Merge commit '1ee45c2d2d816ee912624d81ff1b0aaa98e8fa74' into HEAD

This commit is contained in:
The Android Open Source Project 2013-12-05 12:38:18 -08:00
commit de8c80692b
13 changed files with 166 additions and 52 deletions

View File

@ -101,6 +101,7 @@ public:
status_t writeString16(const char16_t* str, size_t len);
status_t writeStrongBinder(const sp<IBinder>& val);
status_t writeWeakBinder(const wp<IBinder>& val);
status_t writeInt32Array(size_t len, const int32_t *val);
template<typename T>
status_t write(const Flattenable<T>& val);

View File

@ -35,6 +35,7 @@ public:
virtual status_t acquireWakeLockWithUid(int flags, const sp<IBinder>& lock, const String16& tag,
const String16& packageName, int uid) = 0;
virtual status_t releaseWakeLock(const sp<IBinder>& lock, int flags) = 0;
virtual status_t updateWakeLockUids(const sp<IBinder>& lock, int len, const int *uids) = 0;
};
// ----------------------------------------------------------------------------

View File

@ -617,6 +617,16 @@ status_t Parcel::writeInt32(int32_t val)
{
return writeAligned(val);
}
status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
if (!val) {
return writeAligned(-1);
}
status_t ret = writeAligned(len);
if (ret == NO_ERROR) {
ret = write(val, len * sizeof(*val));
}
return ret;
}
status_t Parcel::writeInt64(int64_t val)
{

View File

@ -644,6 +644,7 @@ status_t BufferQueue::connect(const sp<IBinder>& token,
producerControlledByApp ? "true" : "false");
Mutex::Autolock lock(mMutex);
retry:
if (mAbandoned) {
ST_LOGE("connect: BufferQueue has been abandoned!");
return NO_INIT;
@ -654,29 +655,41 @@ status_t BufferQueue::connect(const sp<IBinder>& token,
return NO_INIT;
}
if (mConnectedApi != NO_CONNECTED_API) {
ST_LOGE("connect: already connected (cur=%d, req=%d)",
mConnectedApi, api);
return -EINVAL;
}
// If we disconnect and reconnect quickly, we can be in a state where our slots are
// empty but we have many buffers in the queue. This can cause us to run out of
// memory if we outrun the consumer. Wait here if it looks like we have too many
// buffers queued up.
int maxBufferCount = getMaxBufferCountLocked(false); // worst-case, i.e. largest value
if (mQueue.size() > (size_t) maxBufferCount) {
// TODO: make this bound tighter?
ST_LOGV("queue size is %d, waiting", mQueue.size());
mDequeueCondition.wait(mMutex);
goto retry;
}
int err = NO_ERROR;
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
if (mConnectedApi != NO_CONNECTED_API) {
ST_LOGE("connect: already connected (cur=%d, req=%d)",
mConnectedApi, api);
err = -EINVAL;
} else {
mConnectedApi = api;
output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, mQueue.size());
mConnectedApi = api;
output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, mQueue.size());
// set-up a death notification so that we can disconnect
// automatically when/if the remote producer dies.
if (token != NULL && token->remoteBinder() != NULL) {
status_t err = token->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
if (err == NO_ERROR) {
mConnectedProducerToken = token;
} else {
ALOGE("linkToDeath failed: %s (%d)", strerror(-err), err);
}
// set-up a death notification so that we can disconnect
// automatically when/if the remote producer dies.
if (token != NULL && token->remoteBinder() != NULL) {
status_t err = token->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
if (err == NO_ERROR) {
mConnectedProducerToken = token;
} else {
ALOGE("linkToDeath failed: %s (%d)", strerror(-err), err);
}
}
break;

