On single-touch devices, pointer up/down is signalled by a BTN_TOUCH
key event. Previously we handled BTN_TOUCH immediately but some drivers
may produce the sequence BTN_TOUCH, ABS_X, ABS_Y, SYN_REPORT on pointer down
which caused us to emit a bad initial pointer down location.
Now we wait for SYN_REPORT before reporting the up or down.
On multi-touch devices, pointer up can be signalled by as little as
the sequence SYN_MT_REPORT, SYN_REPORT. This change ensures that we
handle this case.
Added support for reading ABS_MT_PRESSURE when available.
Corrected mapping of touchMajor/touchMinor on single touch devices.
Minor code cleanup.
Change-Id: Ic7ec4811241ed85a06e59b8a839ca05180d491d4
Sometimes the wrong fd was accessed when the device was addressed
by device id.
The earlier implementation assumed that two arrays were in sync
but one of them was compacted when devices were removed. Instead
of that dependency the device now keeps track of it's file descriptor.
Change-Id: Ib0f320603aafb07ded354bc3687de9759c9068f2
* Add flags field in OBB footer to support overlays.
* Remove unused 'crypto' and 'filesystem' fields in obbtool (could
later be supported in the "flags" field of the OBB footer).
* Add notes to document OBB classes before shipping.
Change-Id: I386b43c32c5edef55210acb5d3322639c08010ba
Previously, the input dispatcher assumed that the input channel's
receive pipe file descriptor was a sufficiently unique identifier for
looking up input channels in its various tables. However, it can happen
that an input channel is disposed and then a new input channel is
immediately created that reuses the same file descriptor. Ordinarily
this is not a problem, however there is a small opportunity for a race
to arise in InputQueue.
When InputQueue receives an input event from the dispatcher, it
generates a finishedToken that encodes the channel's receive pipe fd,
and a sequence number. The finishedToken is used by the ViewRoot
as a handle for the event so that it can tell the InputQueue when
the event has finished being processed.
Here is the race:
1. InputQueue receives an input event, assigns a new finishedToken.
2. ViewRoot begins processing the input event.
3. During processing, ViewRoot unregisters the InputChannel.
4. A new InputChannel is created and is registered with the Input Queue.
This InputChannel happens to have the same receive pipe fd as
the one previously registered.
5. ViewRoot tells the InputQueue that it has finished processing the
input event, passing along the original finishedToken.
6. InputQueue throws an exception because the finishedToken's receive
pipe fd is registered but the sequence number is incorrect so it
assumes that the client has called finish spuriously.
The fix is to include a unique connection id within the finishedToken so
that the InputQueue can accurately confirm that the token belongs to
the currently registered InputChannel rather than to an old one that
happened to have the same receive pipe fd. When it notices this, it
ignores the spurious finish.
I've also made a couple of other small changes to avoid similar races
elsewhere.
This patch set also includes a fix to synthesize a finished signal
when the input channel is unregistered on the client side to
help keep the server and client in sync.
Bug: 2834068
Change-Id: I1de34a36249ab74c359c2c67a57e333543400f7b
Add "obbtool" host command for adding, removing, and querying Opaque
Binary Blob (OBB) information from a file.
Change-Id: Id2ac41e687ad2a500c362616d6738a8ae7e8f5c3
The LHS was ignored when using:
String8 + String8
String8 + (const char*)
Add unit tests for above.
Bug: 2898473
Change-Id: Ic8fe7be668b665c36aaaa3fc3c3ffdfff0fbba25
In the success case, the 65kB scanBuf was not freed!
Also, get rid of annoying complaints about ssize_t from printf in error
cases.
Change-Id: If154ac19bf47637f898b4ec8c8e27c9a073a7b81
Also fixed bug where old touch screen size could be reported by
getMotionRange if an orientation change occurred but the user has not
yet touched the screen.
