken.string()); return BAD_VALUE; } if (mMap->mKeys.indexOfKey(keyCode) >= 0) { ALOGE("%s: Duplicate entry for key code '%s'.", mTokenizer->getLocation().string(), keyCodeToken.string()); return BAD_VALUE; } mTokenizer->skipDelimiters(WHITESPACE); String8 openBraceToken = mTokenizer->nextToken(WHITESPACE); if (openBraceToken != "{") { ALOGE("%s: Expected '{' after key code label, got '%s'.", mTokenizer->getLocation().string(), openBraceToken.string()); return BAD_VALUE; } #if DEBUG_PARSER ALOGD("Parsed beginning of key: keyCode=%d.", keyCode); #endif mKeyCode = keyCode; mMap->mKeys.add(keyCode, new Key()); mState = STATE_KEY; return NO_ERROR; } status_t KeyCharacterMap::Parser::parseKeyProperty() { Key* key = mMap->mKeys.valueFor(mKeyCode); String8 token = mTokenizer->nextToken(WHITESPACE_OR_PROPERTY_DELIMITER); if (token == "}") { mState = STATE_TOP; return finishKey(key); } Vector properties; // Parse all comma-delimited property names up to the first colon. for (;;) { if (token == "label") { properties.add(Property(PROPERTY_LABEL)); } else if (token == "number") { properties.add(Property(PROPERTY_NUMBER)); } else { int32_t metaState; status_t status = parseModifier(token, &metaState); if (status) { ALOGE("%s: Expected a property name or modifier, got '%s'.", mTokenizer->getLocation().string(), token.string()); return status; } properties.add(Property(PROPERTY_META, metaState)); } mTokenizer->skipDelimiters(WHITESPACE); if (!mTokenizer->isEol()) { char ch = mTokenizer->nextChar(); if (ch == ':') { break; } else if (ch == ',') { mTokenizer->skipDelimiters(WHITESPACE); token = mTokenizer->nextToken(WHITESPACE_OR_PROPERTY_DELIMITER); continue; } } ALOGE("%s: Expected ',' or ':' after property name.", mTokenizer->getLocation().string()); return BAD_VALUE; } // Parse behavior after the colon. mTokenizer->skipDelimiters(WHITESPACE); Behavior behavior; bool haveCharacter = false; bool haveFallback = false; bool haveReplacement = false; do { char ch = mTokenizer->peekChar(); if (ch == '\'') { char16_t character; status_t status = parseCharacterLiteral(&character); if (status || !character) { ALOGE("%s: Invalid character literal for key.", mTokenizer->getLocation().string()); return BAD_VALUE; } if (haveCharacter) { ALOGE("%s: Cannot combine multiple character literals or 'none'.", mTokenizer->getLocation().string()); return BAD_VALUE; } if (haveReplacement) { ALOGE("%s: Cannot combine character literal with replace action.", mTokenizer->getLocation().string()); return BAD_VALUE; } behavior.character = character; haveCharacter = true; } else { token = mTokenizer->nextToken(WHITESPACE); if (token == "none") { if (haveCharacter) { ALOGE("%s: Cannot combine multiple character literals or 'none'.", mTokenizer->getLocation().string()); return BAD_VALUE; } if (haveReplacement) { ALOGE("%s: Cannot combine 'none' with replace action.", mTokenizer->getLocation().string()); return BAD_VALUE; } haveCharacter = true; } else if (token == "fallback") { mTokenizer->skipDelimiters(WHITESPACE); token = mTokenizer->nextToken(WHITESPACE); int32_t keyCode = getKeyCodeByLabel(token.string()); if (!keyCode) { ALOGE("%s: Invalid key code label for fallback behavior, got '%s'.", mTokenizer->getLocation().string(), token.string()); return BAD_VALUE; } if (haveFallback || haveReplacement) { ALOGE("%s: Cannot combine multiple fallback/replacement key codes.", mTokenizer->getLocation().string()); return BAD_VALUE; } behavior.fallbackKeyCode = keyCode; haveFallback = true; } else if (token == "replace") { mTokenizer->skipDelimiters(WHITESPACE); token = mTokenizer->nextToken(WHITESPACE); int32_t keyCode = getKeyCodeByLabel(token.string()); if (!keyCode) { ALOGE("%s: Invalid key code label for replace, got '%s'.", mTokenizer->getLocation().string(), token.string()); return BAD_VALUE; } if (haveCharacter) { ALOGE("%s: Cannot combine character literal with replace action.", mTokenizer->getLocation().string()); return BAD_VALUE; } if (haveFallback || haveReplacement) { ALOGE("%s: Cannot combine multiple fallback/replacement key codes.", mTokenizer->getLocation().string()); return BAD_VALUE; } behavior.replacementKeyCode = keyCode; haveReplacement = true; } else { ALOGE("%s: Expected a key behavior