Merge "Remove deprecated BufferQueue constructor"

This commit is contained in:
Dan Stoza 2014-04-23 16:46:04 +00:00 committed by Android (Google) Code Review
commit e4d9761196
2 changed files with 15 additions and 449 deletions

View File

@ -17,55 +17,18 @@
#ifndef ANDROID_GUI_BUFFERQUEUE_H
#define ANDROID_GUI_BUFFERQUEUE_H
#include <gui/BufferQueueProducer.h>
#include <gui/BufferQueueConsumer.h>
#include <gui/BufferQueueDefs.h>
#include <gui/IGraphicBufferConsumer.h>
#include <gui/IGraphicBufferProducer.h>
#include <gui/IConsumerListener.h>
// These are only required to keep other parts of the framework with incomplete
// dependencies building successfully
#include <gui/IGraphicBufferAlloc.h>
#include <binder/IBinder.h>
namespace android {
// BQProducer and BQConsumer are thin shim classes to allow methods with the
// same signature in both IGraphicBufferProducer and IGraphicBufferConsumer.
// This will stop being an issue when we deprecate creating BufferQueues
// directly (as opposed to using the *Producer and *Consumer interfaces).
class BQProducer : public BnGraphicBufferProducer {
public:
virtual status_t detachProducerBuffer(int slot) = 0;
virtual status_t attachProducerBuffer(int* slot,
const sp<GraphicBuffer>& buffer) = 0;
virtual status_t detachBuffer(int slot) {
return detachProducerBuffer(slot);
}
virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>& buffer) {
return attachProducerBuffer(slot, buffer);
}
};
class BQConsumer : public BnGraphicBufferConsumer {
public:
virtual status_t detachConsumerBuffer(int slot) = 0;
virtual status_t attachConsumerBuffer(int* slot,
const sp<GraphicBuffer>& buffer) = 0;
virtual status_t detachBuffer(int slot) {
return detachConsumerBuffer(slot);
}
virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>& buffer) {
return attachConsumerBuffer(slot, buffer);
}
};
class BufferQueue : public BQProducer,
public BQConsumer,
private IBinder::DeathRecipient {
class BufferQueue {
public:
// BufferQueue will keep track of at most this value of buffers.
// Attempts at runtime to increase the number of buffers past this will fail.
@ -84,6 +47,7 @@ public:
// for backward source compatibility
typedef ::android::ConsumerListener ConsumerListener;
typedef IGraphicBufferConsumer::BufferItem BufferItem;
// ProxyConsumerListener is a ConsumerListener implementation that keeps a weak
// reference to the actual consumer object. It forwards all calls to that
@ -110,272 +74,12 @@ public:
// BufferQueue manages a pool of gralloc memory slots to be used by
// producers and consumers. allocator is used to allocate all the
// needed gralloc buffers.
BufferQueue(const sp<IGraphicBufferAlloc>& allocator = NULL);
static void createBufferQueue(sp<IGraphicBufferProducer>* outProducer,
sp<IGraphicBufferConsumer>* outConsumer,
const sp<IGraphicBufferAlloc>& allocator = NULL);
virtual ~BufferQueue();
/*
* IBinder::DeathRecipient interface
*/
virtual void binderDied(const wp<IBinder>& who);
/*
* IGraphicBufferProducer interface
*/
// Query native window attributes. The "what" values are enumerated in
// window.h (e.g. NATIVE_WINDOW_FORMAT).
virtual int query(int what, int* value);
// setBufferCount updates the number of available buffer slots. If this
// method succeeds, buffer slots will be both unallocated and owned by
// the BufferQueue object (i.e. they are not owned by the producer or
// consumer).
//
// This will fail if the producer has dequeued any buffers, or if
// bufferCount is invalid. bufferCount must generally be a value
// between the minimum undequeued buffer count (exclusive) and NUM_BUFFER_SLOTS
// (inclusive). It may also be set to zero (the default) to indicate
// that the producer does not wish to set a value. The minimum value
// can be obtained by calling query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS,
// ...).