Bug: 2877345
Change-Id: I7878f47458f310ed6ebe6a5d1b2c9bec2c598ab9
Exposed the new "min delay" sensor property through native and
java sensor apis. This allows the caller to know what is the
maximum rate at which a sensor can return events, or, if a sensor
works in "update" mode (events returned only when the value changes).
Also augmented SensorManager.regusterSensorEvent() so that it can
accept a value in microsecond in addition to the 4 constants already
defined.
Change-Id: If425e9979892666df8c989d7de3c362230fa19e0
On the assumption that the local min() function declaration is in
conflict with some 'min' #define floating around, rename the local
function to min_of().
Change-Id: I62aa27f213c6093cc78805de611cf4aa75f0eef2
Added a new asynchronous injection mode and made the existing
synchronization mechanism more robust.
Change-Id: Ia4aa04fd9b75ea2461a844c5b7933c831c1027e6
Compressed assets larger than one megabyte are now decompressed on demand
rather than being decompressed in their entirety and held in memory. Reading
the data in order is relatively efficient, as is seeking forward in the stream.
Seeking backwards is supported, but requires reprocessing the compressed data
from the beginning, so is very inefficient.
In addition, the size limit on compressed assets has been eliminated.
Change-Id: I6e68247957e6c53e7e8ba70d12764695f1723bad
Refactored the input reader so that each raw input protocol is handled
by a separate subclass of the new InputMapper type. This way, behaviors
pertaining to keyboard, trackballs, touchscreens, switches and other
devices are clearly distinguished for improved maintainability.
Added partial support for describing capabilities of input devices
(incomplete and untested for now, will be fleshed out in later commits).
Simplified EventHub interface somewhat since InputReader is taking over
more of the work.
Cleaned up some of the interactions between InputManager and
WindowManagerService related to reading input state.
Fixed swiping finger from screen edge into display area.
Added logging of device information to 'dumpsys window'.
Change-Id: I17faffc33e3aec3a0f33f0b37e81a70609378612
this situation happened when the last buffer needed to be resized
(or allocated, the first time). the assumption was that the buffer
was in use by SF itself as the current buffer (obviously, this
assumption made no sense when the buffer had never been allocated, btw).
the system would wait until some other buffer became the "front" buffer.
we fix this problem by entirely removing the requirement that the
buffer being resized cannot be the front buffer. instead, we just
allocate a new buffer and replace the front buffer by the new one.
the downside is that this uses more memory (an extra buffer) for a
brief amount of time while the old buffer is being reallocated and
before it has actually been replaced.
Change-Id: I022e4621209474ceb1c671b23deb4188eaaa7285
moved surfaceflinger, audioflinger, cameraservice
all native services should now reside in this location.
Change-Id: Icd7336f7289db35df9c8c1857a5122bb8a6f1c86
remove old sensor service and implement SensorManager
on top of the new (native) SensorManger API.
Change-Id: Iddb77d498755da3e11646473a44d651f12f40281
This change adds a process-global cache of previously deserialized Surface
objects so that if a Surface object wrapping the same ISurface gets received
again the same Surface can be used. This is important because the 'tail'
pointer in the SharedBufferClient is stored only on the client side, and needs
to be the same for all the Surface objects wrapping an ISurface instance. This
solves the problem by making there only be one Surface object wrapping an
ISurface per process.
Change-Id: I4bf0b8787885c56277622fca053022d2bb638902
Add dumpsys integration for the native input dispatcher.
Add some InputDevice API stubs.
Add an appendFormat helper method to String8 for printf style
string formatting mainly for debugging purposes.
Use generic ArrayList<WindowState> everywhere in WindowManagerService
to eliminate unnecessary casts all over.
Change-Id: I9d1e3bd90eb7222d10620200477f11b7bfd25e44
This significantly re-works the native key dispatching code to
allow events to be pre-dispatched to the current IME before
being processed by native code. It introduces one new public
API, which must be called after retrieving an event if the app
wishes for it to be pre-dispatched.
Currently the native code will only do pre-dispatching of
system keys, to avoid significant overhead for gaming input.