after ':'.", mTokenizer->getLocation().string()); return BAD_VALUE; } } mTokenizer->skipDelimiters(WHITESPACE); } while (!mTokenizer->isEol() && mTokenizer->peekChar() != '#'); // Add the behavior. for (size_t i = 0; i < properties.size(); i++) { const Property& property = properties.itemAt(i); switch (property.property) { case PROPERTY_LABEL: if (key->label) { ALOGE("%s: Duplicate label for key.", mTokenizer->getLocation().string()); return BAD_VALUE; } key->label = behavior.character; #if DEBUG_PARSER ALOGD("Parsed key label: keyCode=%d, label=%d.", mKeyCode, key->label); #endif break; case PROPERTY_NUMBER: if (key->number) { ALOGE("%s: Duplicate number for key.", mTokenizer->getLocation().string()); return BAD_VALUE; } key->number = behavior.character; #if DEBUG_PARSER ALOGD("Parsed key number: keyCode=%d, number=%d.", mKeyCode, key->number); #endif break; case PROPERTY_META: { for (Behavior* b = key->firstBehavior; b; b = b->next) { if (b->metaState == property.metaState) { ALOGE("%s: Duplicate key behavior for modifier.", mTokenizer->getLocation().string()); return BAD_VALUE; } } Behavior* newBehavior = new Behavior(behavior); newBehavior->metaState = property.metaState; newBehavior->next = key->firstBehavior; key->firstBehavior = newBehavior; #if DEBUG_PARSER ALOGD("Parsed key meta: keyCode=%d, meta=0x%x, char=%d, fallback=%d replace=%d.", mKeyCode, newBehavior->metaState, newBehavior->character, newBehavior->fallbackKeyCode, newBehavior->replacementKeyCode); #endif break; } } } return NO_ERROR; } status_t KeyCharacterMap::Parser::finishKey(Key* key) { // Fill in default number property. if (!key->number) { char16_t digit = 0; char16_t symbol = 0; for (Behavior* b = key->firstBehavior; b; b = b->next) { char16_t ch = b->character; if (ch) { if (ch >= '0' && ch <= '9') { digit = ch; } else if (ch == '(' || ch == ')' || ch == '#' || ch == '*' || ch == '-' || ch == '+' || ch == ',' || ch == '.' || ch == '\'' || ch == ':' || ch == ';' || ch == '/') { symbol = ch; } } } key->number = digit ? digit : symbol; } return NO_ERROR; } status_t KeyCharacterMap::Parser::parseModifier(const String8& token, int32_t* outMetaState) { if (token == "base") { *outMetaState = 0; return NO_ERROR; } int32_t combinedMeta = 0; const char* str = token.string(); const char* start = str; for (const char* cur = str; ; cur++) { char ch = *cur; if (ch == '+' || ch == '\0') { size_t len = cur - start; int32_t metaState = 0; for (size_t i = 0; i < sizeof(modifiers) / sizeof(Modifier); i++) { if (strlen(modifiers[i].label) == len && strncmp(modifiers[i].label, start, len) == 0) { metaState = modifiers[i].metaState; break; } } if (!metaState) { return BAD_VALUE; } if (combinedMeta & metaState) { ALOGE("%s: Duplicate modifier combination '%s'.", mTokenizer->getLocation().string(), token.string()); return BAD_VALUE; } combinedMeta |= metaState; start = cur + 1; if (ch == '\0') { break; } } } *outMetaState = combinedMeta; return NO_ERROR; } status_t KeyCharacterMap::Parser::parseCharacterLiteral(char16_t* outCharacter) { char ch = mTokenizer->nextChar(); if (ch != '\'') { goto Error; } ch = mTokenizer->nextChar(); if (ch == '\\') { // Escape sequence. ch = mTokenizer->nextChar(); if (ch == 'n') { *outCharacter = '\n'; } else if (ch == 't') { *outCharacter = '\t'; } else if (ch == '\\') { *outCharacter = '\\'; } else if (ch == '\'') { *outCharacter = '\''; } else if (ch == '"') { *outCharacter = '"'; } else if (ch == 'u') { *outCharacter = 0; for (int i = 0; i < 4; i++) { ch = mTokenizer->nextChar(); int digit; if (ch >= '0' && ch <= '9') { digit = ch - '0'; } else if (ch >= 'A' && ch <= 'F') { digit = ch - 'A' + 10; } else if (ch >= 'a' && ch <= 'f') { digit = ch - 'a' + 10; } else { goto Error; } *outCharacter = (*outCharacter << 4) | digit; } } else { goto Error; } } else if (ch >= 32 && ch <= 126 && ch != '\'') { // ASCII literal character. *outCharacter = ch; } else { goto Error; } ch = mTokenizer->nextChar(); if (ch != '\'') { goto Error; } // Ensure that we consumed the entire token. if (mTokenizer->nextToken(WHITESPACE).isEmpty()) { return NO_ERROR; } Error: ALOGE("%s: Malformed character literal.", mTokenizer->getLocation().string()); return BAD_VALUE; } } // namespace android