Make sure to not use GL_TEXTURE_EXTERNAL when it's not supported
by the GL. The error was harmless, but annoying.
Change-Id: I571a9a9b05d35da51420950a6a6e95629067efd0
Surfaces can now be parcelized and sent to remote
processes. When a surface crosses a process
boundary, it looses its connection with the
current process and gets attached to the new one.
Change-Id: I39c7b055bcd3ea1162ef2718d3d4b866bf7c81c0
simplified things a lot, the biggest change is that the concept
of "ClientID" is now gone, instead we simply use references.
Change-Id: Icbc57f80865884aa5f35ad0d0a0db26f19f9f7ce
the new native_window_set_buffers_geometry allows
to specify a size and format for all buffers to be
dequeued. the buffer will be scalled to the window's
size.
Change-Id: I2c378b85c88d29cdd827a5f319d5c704d79ba381
this change introduces R/W locks in the right places.
on the server-side, it guarantees that setBufferCount()
is synchronized with "retire" and "resize".
on the client-side, it guarantees that setBufferCount()
is synchronized with "dequeue", "lockbuffer" and "queue"
the new TextureMagager class now handle texture creation and upload
as well as EGL image creation and binding to GraphicBuffers. This is
used indirectly by Layer and directly by LayerBuffer
the new BufferManager class handles the set of buffers used for a
Layer (Surface), it abstracts how many buffer there is as well as
the use of EGLimage vs. regular texture ops (glTexImage2D).
Change-Id: I2da1ddcf27758e6731400f6cc4e20bef35c0a39a
this hack was used for gpus that don't support cached buffers
for s/w clients. currently we have no gpu with this issue.
this removes quite a bit of complexity.
Change-Id: I72564669f124f92805030e61983711f61c76b6d9
Merge commit '56aed6bde0c52658d2cb1207c0cfe8ba0a764c59' into kraken
* commit '56aed6bde0c52658d2cb1207c0cfe8ba0a764c59':
fix [2664345] Flash: Bad flicker at the end of a pinch zoom.
the window manger puts SurfaceViews up before they have been
rendered into, because of that surfaceflinger doesn't have
anything ready to draw for that surface when an udpate occurs
and responds by filling the surface with black.
With this fix, we only fill those areas of the framebuffer
that would otherwise be undefined (no content at all).
in the Flash case, the "flash" window is not drawn at all
until it has some content, instead the underlaying browser
window is shown.
Change-Id: Ifb610f7f8c27b88edf83e09adc4803fc295c15a1
get rid of the "fake rtti" code, and use polymorphism instead.
also simplify how we log SF's state (using polymorphism)
Change-Id: I2bae7c98de4dd207a3e2b00083fa3fde7c467922
We now limit the size of the surface to the maximum size supported by the GPU.
On Nexus One this will 2048 -- it could be different on other devices.
Surface creation fails if the limit is exceeded.
Change-Id: I9ecfc2e9c58c9e283782b61ebfc6b590f71df785
if a buffer couldn't be allocated because of an OOM, SF could, in some case dereference
a null pointer.
Change-Id: I5321248c38a21e56d5278b6aada2694e64451378
- fix a bug when hacking video buffers into gralloc buffers
where the buffer size was incorrect this was causing the
"direct-form-texture" mode to fail
- also when the above fails, make sure to revert to the
"mdp copy mode" before going to "slow mode"
- finally disable completely the "direct-from-texture" mode
for now. It cannot work because the allocated buffers can't
respect the GPU constraints (alignment and such). We'll
have to find a solution for that.
When a surface is removed from the screen while it holds a "freeze lock", the
release of that lock happens in the destructor as a "safety net". However, it
doesn't trigger an update at that point.
Make sure that "freeze locks" are released from the transaction at the point
a surface is removed from the screen (if it's not on screen, it shouldn't
prevent the screen to redraw, and therefore cannot hold a freeze lock).
The refresh corresponding to that transaction will pick it up as soon as possible.
Use EGLImageKHR instead of copybit directly.