This should be improved to be smarted, filtering for only
keys that the IME is interested in. Unfortunately IMEs don't
currently provide this information. :p
Change-Id: Ic1c7aeec8b348164957f2cd88119eb5bd85c2a9f
Added several new coordinate values to MotionEvents to capture
touch major/minor area, tool major/minor area and orientation.
Renamed NDK input constants per convention.
Added InputDevice class in Java which will eventually provide
useful information about available input devices.
Added APIs for manufacturing new MotionEvent objects with multiple
pointers and all necessary coordinate data.
Fixed a bug in the input dispatcher where it could get stuck with
a pointer down forever.
Fixed a bug in the WindowManager where the input window list could
end up containing stale removed windows.
Fixed a bug in the WindowManager where the input channel was being
removed only after the final animation transition had taken place
which caused spurious WINDOW DIED log messages to be printed.
Change-Id: Ie55084da319b20aad29b28a0499b8dd98bb5da68
Now, when Thread A has a strict mode policy in effect and does a
Binder call to Thread B (most likely in another process), the strict
mode policy is passed along, but with the GATHER penalty bit set which
overrides other policies and instead gathers all offending stack
traces to a threadlocal which are then written back in the Parcel's
reply header.
Change-Id: I7d4497032a0609b37b1a2a15855f5c929ba0584d
moved surfaceflinger, audioflinger, cameraservice
all native services should now reside in this location.
Change-Id: Iee42b83dd2a94c3bf5107ab0895fe2dfcd5337a8
in this commit:
- implemented the C stub
- implemented the binder interfaces involved
- implemented most of the C++ client side
missing:
- SensorManager cannot connect to the SensorServer yet
(because there is no SensorServer yet)
Change-Id: I75010cbeef31c98d6fa62fd5d388dcef87c2636b
And also:
- APIs to show and hide the IME, and control its interaction with the app.
- APIs to tell the app when its window resizes and needs to be redrawn.
- API to tell the app the content rectangle of its window (to layout
around the IME or status bar).
There is still a problem with IME interaction -- we need a way for the
app to deliver events to the IME before it handles them, so that for
example the back key will close the IME instead of finishing the app.
Change-Id: I37b75fc2ec533750ef36ca3aedd2f0cc0b5813cd
Add native Parcel methods analogous to the Java versions.
Currently, these don't do much, but upcoming StrictMode work changes
the RPC calling conventions in some cases, so it's important that
everybody uses these consistently, rather than having a lot of code
trying to parse RPC responses out of Parcels themselves.
As a summary, the current convention that Java Binder services use is
to prepend the reply Parcel with an int32 signaling the exception
status:
0: no exception
-1: Security exception
-2: Bad Parcelable
-3: ...
-4: ...
-5: ...
... followed by Parceled String if the exception code is non-zero.
With an upcoming change, it'll be the case that a response Parcel can,
non-exceptionally return rich data in the header, and also return data
to the caller. The important thing to note in this new case is that
the first int32 in the reply parcel *will not be zero*, so anybody
manually checking for it with reply.readInt32() will get false
negative failures.
Short summary: If you're calling into a Java service and manually
checking the exception status with reply.readInt32(), change it to
reply.readExceptionCode().
Change-Id: I23f9a0e53a8cfbbd9759242cfde16723641afe04
- Separate the updating of effect engine state from the process call in EffectModule so that the state
of all effects in the same effect chain is updated simultaneusly before all process functions are called.
- Added a mechanism for the effect engine to continue being called for processing after receiving the disable
commands untils it considers that the framework can stop calling the process function without causing
a glitch or loosing some effect tail.
- Updated test reverb and equalizer to support this new feature
Change-Id: Icb56ae2c84c076d4dbad6cf733b1a62f823febe7
* Move error messages around to clarify the errors.
* Add extra error check when reading a file.
* Seek to the end of a file when writing the signature so the users of
the API don't have to remember to do it.