View File

@ -511,14 +511,17 @@ status_t InputConsumer::consumeBatch(InputEventFactoryInterface* factory,
status_t result;
for (size_t i = mBatches.size(); i-- > 0; ) {
Batch& batch = mBatches.editItemAt(i);
if (frameTime < 0 || !mResampleTouch) {
if (frameTime < 0) {
result = consumeSamples(factory, batch, batch.samples.size(),
outSeq, outEvent);
mBatches.removeAt(i);
return result;
}
nsecs_t sampleTime = frameTime - RESAMPLE_LATENCY;
nsecs_t sampleTime = frameTime;
if (mResampleTouch) {
sampleTime -= RESAMPLE_LATENCY;
}
ssize_t split = findSampleNoLaterThan(batch, sampleTime);
if (split < 0) {
continue;
@ -532,7 +535,7 @@ status_t InputConsumer::consumeBatch(InputEventFactoryInterface* factory,
} else {
next = &batch.samples.itemAt(0);
}
if (!result) {
if (!result && mResampleTouch) {
resampleTouchState(sampleTime, static_cast<MotionEvent*>(*outEvent), next);
}
return result;

View File

@ -435,7 +435,7 @@ EGLAPI gl_hooks_t gHooksSystrace = {
if (error) { \
CallStack s; \
s.update(); \
s.dump("glGetError:" #_api); \
s.log("glGetError:" #_api); \
} \
#define TRACE_GL_VOID(_api, _args, _argList, ...) \

View File

@ -32,6 +32,7 @@ enum {
ACQUIRE_WAKE_LOCK = IBinder::FIRST_CALL_TRANSACTION,
ACQUIRE_WAKE_LOCK_UID = IBinder::FIRST_CALL_TRANSACTION + 1,
RELEASE_WAKE_LOCK = IBinder::FIRST_CALL_TRANSACTION + 2,
UPDATE_WAKE_LOCK_UIDS = IBinder::FIRST_CALL_TRANSACTION + 3,
};
class BpPowerManager : public BpInterface<IPowerManager>
@ -78,6 +79,16 @@ public:
data.writeInt32(flags);
return remote()->transact(RELEASE_WAKE_LOCK, data, &reply);
}
virtual status_t updateWakeLockUids(const sp<IBinder>& lock, int len, const int *uids) {
Parcel data, reply;
data.writeInterfaceToken(IPowerManager::getInterfaceDescriptor());
data.writeStrongBinder(lock);
data.writeInt32Array(len, uids);
// We don't really care too much if this succeeds (there's nothing we can do if it doesn't)
// but it should return ASAP
return remote()->transact(UPDATE_WAKE_LOCK_UIDS, data, &reply, IBinder::FLAG_ONEWAY);
}
};
IMPLEMENT_META_INTERFACE(PowerManager, "android.os.IPowerManager");

View File

@ -480,6 +480,11 @@ String8 SensorService::getSensorName(int handle) const {
return result;
}
bool SensorService::isVirtualSensor(int handle) const {
SensorInterface* sensor = mSensorMap.valueFor(handle);
return sensor->isVirtual();
}
Vector<Sensor> SensorService::getSensorList()
{
char value[PROPERTY_VALUE_MAX];
@ -858,6 +863,11 @@ status_t SensorService::SensorEventConnection::sendEvents(
}
}
// Early return if there are no events for this connection.
if (count == 0) {
return status_t(NO_ERROR);
}
// NOTE: ASensorEvent and sensors_event_t are the same type
ssize_t size = SensorEventQueue::write(mChannel,
reinterpret_cast<ASensorEvent const*>(scratch), count);
@ -922,7 +932,7 @@ status_t SensorService::SensorEventConnection::flush() {
// Loop through all sensors for this connection and call flush on each of them.
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
const int handle = mSensorInfo.keyAt(i);
if (halVersion < SENSORS_DEVICE_API_VERSION_1_1) {
if (halVersion < SENSORS_DEVICE_API_VERSION_1_1 || mService->isVirtualSensor(handle)) {
// For older devices just increment pending flush count which will send a trivial
// flush complete event.
FlushInfo& flushInfo = mSensorInfo.editValueFor(handle);

