Each process maintains an array of active SurfaceComposerClient
objects, so that they can be reused as new surfaces are parceled
across. When a SurfaceComposerClient is disposed, it will remove
itself from this list. However, because the list maintains a strong
reference on the object, a reference cycle is created, and the
client is never deleted.
This patch changes the list to maintain weak pointers on the clients
instead.
Change-Id: I93dc8155fe28b4e350366a3400cdf22a8c77cdd3
This also fixes [2152536] ANR in browser
When SF is enqueuing buffers faster than SF dequeues them.
The update flag in SF is not counted and under some situations SF will only
dequeue the first buffer. The state at this point is not technically
corrupted, it's valid, but just delayed by one buffer.
In the case of the Browser ANR, because the last enqueued buffer was delayed
the resizing of the current buffer couldn't happen.
The system would always fall back onto its feet if anything -else- in
tried to draw, because the "late" buffer would be picked up then.
Rewrote SurfaceFlinger's buffer management from the ground-up.
The design now support an arbitrary number of buffers per surface, however the current implementation is limited to four. Currently only 2 buffers are used in practice.
The main new feature is to be able to dequeue all buffers at once (very important when there are only two).
A client can dequeue all buffers until there are none available, it can lock all buffers except the last one that is used for composition. The client will block then, until a new buffer is enqueued.
The current implementation requires that buffers are locked in the same order they are dequeued and enqueued in the same order they are locked. Only one buffer can be locked at a time.
eg. Allowed sequence: DQ, DQ, LOCK, Q, LOCK, Q
eg. Forbidden sequence: DQ, DQ, LOCK, LOCK, Q, Q
The WindowManager side of Surface.java holds a SurfaceControl, while the client-side holds a Surface. When the client is in the system process, Surface.java holds both (which is a problem we'll try to fix later).
SurfaceControl is used for controling the geometry of the surface (for the WM), while Surface is used to access the buffers (for SF's clients).
SurfaceFlingerClient now uses the SurfaceID instead of Surface*.
Currently Surface still has the SurfaceControl API and is implemented by calling into SurfaceControl.