Change-Id: I2337051b9f9fa8147c5900237deec790dcd92436
Also other cleanup and fixes:
- We now properly set the default window format to 565.
- New APIs to set the window format and flags from native code.
- Tweaked glue for simpler handling of the "destroy" message.
- Um, other stuff.
Change-Id: Id7790a21a2fa9a19b91854d225324a7c1e7c6ade
This factors out the boiler-plate code from the sample
app to a common glue code that can be used for everyone
writing this style of app: a dedicated app thread that
takes care of waiting for events and processing them.
As part of doing this, ALooper has a new facility to allow
registration of fds that cause ALooper_pollOnce() to return
the fd that has data, allowing the app to drive the loop
without callbacks. Hopefully this makes some people feel better. :)
Also do some other cleanup of the ALooper API, plus some
actual documentation.
Change-Id: Ic53bd56bdf627e3ba28a3c093faa06a92be522b8
The visualizer enables application to retrieve part of the currently playing audio for visualization purpose.
It is not an audio recording interface and only returns partial and low quality audio content as a waveform or
a frequency representation (FFT).
Removed temporary hack made in MediaPlayer for animated wall papers based on audio visualization (snoop() method.
This commit also includes a change in AudioEffect class:
- the enable()/disable() methods have been replaced bya more standard setEnabled() method.
- some fixes in javadoc
Change-Id: Id092a1340e9e38dae68646ade7be054e3a36980e
Removed old input dispatch code.
Refactored the policy callbacks.
Pushed a tiny bit of the power manager state down to native.
Fixed long press on MENU.
Made the virtual key detection and cancelation a bit more precise.
Change-Id: I5d8c1062f7ea0ab3b54c6fadb058c4d5f5a9e02e
This allows us to avoid exposing the file descriptor of
the event queue; instead, you attach an event queue to
a looper. This will also should allow native apps to be
written without the need for a separate thread, by attaching
the event queue to the main thread's looper and scheduling
their own messages there.
Change-Id: I38489282635895ae2cbfacb88599c1b1cad9b239
On omap3 h/w we force opaque formats to RGB_565 instead of RGBX_8888
because the GL driver doesn't support it. RGBX_8888 is always remapped
to RGBA_8888.
Change-Id: I0bfabeb98c8d3a399079e6797cf2a0ee95915324
Not yet hooked up to anything in the NDK, but requires renaming
the existing android_native_window_t type everywhere.
Change-Id: Iffee6ea39c93b8b34e20fb69e4d2c7c837e5ea2e
This change mainly unwinds a premature optimization in the
dispatch pipeline.
To test HOME injection, run 'adb shell input keyevent 3'.
Change-Id: I1c4b7377c205da7c898014b8b07fc6dc1d46e4dd
The native code now maintains a list of all keys that may use
default handling. If the app finishes one of these keys
without handling it, the key will be passed back off to Java
for default treatment.
Change-Id: I6a842a0d728eeafa4de7142fae573f8c11099e18
Set a default orientation of ROTATION_0.
Added some more careful checks based on whether we have valid
absolute axis information from the driver.
Reset key repeating during configuration changes since the keyboard
device may have been removed.
Change-Id: I685960828acffcb17595fc5683309e8064a76714
Fixed a typo where checking against the wrong constant caused GL_TEXTURE_EXTERNAL_OES
to be used with a regular texture, which some GL driver will choke on.
Change-Id: I93dfc4c8fa674433bbb678eee31954e9a8d0cb4b
Target identification is now fully native.
Fixed a couple of minor issues related to input injection.
Native input enabled by default, can be disabled by setting
WindowManagerPolicy.ENABLE_NATIVE_INPUT_DISPATCH to false.
Change-Id: I7edf66ed3e987cc9306ad4743ac57a116af452ff
Sometimes the wrong fd was accessed when the device was addressed
by device id.
The earlier implementation assumed that two arrays were in sync
but one of them was compacted when devices were removed. Instead
of that dependency the device now keeps track of it's file descriptor.