View File

@ -130,6 +130,7 @@ class SensorService :
DefaultKeyedVector<int, SensorInterface*> getActiveVirtualSensors() const;
String8 getSensorName(int handle) const;
bool isVirtualSensor(int handle) const;
void recordLastValue(sensors_event_t const * buffer, size_t count);
static void sortEventBuffer(sensors_event_t* buffer, size_t count);
Sensor registerSensor(SensorInterface* sensor);

View File

@ -51,6 +51,10 @@ ifeq ($(TARGET_DISABLE_TRIPLE_BUFFERING),true)
LOCAL_CFLAGS += -DTARGET_DISABLE_TRIPLE_BUFFERING
endif
ifeq ($(TARGET_FORCE_HWC_FOR_VIRTUAL_DISPLAYS),true)
LOCAL_CFLAGS += -DFORCE_HWC_COPY_FOR_VIRTUAL_DISPLAYS
endif
ifneq ($(NUM_FRAMEBUFFER_SURFACE_BUFFERS),)
LOCAL_CFLAGS += -DNUM_FRAMEBUFFER_SURFACE_BUFFERS=$(NUM_FRAMEBUFFER_SURFACE_BUFFERS)
endif

View File

@ -605,7 +605,7 @@ status_t HWComposer::prepare() {
mLists[i] = disp.list;
if (mLists[i]) {
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_3)) {
mLists[i]->outbuf = NULL;
mLists[i]->outbuf = disp.outbufHandle;
mLists[i]->outbufAcquireFenceFd = -1;
} else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// garbage data to catch improper use