//
// This may only be called by the producer. The consumer will be told
// to discard buffers through the onBuffersReleased callback.
virtual status_t setBufferCount(int bufferCount);
// requestBuffer returns the GraphicBuffer for slot N.
//
// In normal operation, this is called the first time slot N is returned
// by dequeueBuffer. It must be called again if dequeueBuffer returns
// flags indicating that previously-returned buffers are no longer valid.
virtual status_t requestBuffer(int slot, sp<GraphicBuffer>* buf);
// dequeueBuffer gets the next buffer slot index for the producer to use.
// If a buffer slot is available then that slot index is written to the
// location pointed to by the buf argument and a status of OK is returned.
// If no slot is available then a status of -EBUSY is returned and buf is
// unmodified.
//
// The fence parameter will be updated to hold the fence associated with
// the buffer. The contents of the buffer must not be overwritten until the
// fence signals. If the fence is Fence::NO_FENCE, the buffer may be
// written immediately.
//
// The width and height parameters must be no greater than the minimum of
// GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv).
// An error due to invalid dimensions might not be reported until
// updateTexImage() is called. If width and height are both zero, the
// default values specified by setDefaultBufferSize() are used instead.
//
// The pixel formats are enumerated in graphics.h, e.g.
// HAL_PIXEL_FORMAT_RGBA_8888. If the format is 0, the default format
// will be used.
//
// The usage argument specifies gralloc buffer usage flags. The values
// are enumerated in gralloc.h, e.g. GRALLOC_USAGE_HW_RENDER. These
// will be merged with the usage flags specified by setConsumerUsageBits.
//
// The return value may be a negative error value or a non-negative
// collection of flags. If the flags are set, the return values are
// valid, but additional actions must be performed.
//
// If IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION is set, the
// producer must discard cached GraphicBuffer references for the slot
// returned in buf.
// If IGraphicBufferProducer::RELEASE_ALL_BUFFERS is set, the producer
// must discard cached GraphicBuffer references for all slots.
//
// In both cases, the producer will need to call requestBuffer to get a
// GraphicBuffer handle for the returned slot.
virtual status_t dequeueBuffer(int *buf, sp<Fence>* fence, bool async,
uint32_t width, uint32_t height, uint32_t format, uint32_t usage);
// See IGraphicBufferProducer::detachBuffer
virtual status_t detachProducerBuffer(int slot);
// See IGraphicBufferProducer::detachNextBuffer
virtual status_t detachNextBuffer(sp<GraphicBuffer>* outBuffer,
sp<Fence>* outFence);
// See IGraphicBufferProducer::attachBuffer
virtual status_t attachProducerBuffer(int* slot,
const sp<GraphicBuffer>& buffer);
// queueBuffer returns a filled buffer to the BufferQueue.
//
// Additional data is provided in the QueueBufferInput struct. Notably,
// a timestamp must be provided for the buffer. The timestamp is in
// nanoseconds, and must be monotonically increasing. Its other semantics
// (zero point, etc) are producer-specific and should be documented by the
// producer.
//
// The caller may provide a fence that signals when all rendering
// operations have completed. Alternatively, NO_FENCE may be used,
// indicating that the buffer is ready immediately.
//
// Some values are returned in the output struct: the current settings
// for default width and height, the current transform hint, and the
// number of queued buffers.
virtual status_t queueBuffer(int buf,
const QueueBufferInput& input, QueueBufferOutput* output);
// cancelBuffer returns a dequeued buffer to the BufferQueue, but doesn't
// queue it for use by the consumer.
//
// The buffer will not be overwritten until the fence signals. The fence
// will usually be the one obtained from dequeueBuffer.
virtual void cancelBuffer(int buf, const sp<Fence>& fence);
// See IGraphicBufferProducer::connect
virtual status_t connect(const sp<IProducerListener>& listener,
int api, bool producerControlledByApp, QueueBufferOutput* output);
// disconnect attempts to disconnect a producer API from the BufferQueue.