Change-Id: I2b8a793d76b89ab464ae830482b309fe86031671
Effect API:
- Use different definitions for audio device, channels, formats... in AudioSystem and EffectApi:
Removed media/AudioCommon.h file created for initial version of EffectApi
- Indicate audio session and output ID to effect library when calling EffectCreate(). Session ID can be useful to optimize
the implementation of effect chains in the same audio session. Output ID can be used for effects implemented in audio hardware.
- Renamed EffectQueryNext() function to EffectQueryEffect() and changed operating mode:
now an index is passed for the queried effect instead of implicitly querying the next one.
- Added CPU load and memory usage indication in effects descriptor
- Added flags and commands to indicate changes in audio mode (ring tone, in call...) to effect engine
- Added flag to indicate hardware accelerated effect implementation.
- Renamed EffectFactoryApi.h to EffectsFactoryApi.h for consistency with EffectsFactory.c/h
Effect libraries:
- Reflected changes in Effect API
- Several fixes in reverb implementation
- Added build option TEST_EFFECT_LIBRARIES in makefile to prepare integration of actual effect library.
- Replaced pointer by integer identifier for library handle returned by effects factory
Audio effect framework:
- Added support for audio session -1 in preparation of output stage effects configuration.
- Reflected changes in Effect API
- Removed volume ramp up/down when effect is inserted/removed: this has to be taken care of by effect engines.
- Added some overflow verification on indexes used for deferred parameter updates via shared memory
- Added hardcoded CPU and memory limit check when creating a new effect instance
Change-Id: I43fee5182ee201384ea3479af6d0acb95092901d
Provides the basic infrastructure for a
NativeActivity's native code to get an object representing
its event stream that can be used to read input events.
Still work to do, probably some API changes, and reasonable
default key handling (so that for example back will still
work).
Change-Id: I6db891bc35dc9683181d7708eaed552b955a077e
Added ANRs handling.
Added event injection.
Fixed a NPE ActivityManagerServer writing ANRs to the drop box.
Fixed HOME key interception.
Fixed trackball reporting.
Fixed pointer rotation in landscape mode.
Change-Id: I50340f559f22899ab924e220a78119ffc79469b7
This is (intendend to be) a no-op change.
At this stage, Binder RPCs just have an additional uint32 passed around
in the header, right before the interface name. But nothing is actually
done with them yet. That value should right now always be 0.
This now boots and seems to work.
Change-Id: I135b7c84f07575e6b9717fef2424d301a450df7b
Added more tests.
Fixed a regression in Vector.
Fixed bugs in pointer tracking.
Fixed a starvation issue in PollLoop when setting or removing callbacks.
Fixed a couple of policy nits.
Modified the internal representation of MotionEvent to be more
efficient and more consistent.
Added code to skip/cancel virtual key processing when there are multiple
pointers down. This helps to better disambiguate virtual key presses
from stray touches (such as cheek presses).
Change-Id: I2a7d2cce0195afb9125b23378baa94fd2fc6671c
Refactored the code to eliminate potential deadlocks due to re-entrant
calls from the policy into the dispatcher. Also added some plumbing
that will be used to notify the framework about ANRs.
Change-Id: Iba7a10de0cb3c56cd7520d6ce716db52fdcc94ff
The old dispatch mechanism has been left in place and continues to
be used by default for now. To enable native input dispatch,
edit the ENABLE_NATIVE_DISPATCH constant in WindowManagerPolicy.
Includes part of the new input event NDK API. Some details TBD.
To wire up input dispatch, as the ViewRoot adds a window to the
window session it receives an InputChannel object as an output
argument. The InputChannel encapsulates the file descriptors for a
shared memory region and two pipe end-points. The ViewRoot then
provides the InputChannel to the InputQueue. Behind the
scenes, InputQueue simply attaches handlers to the native PollLoop object
that underlies the MessageQueue. This way MessageQueue doesn't need
to know anything about input dispatch per-se, it just exposes (in native
code) a PollLoop that other components can use to monitor file descriptor
state changes.