View File

@ -22,6 +22,12 @@
namespace android {
// ---------------------------------------------------------------------------
#if defined(FORCE_HWC_COPY_FOR_VIRTUAL_DISPLAYS)
static const bool sForceHwcCopy = true;
#else
static const bool sForceHwcCopy = false;
#endif
#define VDS_LOGE(msg, ...) ALOGE("[%s] "msg, \
mDisplayName.string(), ##__VA_ARGS__)
#define VDS_LOGW_IF(cond, msg, ...) ALOGW_IF(cond, "[%s] "msg, \
@ -47,7 +53,7 @@ VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, int32_t dispId,
mHwc(hwc),
mDisplayId(dispId),
mDisplayName(name),
mProducerUsage(GRALLOC_USAGE_HW_COMPOSER),
mOutputUsage(GRALLOC_USAGE_HW_COMPOSER),
mProducerSlotSource(0),
mDbgState(DBG_STATE_IDLE),
mDbgLastCompositionType(COMPOSITION_UNKNOWN)
@ -58,8 +64,23 @@ VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, int32_t dispId,
resetPerFrameState();
int sinkWidth, sinkHeight;
mSource[SOURCE_SINK]->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
mSource[SOURCE_SINK]->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
// Pick the buffer format to request from the sink when not rendering to it
// with GLES. If the consumer needs CPU access, use the default format
// set by the consumer. Otherwise allow gralloc to decide the format based
// on usage bits.
int sinkUsage;
sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage);
if (sinkUsage & (GRALLOC_USAGE_SW_READ_MASK | GRALLOC_USAGE_SW_WRITE_MASK)) {
int sinkFormat;
sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat);
mDefaultOutputFormat = sinkFormat;
} else {
mDefaultOutputFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
}
mOutputFormat = mDefaultOutputFormat;
ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.string());
mConsumer->setConsumerName(ConsumerBase::mName);
@ -95,6 +116,17 @@ status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
mDbgState = DBG_STATE_PREPARED;
mCompositionType = compositionType;
if (sForceHwcCopy && mCompositionType == COMPOSITION_GLES) {
// Some hardware can do RGB->YUV conversion more efficiently in hardware
// controlled by HWC than in hardware controlled by the video encoder.
// Forcing GLES-composed frames to go through an extra copy by the HWC
// allows the format conversion to happen there, rather than passing RGB
// directly to the consumer.
//
// On the other hand, when the consumer prefers RGB or can consume RGB
// inexpensively, this forces an unnecessary copy.
mCompositionType = COMPOSITION_MIXED;
}
if (mCompositionType != mDbgLastCompositionType) {
VDS_LOGV("prepareFrame: composition type changed to %s",
@ -102,6 +134,24 @@ status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
mDbgLastCompositionType = mCompositionType;
}
if (mCompositionType != COMPOSITION_GLES &&
(mOutputFormat != mDefaultOutputFormat ||
mOutputUsage != GRALLOC_USAGE_HW_COMPOSER)) {
// We must have just switched from GLES-only to MIXED or HWC
// composition. Stop using the format and usage requested by the GLES
// driver; they may be suboptimal when HWC is writing to the output
// buffer. For example, if the output is going to a video encoder, and
// HWC can write directly to YUV, some hardware can skip a
// memory-to-memory RGB-to-YUV conversion step.
//
// If we just switched *to* GLES-only mode, we'll change the
// format/usage and get a new buffer when the GLES driver calls
// dequeueBuffer().
mOutputFormat = mDefaultOutputFormat;
mOutputUsage = GRALLOC_USAGE_HW_COMPOSER;
refreshOutputBuffer();
}
return NO_ERROR;
}
@ -124,14 +174,8 @@ status_t VirtualDisplaySurface::advanceFrame() {
}
mDbgState = DBG_STATE_HWC;
if (mCompositionType == COMPOSITION_HWC) {
// Use the output buffer for the FB as well, though conceptually the
// FB is unused on this frame.
mFbProducerSlot = mOutputProducerSlot;
mFbFence = mOutputFence;
}
if (mFbProducerSlot < 0 || mOutputProducerSlot < 0) {
if (mOutputProducerSlot < 0 ||
(mCompositionType != COMPOSITION_HWC && mFbProducerSlot < 0)) {
// Last chance bailout if something bad happened earlier. For example,
// in a GLES configuration, if the sink disappears then dequeueBuffer
// will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
@ -141,7 +185,8 @@ status_t VirtualDisplaySurface::advanceFrame() {
return NO_MEMORY;
}
sp<GraphicBuffer> fbBuffer = mProducerBuffers[mFbProducerSlot];
sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(NULL);
sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)",
mFbProducerSlot, fbBuffer.get(),
@ -151,7 +196,12 @@ status_t VirtualDisplaySurface::advanceFrame() {
// so update HWC state with it.
mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer);
return mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
status_t result = NO_ERROR;