// Calling this method will cause any subsequent calls to other
// IGraphicBufferProducer methods to fail except for getAllocator and connect.
// Successfully calling connect after this will allow the other methods to
// succeed again.
//
// This method will fail if the the BufferQueue is not currently
// connected to the specified producer API.
virtual status_t disconnect(int api);
// Attaches a sideband buffer stream to the BufferQueue.
//
// A sideband stream is a device-specific mechanism for passing buffers
// from the producer to the consumer without using dequeueBuffer/
// queueBuffer. If a sideband stream is present, the consumer can choose
// whether to acquire buffers from the sideband stream or from the queued
// buffers.
//
// Passing NULL or a different stream handle will detach the previous
// handle if any.
virtual status_t setSidebandStream(const sp<NativeHandle>& stream);
/*
* IGraphicBufferConsumer interface
*/
// acquireBuffer attempts to acquire ownership of the next pending buffer in
// the BufferQueue. If no buffer is pending then it returns NO_BUFFER_AVAILABLE. If a
// buffer is successfully acquired, the information about the buffer is
// returned in BufferItem. If the buffer returned had previously been
// acquired then the BufferItem::mGraphicBuffer field of buffer is set to
// NULL and it is assumed that the consumer still holds a reference to the
// buffer.
//
// If presentWhen is nonzero, it indicates the time when the buffer will
// be displayed on screen. If the buffer's timestamp is farther in the
// future, the buffer won't be acquired, and PRESENT_LATER will be
// returned. The presentation time is in nanoseconds, and the time base
// is CLOCK_MONOTONIC.
virtual status_t acquireBuffer(BufferItem* buffer, nsecs_t presentWhen);
// See IGraphicBufferConsumer::detachBuffer
virtual status_t detachConsumerBuffer(int slot);
// See IGraphicBufferConsumer::attachBuffer
virtual status_t attachConsumerBuffer(int* slot,
const sp<GraphicBuffer>& buffer);
// releaseBuffer releases a buffer slot from the consumer back to the
// BufferQueue. This may be done while the buffer's contents are still
// being accessed. The fence will signal when the buffer is no longer
// in use. frameNumber is used to indentify the exact buffer returned.
//
// If releaseBuffer returns STALE_BUFFER_SLOT, then the consumer must free
// any references to the just-released buffer that it might have, as if it
// had received a onBuffersReleased() call with a mask set for the released
// buffer.
//
// Note that the dependencies on EGL will be removed once we switch to using
// the Android HW Sync HAL.
virtual status_t releaseBuffer(int buf, uint64_t frameNumber,
EGLDisplay display, EGLSyncKHR fence,
const sp<Fence>& releaseFence);
// consumerConnect connects a consumer to the BufferQueue. Only one
// consumer may be connected, and when that consumer disconnects the
// BufferQueue is placed into the "abandoned" state, causing most
// interactions with the BufferQueue by the producer to fail.
// controlledByApp indicates whether the consumer is controlled by
// the application.
//
// consumer may not be NULL.
virtual status_t consumerConnect(const sp<IConsumerListener>& consumer, bool controlledByApp);
// consumerDisconnect disconnects a consumer from the BufferQueue. All
// buffers will be freed and the BufferQueue is placed in the "abandoned"
// state, causing most interactions with the BufferQueue by the producer to
// fail.
virtual status_t consumerDisconnect();
// getReleasedBuffers sets the value pointed to by slotMask to a bit mask
// indicating which buffer slots have been released by the BufferQueue
// but have not yet been released by the consumer.
//
// This should be called from the onBuffersReleased() callback.
virtual status_t getReleasedBuffers(uint64_t* slotMask);
// setDefaultBufferSize is used to set the size of buffers returned by
// dequeueBuffer when a width and height of zero is requested. Default
// is 1x1.
virtual status_t setDefaultBufferSize(uint32_t w, uint32_t h);
// setDefaultMaxBufferCount sets the default value for the maximum buffer
// count (the initial default is 2). If the producer has requested a
// buffer count using setBufferCount, the default buffer count will only
// take effect if the producer sets the count back to zero.