There can be zero or more targets for any given input event. Each
input target is specified by its input channel and some parameters
including flags, an X/Y coordinate offset, and the dispatch timeout.
An input target can request either synchronous dispatch (for foreground apps)
or asynchronous dispatch (fire-and-forget for wallpapers and "outside"
targets). Currently, finding the appropriate input targets for an event
requires a call back into the WindowManagerServer from native code.
In the future this will be refactored to avoid most of these callbacks
except as required to handle pending focus transitions.
End-to-end event dispatch mostly works!
To do: event injection, rate limiting, ANRs, testing, optimization, etc.
Change-Id: I8c36b2b9e0a2d27392040ecda0f51b636456de25
Surfaces can now be parcelized and sent to remote
processes. When a surface crosses a process
boundary, it looses its connection with the
current process and gets attached to the new one.
Change-Id: I39c7b055bcd3ea1162ef2718d3d4b866bf7c81c0
this is called for each relayout() and used to create a full Surface (cpp)
which in turn did some heavy work (including an IPC with surfaceflinger),
most of the time to destroy it immediatelly when the returned surface
(the one in the parcel) was the same.
we now more intelligentely read from the parcel and construct the new
object only if needed.
Change-Id: Idfd40d9ac96ffc6d4ae5fd99bcc0773e131e2267
simplified things a lot, the biggest change is that the concept
of "ClientID" is now gone, instead we simply use references.
Change-Id: Icbc57f80865884aa5f35ad0d0a0db26f19f9f7ce
First drop of audio framework modifications for audio effects support.
- AudioTrack/AudioRecord:
Added support for auxiliary effects in AudioTrack
Added support for audio sessions
Fixed left right channel inversion in setVolume()
- IAudioFlinger:
Added interface methods for effect enumeraiton and instantiation
Added support for audio sessions.
- IAudioTrack:
Added method to attach auxiliary effect.
- AudioFlinger
Created new classes to control effect engines in effect library and manage effect connections to tracks or
output mix:
EffectModule: wrapper object controlling the effect engine implementation in the effect library. There
is one EffectModule per instance of an effect in a given audio session
EffectChain: group of effects associated to one audio session. There is one EffectChain per audio session.
EffectChain for session 0 is for output mix effects, other chains are attached to audio tracks
with same session ID. Each chain contains a variable number of EffectModules
EffectHandle: implements the IEffect interface. There is one EffectHandle object for each application
controlling (or using) an effect module. THe EffectModule maintians a list of EffectHandles.
Added support for effect modules and effect chains creation in PlaybackThread.
modified mixer thread loop to allow track volume control by effect modules and call effect processing.
-AudioMixer
Each track now specifies its output buffer used by mixer for accumulation
Modified mixer process functions to process tracks by groups of tracks with same buffer
Modified track process functions to support accumulation to auxiliary channel
Change-Id: I26d5f7c9e070a89bdd383e1a659f8b7ca150379c
opaque 32-bits windows are now allocated as RGBX_8888 buffers and
SurfaceFlinger always uses GL_MODULATE instead of trying to
optimize to GL_REPLACE when possible (makes no sense on
h/w accelerated GL).
we still have a small hack for devices that don't support
RGBX_8888 in their gralloc implementation where we revert to
RGBA_8888.
SurfaceComposerClient now only exist on the WindowManager side,
the client side uses the new SurfaceClient class, which only
exposes what a client needs.
also instead of keeping mappings from IBinder to SurfaceComposerClients
we have a SurfaceClient per Surface (referring to the same IBinder), this
is made possible by the fact that SurfaceClient is very light.
Change-Id: I6a1f7015424f07871632a25ed6a502c55abfcfa6
the new native_window_set_buffers_geometry allows
to specify a size and format for all buffers to be
dequeued. the buffer will be scalled to the window's
size.
