small improvement to sensor fusion
1) there was a typo when computing the system covariance a term in dT^3 was ommitted; the impact was was very limited because of how small this term is. 2) initialize the system covariance matrix with non-zero values for the gyro-bias part. this improves the initial bias estimation speed significantly. 3) added comments here and there Change-Id: I4328c9cca73e089889d5e74b9fda99d7831762dc
This commit is contained in:
parent
8dd4fe8dd3
commit
dc5b63e40e
@ -201,15 +201,15 @@ void Fusion::initFusion(const vec4_t& q, float dT)
|
|||||||
// q11 = su^2.dt
|
// q11 = su^2.dt
|
||||||
//
|
//
|
||||||
|
|
||||||
// variance of integrated output at 1/dT Hz
|
const float dT2 = dT*dT;
|
||||||
// (random drift)
|
const float dT3 = dT2*dT;
|
||||||
const float q00 = gyroVAR * dT;
|
|
||||||
|
// variance of integrated output at 1/dT Hz (random drift)
|
||||||
|
const float q00 = gyroVAR * dT + 0.33333f * biasVAR * dT3;
|
||||||
|
|
||||||
// variance of drift rate ramp
|
// variance of drift rate ramp
|
||||||
const float q11 = biasVAR * dT;
|
const float q11 = biasVAR * dT;
|
||||||
|
const float q10 = 0.5f * biasVAR * dT2;
|
||||||
const float u = q11 / dT;
|
|
||||||
const float q10 = 0.5f*u*dT*dT;
|
|
||||||
const float q01 = q10;
|
const float q01 = q10;
|
||||||
|
|
||||||
GQGt[0][0] = q00; // rad^2
|
GQGt[0][0] = q00; // rad^2
|
||||||
@ -220,6 +220,22 @@ void Fusion::initFusion(const vec4_t& q, float dT)
|
|||||||
// initial covariance: Var{ x(t0) }
|
// initial covariance: Var{ x(t0) }
|
||||||
// TODO: initialize P correctly
|
// TODO: initialize P correctly
|
||||||
P = 0;
|
P = 0;
|
||||||
|
|
||||||
|
// it is unclear how to set the initial covariance. It does affect
|
||||||
|
// how quickly the fusion converges. Experimentally it would take
|
||||||
|
// about 10 seconds at 200 Hz to estimate the gyro-drift with an
|
||||||
|
// initial covariance of 0, and about a second with an initial covariance
|
||||||
|
// of about 1 deg/s.
|
||||||
|
const float covv = 0;
|
||||||
|
const float covu = 0.5f * (float(M_PI) / 180);
|
||||||
|
mat33_t& Pv = P[0][0];
|
||||||
|
Pv[0][0] = covv;
|
||||||
|
Pv[1][1] = covv;
|
||||||
|
Pv[2][2] = covv;
|
||||||
|
mat33_t& Pu = P[1][1];
|
||||||
|
Pu[0][0] = covu;
|
||||||
|
Pu[1][1] = covu;
|
||||||
|
Pu[2][2] = covu;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Fusion::hasEstimate() const {
|
bool Fusion::hasEstimate() const {
|
||||||
@ -357,6 +373,11 @@ mat33_t Fusion::getRotationMatrix() const {
|
|||||||
|
|
||||||
mat34_t Fusion::getF(const vec4_t& q) {
|
mat34_t Fusion::getF(const vec4_t& q) {
|
||||||
mat34_t F;
|
mat34_t F;
|
||||||
|
|
||||||
|
// This is used to compute the derivative of q
|
||||||
|
// F = | [q.xyz]x |
|
||||||
|
// | -q.xyz |
|
||||||
|
|
||||||
F[0].x = q.w; F[1].x =-q.z; F[2].x = q.y;
|
F[0].x = q.w; F[1].x =-q.z; F[2].x = q.y;
|
||||||
F[0].y = q.z; F[1].y = q.w; F[2].y =-q.x;
|
F[0].y = q.z; F[1].y = q.w; F[2].y =-q.x;
|
||||||
F[0].z =-q.y; F[1].z = q.x; F[2].z = q.w;
|
F[0].z =-q.y; F[1].z = q.x; F[2].z = q.w;
|
||||||
@ -413,7 +434,12 @@ void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
|
|||||||
K[1] = transpose(P[1][0])*LtSi;
|
K[1] = transpose(P[1][0])*LtSi;
|
||||||
|
|
||||||
// update...
|
// update...
|
||||||
// P -= K*H*P;
|
// P = (I-K*H) * P
|
||||||
|
// P -= K*H*P
|
||||||
|
// | K0 | * | L 0 | * P = | K0*L 0 | * | P00 P10 | = | K0*L*P00 K0*L*P10 |
|
||||||
|
// | K1 | | K1*L 0 | | P01 P11 | | K1*L*P00 K1*L*P10 |
|
||||||
|
// Note: the Joseph form is numerically more stable and given by:
|
||||||
|
// P = (I-KH) * P * (I-KH)' + K*R*R'
|
||||||
const mat33_t K0L(K[0] * L);
|
const mat33_t K0L(K[0] * L);
|
||||||
const mat33_t K1L(K[1] * L);
|
const mat33_t K1L(K[1] * L);
|
||||||
P[0][0] -= K0L*P[0][0];
|
P[0][0] -= K0L*P[0][0];
|
||||||
|
Loading…
Reference in New Issue
Block a user