//
// The count must be between 2 and NUM_BUFFER_SLOTS, inclusive.
virtual status_t setDefaultMaxBufferCount(int bufferCount);
// disableAsyncBuffer disables the extra buffer used in async mode
// (when both producer and consumer have set their "isControlledByApp"
// flag) and has dequeueBuffer() return WOULD_BLOCK instead.
//
// This can only be called before consumerConnect().
virtual status_t disableAsyncBuffer();
// setMaxAcquiredBufferCount sets the maximum number of buffers that can
// be acquired by the consumer at one time (default 1). This call will
// fail if a producer is connected to the BufferQueue.
virtual status_t setMaxAcquiredBufferCount(int maxAcquiredBuffers);
// setConsumerName sets the name used in logging
virtual void setConsumerName(const String8& name);
// setDefaultBufferFormat allows the BufferQueue to create
// GraphicBuffers of a defaultFormat if no format is specified
// in dequeueBuffer. Formats are enumerated in graphics.h; the
// initial default is HAL_PIXEL_FORMAT_RGBA_8888.
virtual status_t setDefaultBufferFormat(uint32_t defaultFormat);
// setConsumerUsageBits will turn on additional usage bits for dequeueBuffer.
// These are merged with the bits passed to dequeueBuffer. The values are
// enumerated in gralloc.h, e.g. GRALLOC_USAGE_HW_RENDER; the default is 0.
virtual status_t setConsumerUsageBits(uint32_t usage);
// setTransformHint bakes in rotation to buffers so overlays can be used.
// The values are enumerated in window.h, e.g.
// NATIVE_WINDOW_TRANSFORM_ROT_90. The default is 0 (no transform).
virtual status_t setTransformHint(uint32_t hint);
// Retrieve the BufferQueue's sideband stream, if any.
virtual sp<NativeHandle> getSidebandStream() const;
// dump our state in a String
virtual void dump(String8& result, const char* prefix) const;
private:
sp<BufferQueueProducer> mProducer;
sp<BufferQueueConsumer> mConsumer;
BufferQueue(); // Create through createBufferQueue
};
// ----------------------------------------------------------------------------

View File

@ -19,7 +19,9 @@
//#define LOG_NDEBUG 0
#include <gui/BufferQueue.h>
#include <gui/BufferQueueConsumer.h>
#include <gui/BufferQueueCore.h>
#include <gui/BufferQueueProducer.h>
namespace android {
@ -43,6 +45,13 @@ void BufferQueue::ProxyConsumerListener::onBuffersReleased() {
}
}
void BufferQueue::ProxyConsumerListener::onSidebandStreamChanged() {
sp<ConsumerListener> listener(mConsumerListener.promote());
if (listener != NULL) {
listener->onSidebandStreamChanged();
}
}
void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer,
sp<IGraphicBufferConsumer>* outConsumer,
const sp<IGraphicBufferAlloc>& allocator) {
@ -67,151 +76,4 @@ void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer,
*outConsumer = consumer;
}
BufferQueue::BufferQueue(const sp<IGraphicBufferAlloc>& allocator) :
mProducer(),
mConsumer()
{
sp<BufferQueueCore> core(new BufferQueueCore(allocator));
mProducer = new BufferQueueProducer(core);
mConsumer = new BufferQueueConsumer(core);
}
BufferQueue::~BufferQueue() {}
void BufferQueue::binderDied(const wp<IBinder>& who) {
mProducer->binderDied(who);
}
int BufferQueue::query(int what, int* outValue) {
return mProducer->query(what, outValue);
}
status_t BufferQueue::setBufferCount(int bufferCount) {
return mProducer->setBufferCount(bufferCount);
}
status_t BufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
return mProducer->requestBuffer(slot, buf);
}
status_t BufferQueue::dequeueBuffer(int *outBuf, sp<Fence>* outFence, bool async,