Change-Id: I2c378b85c88d29cdd827a5f319d5c704d79ba381
this method can be used to change the number of buffers
associated to a native window. the default is two.
Change-Id: I608b959e6b29d77f95edb23c31dc9b099a758f2f
this change introduces R/W locks in the right places.
on the server-side, it guarantees that setBufferCount()
is synchronized with "retire" and "resize".
on the client-side, it guarantees that setBufferCount()
is synchronized with "dequeue", "lockbuffer" and "queue"
The problem is due to a too big difference between the buffer size used at the hardware interface and at the A2DP interface.
When no resampling occurs we don't notice problems but the timing is very tight. As soon as resampling is activated, the AudioTrack underruns.
This is because the AudioTrack buffers are not resized when moving the AudioTrack from hardware to A2DP output.
The AudioTrack buffers are calculated based on a hardware output buffer size of 3072 bytes. Which is much less than the A2DP output buffer size (10240).
The solution consists in creating new tracks with new buffers in AudioFlinger when the A2DP output is opened
instead of just transfering active tracks from hardware output mixer thread to the new A2DP output mixer thread.
To avoid synchronization issues between mixer threads and client processes, this is done by invalidating tracks
by setting a flag in their control block and having AudioTrack release the handle on this track (IAudioTrack)
and create a new IAudioTrack when this flag is detected next time obtainBuffer() or start() is executed.
AudioFlinger modifications:
- invalidate the tracks when setStreamOutput() is called
- make sure that notifications of output opening/closing and change of stream type to output mapping are sent synchronously to client process.
This is necessary so that AudioSystem has the new stream to output mapping when the AudioTrack detects the invalidate flag in the client process.
Previously their were sent when the corresponding thread loop was executed.
AudioTrack modifications:
- move frame count calculation and verification from set() to createTrack() so that is is updated every time a new IAudioTrack is created.
- detect track invalidate flag in obtainBuffer() and start() and create a new IAudioTrack.
AudioTrackShared modifications
- group all flags (out, flowControlFlag, forceReady...) into a single bit filed to save space.
Change-Id: I9ac26b6192230627d35084e1449640caaf7d56ee
Merge commit '900b6157f5dee2ed7b2c73cf320b2baf293230ff' into kraken
* commit '900b6157f5dee2ed7b2c73cf320b2baf293230ff':
Only hold a weak pointer on SurfaceComposerClients
Some variables and structure members should be renamed to reflect the fact that they contain the
number of channels in a track (channel count) or the actual channels used by a track (channel mask).
Especially member "channels" of track control block (struct audio_track_cblk_t) is actually the
number of channels (channels count).
Change-Id: I220c8dede9fc00c8a5693389e790073b6ed307b8
the new TextureMagager class now handle texture creation and upload
as well as EGL image creation and binding to GraphicBuffers. This is
used indirectly by Layer and directly by LayerBuffer
the new BufferManager class handles the set of buffers used for a
Layer (Surface), it abstracts how many buffer there is as well as
the use of EGLimage vs. regular texture ops (glTexImage2D).
Change-Id: I2da1ddcf27758e6731400f6cc4e20bef35c0a39a
this hack was used for gpus that don't support cached buffers
for s/w clients. currently we have no gpu with this issue.
this removes quite a bit of complexity.
Change-Id: I72564669f124f92805030e61983711f61c76b6d9
- forward setMode() and getInputBufferSize() calls to underlying audio hardware interface.
- Allow capture of more than one output stream (previous implementation was only capturing
the first output opened, namely the hardware output).
- Allow capture of input streams: previous implementation was only simulating input streams
when more than one was open at a time by reading from a file on SD card). Now the default
behavior is to capture PCM data read from input stream if it was successfully opened or
simulate capture otherwise.
Change-Id: I7e2892b25e295fc3c19c7eb0f71bfaea5816b73a
There is a bug in the way notification client list is managed when the client binder
interface dies that makes that the dead client is not removed from the list: the week
reference passed by binderDied() cannot be promoted and compared to the strong
references in the list.
