This patch adds a hashtable-based LRU cache. This should be
significantly higher performance than the GenerationCache it is intended
to replace. It is a large part of the fix for bug 7271109
TextLayoutCache low-level performance issues.
We added a new method to BasicHashtable to detect when rehashing is
needed, because the internal linked list pointers would get invalidated
by that rehashing.
Also, the hash_type specialized to pointers had a small flaw.
Change-Id: I950c2083f96519777b851dbe157100e0a334caec
would happen when vectors are copied and new items is
added in both vectors. we didn't duplicate the underlying
storage when adding items in vectors.
Bug: 6515797
Change-Id: If544c07d96c05821e088d7f2c9b5736f7e306c31
ZipUtils is needed by build/tools, move it from libandroidfw
(frameworks/base) to libutils (frameworks/native).
Change-Id: Ib8c41134ccdec6d6aa8d49860f8dddef49a24783
The basic hashtable is intended to be used to support a variety
of different datastructures such as map, set, multimap,
multiset, linkedmap, generationcache, etc.
Consequently its interface is fairly primitive.
The basic hashtable supports copy-on-write style functionality
using SharedBuffer.
The change introduces a simple generic function in TypeHelpers for
specifying hash functions. The idea is to add template
specializations of hash_type<T> next to the relevant data structures
such as String8, String16, sp<T>, etc.
Change-Id: I2c479229e9d4527b4fbfe3b8b04776a2fd32c973
The built-in ZipFile class was quite a long time to find an unpack
libraries. Move everything to using the libutils ZipFileRO class that
goes quite a bit faster. Initial measurements are 6 times faster than
the Java code.
Also, read files off the disk and compare their CRC against the APK's
CRC to see if we need to write the new file to disk. This also cuts down
the bootup time by up to a second per APK that has native files.
Change-Id: Ic464a7969a17368fb6a6b81d026888c4136c7603
This change adds an implementation of a cache that stores key/value
pairs of unstructured binary blobs.
Change-Id: Idd01fdabedfa3aed6d359a6efb0592967af52651
Split out all the UTF-8/16/32 handling code from String8/16 to its own
file to allow better reuse of code.
Change-Id: If9ce63920edc75472c38da4adce0d13cda9ad2f7
As part of this change, consolidated and cleaned up the Looper API so
that there are fewer distinctions between the NDK and non-NDK declarations
(no need for two callback types, etc.).
Removed the dependence on specific constants from sys/poll.h such as
POLLIN. Instead looper.h defines events like LOOPER_EVENT_INPUT for
the events that it supports. That should help make any future
under-the-hood implementation changes easier.
Fixed a couple of compiler warnings along the way.
Change-Id: I449a7ec780bf061bdd325452f823673e2b39b6ae
The LHS was ignored when using:
String8 + String8
String8 + (const char*)
Add unit tests for above.
Bug: 2898473
Change-Id: Ic8fe7be668b665c36aaaa3fc3c3ffdfff0fbba25
The old dispatch mechanism has been left in place and continues to
be used by default for now. To enable native input dispatch,
edit the ENABLE_NATIVE_DISPATCH constant in WindowManagerPolicy.
Includes part of the new input event NDK API. Some details TBD.
To wire up input dispatch, as the ViewRoot adds a window to the
window session it receives an InputChannel object as an output
argument. The InputChannel encapsulates the file descriptors for a
shared memory region and two pipe end-points. The ViewRoot then
provides the InputChannel to the InputQueue. Behind the
scenes, InputQueue simply attaches handlers to the native PollLoop object
that underlies the MessageQueue. This way MessageQueue doesn't need
to know anything about input dispatch per-se, it just exposes (in native
code) a PollLoop that other components can use to monitor file descriptor
state changes.
There can be zero or more targets for any given input event. Each
input target is specified by its input channel and some parameters
including flags, an X/Y coordinate offset, and the dispatch timeout.
An input target can request either synchronous dispatch (for foreground apps)
or asynchronous dispatch (fire-and-forget for wallpapers and "outside"
targets). Currently, finding the appropriate input targets for an event
requires a call back into the WindowManagerServer from native code.
In the future this will be refactored to avoid most of these callbacks
except as required to handle pending focus transitions.
End-to-end event dispatch mostly works!
To do: event injection, rate limiting, ANRs, testing, optimization, etc.
Change-Id: I8c36b2b9e0a2d27392040ecda0f51b636456de25