uint32_t w, uint32_t h, uint32_t format, uint32_t usage) {
return mProducer->dequeueBuffer(outBuf, outFence, async, w, h, format, usage);
}
status_t BufferQueue::detachProducerBuffer(int slot) {
return mProducer->detachBuffer(slot);
}
status_t BufferQueue::detachNextBuffer(sp<GraphicBuffer>* outBuffer,
sp<Fence>* outFence) {
return mProducer->detachNextBuffer(outBuffer, outFence);
}
status_t BufferQueue::attachProducerBuffer(int* slot,
const sp<GraphicBuffer>& buffer) {
return mProducer->attachBuffer(slot, buffer);
}
status_t BufferQueue::queueBuffer(int buf,
const QueueBufferInput& input, QueueBufferOutput* output) {
return mProducer->queueBuffer(buf, input, output);
}
void BufferQueue::cancelBuffer(int buf, const sp<Fence>& fence) {
mProducer->cancelBuffer(buf, fence);
}
status_t BufferQueue::connect(const sp<IProducerListener>& listener,
int api, bool producerControlledByApp, QueueBufferOutput* output) {
return mProducer->connect(listener, api, producerControlledByApp, output);
}
status_t BufferQueue::disconnect(int api) {
return mProducer->disconnect(api);
}
status_t BufferQueue::setSidebandStream(const sp<NativeHandle>& stream) {
return mProducer->setSidebandStream(stream);
}
status_t BufferQueue::acquireBuffer(BufferItem* buffer, nsecs_t presentWhen) {
return mConsumer->acquireBuffer(buffer, presentWhen);
}
status_t BufferQueue::detachConsumerBuffer(int slot) {
return mConsumer->detachBuffer(slot);
}
status_t BufferQueue::attachConsumerBuffer(int* slot,
const sp<GraphicBuffer>& buffer) {
return mConsumer->attachBuffer(slot, buffer);
}
status_t BufferQueue::releaseBuffer(
int buf, uint64_t frameNumber, EGLDisplay display,
EGLSyncKHR eglFence, const sp<Fence>& fence) {
return mConsumer->releaseBuffer(buf, frameNumber, fence, display, eglFence);
}
status_t BufferQueue::consumerConnect(const sp<IConsumerListener>& consumerListener,
bool controlledByApp) {
return mConsumer->connect(consumerListener, controlledByApp);
}
status_t BufferQueue::consumerDisconnect() {
return mConsumer->disconnect();
}
status_t BufferQueue::getReleasedBuffers(uint64_t* slotMask) {
return mConsumer->getReleasedBuffers(slotMask);
}
status_t BufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h) {
return mConsumer->setDefaultBufferSize(w, h);
}
status_t BufferQueue::setDefaultMaxBufferCount(int bufferCount) {
return mConsumer->setDefaultMaxBufferCount(bufferCount);
}
status_t BufferQueue::disableAsyncBuffer() {
return mConsumer->disableAsyncBuffer();
}
status_t BufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) {
return mConsumer->setMaxAcquiredBufferCount(maxAcquiredBuffers);
}
void BufferQueue::setConsumerName(const String8& name) {
mConsumer->setConsumerName(name);
}
status_t BufferQueue::setDefaultBufferFormat(uint32_t defaultFormat) {
return mConsumer->setDefaultBufferFormat(defaultFormat);
}
status_t BufferQueue::setConsumerUsageBits(uint32_t usage) {
return mConsumer->setConsumerUsageBits(usage);
}
status_t BufferQueue::setTransformHint(uint32_t hint) {
return mConsumer->setTransformHint(hint);
}
sp<NativeHandle> BufferQueue::getSidebandStream() const {
return mConsumer->getSidebandStream();
}
void BufferQueue::dump(String8& result, const char* prefix) const {
mConsumer->dump(result, prefix);
}
void BufferQueue::ProxyConsumerListener::onSidebandStreamChanged() {
sp<ConsumerListener> listener(mConsumerListener.promote());
if (listener != NULL) {
listener->onSidebandStreamChanged();
}
}
}; // namespace android