in the case where we fade a 32-bits surface (ie: GL_MODULATE w/ a,a,a,a + blending),
we first make a copy of the background into a RGB buffer, then we blend the 32-bits
surface as usual (without the alpha component), and finally blend the copy of
the background on top with 1-a. This uses a lot of bandwidth, but no CPU time.
Use EGLImageKHR instead of copybit directly.
We now have the basis to use streaming YUV textures (well, in fact
we already are). When/if we use the GPU instead of the MDP we'll
need to make sure it supports the appropriate YUV format.
Also make sure we compile if EGL_ANDROID_image_native_buffer is not supported
Without the size checks it's possible for calls to glBufferData
and glBufferSubData to read off the end of the Buffer object's
data, which can cause page faults.
Fix end-of-line characters for the "spec" files. (That's why
every line of these files is changed.)
Enhance our code emitter to properly handle bounds checks for
possibly-null pointers.
Instead of using a different function pointer table for ES 1.x and ES 2.x,
we use a single one that is the union (sort|uniq) of both tables. Two
instances of this table are initialized with pointers to GL ES 1.x and GL ES 2.x
entry-points.
When a context is created, we store its version number and when it is bound to a
thread we set the approruiate table based on the stored version.
This introduce no penalty while dispatching gl calls to the right API version.
[Pending Dr No approval for MR1]
When EGLImage extension is not available, SurfaceFlinger will fallback to using
glTexImage2D and glTexSubImage2D instead, which requires 50% more memory and an
extra copy. However this code path has never been exercised and had some bugs
which this patch fix.
Mainly the scale factor wasn't computed right when falling back on glDrawElements.
We also fallback to this mode of operation if a buffer doesn't have the adequate
usage bits for EGLImage usage.
This changes only code that is currently not executed. Some refactoring was needed to
keep the change clean. This doesn't change anything functionaly.
Use EGLUtils::selectConfigForNativeWindow to select a legitimate
configuration. (Before now we had been selecting an incorrect
configuration, but the older drivers let us get away with it.)
Converted the source to C++ so we can call selectConfigForNativeWindow.
this change fixes the lifetime mgt of EGLSurface, EGLContext and EGLImageKHR in the EGL wrapper.
EGLDisplay is still somewhat bogus and libagl's EGL is still incorrect.
The idea of the change is that EGL objects are put in a list when created and removed when destroyed.
Before each use, we first verify if the object is in the list and if so a reference is taken and kept
for the scope of the whole EGL API being called, if not, an error is returned.
Upon object destruction, the object is simply marked as "terminated" (this is not protected by a lock
because it doesn't really matter). This flag is only used to deny access to the object by other APIs
while it's still valid (for instance current or being used by another function in another thread).
A reference is also removed and the object can then actually be destroyed when going out of scope.
refactored the code so that:
- EGL APIs that can be called before or after eglInitialize() will work by loading the drivers first
- make eglGetDisplay() a lot more efficient
- make sure that EGL drivers are loaded in a thread-safe way
- don't unload the drivers upon calling eglTerminate(), they're now never unloaded, since there is no safe way to do it (some thread could be running)
- updated our EGL version to 1.4
- return better error codes if errors happen during initialization
* changes:
Revert "SurfaceFlinger will now allocate buffers based on the usage specified by the clients. This allows to allocate the right kind of buffer automatically, without having the user to specify anything."