We now have the basis to use streaming YUV textures (well, in fact
we already are). When/if we use the GPU instead of the MDP we'll
need to make sure it supports the appropriate YUV format.
Also make sure we compile if EGL_ANDROID_image_native_buffer is not supported
Instead of using glTex{Sub}Image2D() to refresh the textures, we're using an EGLImageKHR object
backed up by a gralloc buffer. The data is updated using memcpy(). This is faster than
glTex{Sub}Image2D() because the texture is not swizzled. It also uses less memory because
EGLImageKHW is not limited to power-of-two dimensions.
When switching rapidily orientation back and forth, surfaces end-up
acquiring the freeze-lock when the first orientation change happens,
but never release it because by the time the 2nd orientation change
comes in, the surface size is back to its original size and
doesn't appear to have resized.
we now always release the freeze-lock when we receive a buffer of the
expected size.
This also fixes [2152536] ANR in browser
When SF is enqueuing buffers faster than SF dequeues them.
The update flag in SF is not counted and under some situations SF will only
dequeue the first buffer. The state at this point is not technically
corrupted, it's valid, but just delayed by one buffer.
In the case of the Browser ANR, because the last enqueued buffer was delayed
the resizing of the current buffer couldn't happen.
The system would always fall back onto its feet if anything -else- in
tried to draw, because the "late" buffer would be picked up then.
A window is created and the browser is about to render into it the
very first time, at that point it does an IPC to SF to request a new
buffer. Meanwhile, the window manager removes that window from the
list and the shared memory block it uses is marked as invalid.
However, at that point, another window is created and is given the
same index (that just go freed), but a different identity and resets
the "invalid" bit in the shared block. When we go back to the buffer
allocation code, we're stuck because the surface we're allocating for
is gone and we don't detect it's invalid because the invalid bit has
been reset.
It is not sufficient to check for the invalid bit, I should
also check that identities match.
When EGLImage extension is not available, SurfaceFlinger will fallback to using
glTexImage2D and glTexSubImage2D instead, which requires 50% more memory and an
extra copy. However this code path has never been exercised and had some bugs
which this patch fix.
Mainly the scale factor wasn't computed right when falling back on glDrawElements.
We also fallback to this mode of operation if a buffer doesn't have the adequate
usage bits for EGLImage usage.
This changes only code that is currently not executed. Some refactoring was needed to
keep the change clean. This doesn't change anything functionaly.
The ANR is caused by SurfaceFlinger waiting for buffers of a removed surface to become availlable.
When it is removed from the current list, a Surface is marked as NO_INIT, which causes SF to return
immediately in the above case. For some reason, the surface here wasn't marked as NO_INIT.
This change makes the code more robust by always (irregadless or errors) setting the NO_INIT status
in all code paths where a surface is removed from the list.
Additionaly added more information in the logs, should this happen again.
Rewrote SurfaceFlinger's buffer management from the ground-up.
The design now support an arbitrary number of buffers per surface, however the current implementation is limited to four. Currently only 2 buffers are used in practice.
The main new feature is to be able to dequeue all buffers at once (very important when there are only two).
A client can dequeue all buffers until there are none available, it can lock all buffers except the last one that is used for composition. The client will block then, until a new buffer is enqueued.
The current implementation requires that buffers are locked in the same order they are dequeued and enqueued in the same order they are locked. Only one buffer can be locked at a time.
eg. Allowed sequence: DQ, DQ, LOCK, Q, LOCK, Q
eg. Forbidden sequence: DQ, DQ, LOCK, LOCK, Q, Q
this would happen is the window is made visible but the client didn't render yet into it. This happens often with SurfaceView.
Instead of filling the window with solid black, SF would simply ignore it which could lead to more disturbing artifacts.
in theory the window manager should not display a window before it has been drawn into, but it does happen occasionnaly.
This change makes SurfaceHolder.setType(GPU) obsolete (it's now ignored).
Added an API to android_native_window_t to allow extending the functionality without ever breaking binary compatibility. This is used to implement the new set_usage() API. This API needs to be called by software renderers because the default is to use usage flags suitable for h/w.