if (fbBuffer != NULL) {
result = mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
}
return result;
}
void VirtualDisplaySurface::onFrameCommitted() {
@ -212,12 +262,12 @@ status_t VirtualDisplaySurface::setBufferCount(int bufferCount) {
}
status_t VirtualDisplaySurface::dequeueBuffer(Source source,
uint32_t format, int* sslot, sp<Fence>* fence) {
uint32_t format, uint32_t usage, int* sslot, sp<Fence>* fence) {
// Don't let a slow consumer block us
bool async = (source == SOURCE_SINK);
status_t result = mSource[source]->dequeueBuffer(sslot, fence, async,
mSinkBufferWidth, mSinkBufferHeight, format, mProducerUsage);
mSinkBufferWidth, mSinkBufferHeight, format, usage);
if (result < 0)
return result;
int pslot = mapSource2ProducerSlot(source, *sslot);
@ -241,8 +291,10 @@ status_t VirtualDisplaySurface::dequeueBuffer(Source source,
}
if (result & BUFFER_NEEDS_REALLOCATION) {
mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]);
VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p",
dbgSourceStr(source), pslot, mProducerBuffers[pslot].get());
VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p fmt=%d usage=%#x",
dbgSourceStr(source), pslot, mProducerBuffers[pslot].get(),
mProducerBuffers[pslot]->getPixelFormat(),
mProducerBuffers[pslot]->getUsage());
}
return result;
@ -258,7 +310,6 @@ status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, bool
VDS_LOGV("dequeueBuffer %dx%d fmt=%d usage=%#x", w, h, format, usage);
status_t result = NO_ERROR;
mProducerUsage = usage | GRALLOC_USAGE_HW_COMPOSER;
Source source = fbSourceForCompositionType(mCompositionType);
if (source == SOURCE_SINK) {
@ -279,13 +330,20 @@ status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, bool
// prepare and set, but since we're in GLES-only mode already it
// shouldn't matter.
usage |= GRALLOC_USAGE_HW_COMPOSER;
const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot];
if ((mProducerUsage & ~buf->getUsage()) != 0 ||
if ((usage & ~buf->getUsage()) != 0 ||
(format != 0 && format != (uint32_t)buf->getPixelFormat()) ||
(w != 0 && w != mSinkBufferWidth) ||
(h != 0 && h != mSinkBufferHeight)) {
VDS_LOGV("dequeueBuffer: output buffer doesn't satisfy GLES "
"request, getting a new buffer");
VDS_LOGV("dequeueBuffer: dequeueing new output buffer: "
"want %dx%d fmt=%d use=%#x, "
"have %dx%d fmt=%d use=%#x",
w, h, format, usage,
mSinkBufferWidth, mSinkBufferHeight,
buf->getPixelFormat(), buf->getUsage());
mOutputFormat = format;
mOutputUsage = usage;
result = refreshOutputBuffer();
if (result < 0)
return result;
@ -297,7 +355,7 @@ status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, bool
*fence = mOutputFence;
} else {
int sslot;
result = dequeueBuffer(source, format, &sslot, fence);
result = dequeueBuffer(source, format, usage, &sslot, fence);
if (result >= 0) {
*pslot = mapSource2ProducerSlot(source, sslot);
}
@ -400,9 +458,7 @@ void VirtualDisplaySurface::resetPerFrameState() {
mCompositionType = COMPOSITION_UNKNOWN;
mSinkBufferWidth = 0;
mSinkBufferHeight = 0;
mFbFence = Fence::NO_FENCE;
mOutputFence = Fence::NO_FENCE;
mFbProducerSlot = -1;
mOutputProducerSlot = -1;
}
@ -414,7 +470,8 @@ status_t VirtualDisplaySurface::refreshOutputBuffer() {
}
int sslot;
status_t result = dequeueBuffer(SOURCE_SINK, 0, &sslot, &mOutputFence);
status_t result = dequeueBuffer(SOURCE_SINK, mOutputFormat, mOutputUsage,
&sslot, &mOutputFence);
if (result < 0)
return result;
mOutputProducerSlot = mapSource2ProducerSlot(SOURCE_SINK, sslot);

View File

@ -110,7 +110,7 @@ private:
// Utility methods
//
static Source fbSourceForCompositionType(CompositionType type);
status_t dequeueBuffer(Source source, uint32_t format,
status_t dequeueBuffer(Source source, uint32_t format, uint32_t usage,
int* sslot, sp<Fence>* fence);
void updateQueueBufferOutput(const QueueBufferOutput& qbo);
void resetPerFrameState();
@ -132,15 +132,18 @@ private:
const int32_t mDisplayId;
const String8 mDisplayName;
sp<IGraphicBufferProducer> mSource[2]; // indexed by SOURCE_*
uint32_t mDefaultOutputFormat;
//
// Inter-frame state
//
// To avoid buffer reallocations, we track the buffer usage requested by
// the GLES driver in dequeueBuffer so we can use the same flags on
// HWC-only frames.
uint32_t mProducerUsage;
// To avoid buffer reallocations, we track the buffer usage and format
// we used on the previous frame and use it again on the new frame. If
// the composition type changes or the GLES driver starts requesting
// different usage/format, we'll get a new buffer.
uint32_t mOutputFormat;
uint32_t mOutputUsage;
// Since we present a single producer interface to the GLES driver, but
// are internally muxing between the sink and scratch producers, we have