The fix consists in creating a new NotificationClient class that implements the
binder DeathRecipient and holds a strong reference to the IAudioFlingerClient interface.
A new instance of this class is created for each cient and a strong reference to this
object is added to the notification client list maintained by AudioFlinger.
When binderDied() is called on this object, it is removed from the list preventing
AudioFlinger to notify this client for further io changes.
Also added code to disable LifeVibes effects when the client that has enabled the
enhancements dies.
Change-Id: Icedc4af171759e9ae9a575d82d44784b4e8267e8
Change the way zip archives are handled. This is necessary to deal with
very large (~1GB) APK files, for which our current approach of mapping
the entire file falls over.
We now do the classic scavenger hunt for the End Of Central Directory
magic on a buffer of data read from the file, instead of a memory-mapped
section. We use what we find to create a map that covers the Central
Directory only.
If the caller is interested in unpacking the file contents, we have to
do an additional file read to discover the size of the Local File Header
section so we can skip past it.
This is based on Change I745fb15abb in the dalvik tree. Both
implementations share a common ancestry, but the cost of unifying them
outweighs the benefits of wrapping C calls.
Change-Id: Iddacb50fe913917c2845708a530872d65fdbe620
Merge commit '56aed6bde0c52658d2cb1207c0cfe8ba0a764c59' into kraken
* commit '56aed6bde0c52658d2cb1207c0cfe8ba0a764c59':
fix [2664345] Flash: Bad flicker at the end of a pinch zoom.
the window manger puts SurfaceViews up before they have been
rendered into, because of that surfaceflinger doesn't have
anything ready to draw for that surface when an udpate occurs
and responds by filling the surface with black.
With this fix, we only fill those areas of the framebuffer
that would otherwise be undefined (no content at all).
in the Flash case, the "flash" window is not drawn at all
until it has some content, instead the underlaying browser
window is shown.
Change-Id: Ifb610f7f8c27b88edf83e09adc4803fc295c15a1
Merge commit 'ca48c88c3d5733c4405a2fc4f7d9bb7fbba3d43f' into kraken
* commit 'ca48c88c3d5733c4405a2fc4f7d9bb7fbba3d43f':
Make static versions of libutils and libbinder.
Fix some small static-initialization-order issues (and a static-
initializers-missing issue) that result from doing so. The static
libraries don't actually get used for anything real at the moment --
they're used for perf tests of bug 2660235.
Bug: 2660235
Change-Id: Iee2f38f79cc93b395e8d0a5a144ed92461f5ada0
Not complete, only for experimentation at this point.
This includes a reworking of how screen size configurations are matched,
so that if you are on a larger screen we can select configurations for
smaller screens if there aren't any exactly matching the current screen.
The screen size at which we switch to xlarge has been arbitrarily
chosen; the compatibility behavior has not yet been defined.
Change-Id: I1a33b3818eeb51a68fb72397568c39ab040a07f5
the reason for the above change is that waitForCondition() had become
large over time, mainly to handle error cases, using inlines to
evaluate the condition doesn't buys us much anymore while it increases
code size.
Change-Id: I2595d850832628954b900ab8bb1796c863447bc7
in the undoDequeue() case, 'tail' was recalculated from 'available' and 'head'
however there was a race between this and retireAndLock(), which could cause
'tail' to be recalculated wrongly.
the interesting thing though is that retireAndLock() shouldn't have any impact
on the value of 'tail', which is client-side only attribute.
we fix the race by saving the value of 'tail' before dequeue() and restore it
in the case of undoDequeue(), since we know it doesn't depend on retireAndLock().
Change-Id: I4bcc4d16b6bc4dd93717ee739c603040b18295a0
get rid of the "fake rtti" code, and use polymorphism instead.
also simplify how we log SF's state (using polymorphism)
Change-Id: I2bae7c98de4dd207a3e2b00083fa3fde7c467922