Without that lock, there is a chance of race condition
where while composing a specific index, requestBuf with
the same index can be executed and touch the
same data that is being used in initEglImage.
(e.g. dirty flag in texture)
Generally we never want to lock a buffer for write access if it is at
the "head" on the surfaceflinger side. The only exception (1) is when
the buffer is not currently in use AND there is at least one queued
buffer -- in which case, SurfaceFlinger will never use said buffer
anymore, because on the next composition around, it will be able to
retire the first queued buffer.
The logic above relies on SurfaceFlinger always retiring
and locking a buffer before composition -- unfortunately this
didn't happen during a screenshot.
This could leave us in a situation where a buffer is locked by the
application for write, and used by SurfaceFlinger for texturing,
causing a hang.
Here, we fix this issue by never assuming the exception (1), it was
intended as an optimization allowing ANativeWindow::lockBuffer() to
return sooner and was justified when most of SF composition was
done in software. The actual buffer locking is now ensured by
gralloc. We could have handled screenshots in a similar way to
a regular composition, but it could have caused glitches on screen,
essentially, taking a screenshot could cause to skip a frame.
now that we removed the notion of a "inUse" buffer in surfaceflinger
a lot of code can be simplified / removed.
noteworthy, the whole concept of "unlockClient" wrt. "compositionComplete"
is also gone.
This is a poor's man precursor to the h/w composer HAL.
Basically we detect when a window is full screen and in
that case we bypass surfaceflinger's composition step, which
yields to much improved performance.
Change-Id: Ie03796ae81a1c951949b771c9323044b980cb347
mFixedSize was never set, this bug was introduced during some "cleanup", in
practice this could cause some issues when a fixed-size buffer was used and
the window was resized.
Layer::drawForSreenShot() had a typo that had no effect.
mFixedSize was used to determine if filtering was needed, which was a bit too
conservative and created a dependency between filtering and "fixed size" states
which should exist.
Now we enable filtering based on the size of the buffer vs. the size of the layer.
Change-Id: I32044e91b0c944c1b137efdceb3f01dfaa78119d
some of these failures are not fatal and even expected in some cases
so they should not emit a dump in the log in those cases.
Change-Id: Idcfa252e3bfa9d74e27fe4ad8f8623aa01aa9c5e
the core screenshot function now can capture the screen at any lower resolution
performing bilinear filtering.
we also now have some client code to interface with the screenshot service.
it's now possible to request a screenshot at a lower resolution.
Change-Id: I33689bba98507ab928d0898b21596d0d2fe4b953
this situation happened when the last buffer needed to be resized
(or allocated, the first time). the assumption was that the buffer
was in use by SF itself as the current buffer (obviously, this
assumption made no sense when the buffer had never been allocated, btw).
the system would wait until some other buffer became the "front" buffer.
we fix this problem by entirely removing the requirement that the
buffer being resized cannot be the front buffer. instead, we just
allocate a new buffer and replace the front buffer by the new one.
the downside is that this uses more memory (an extra buffer) for a
brief amount of time while the old buffer is being reallocated and
before it has actually been replaced.
Change-Id: I022e4621209474ceb1c671b23deb4188eaaa7285
moved surfaceflinger, audioflinger, cameraservice
all native services should now reside in this location.
Change-Id: Iee42b83dd2a94c3bf5107ab0895fe2dfcd5337a8