am af8ed3f0: Merge "Improve logging in SensorService dump output." into mnc-dev

* commit 'af8ed3f06cf5a0fd37357b438da803f53f33fa56':
  Improve logging in SensorService dump output.
This commit is contained in:
Aravind Akella 2015-05-12 19:30:30 +00:00 committed by Android Git Automerger
commit d0e95fed02
3 changed files with 283 additions and 143 deletions

View File

@ -79,7 +79,7 @@ void SensorDevice::dump(String8& result)
sensor_t const* list;
ssize_t count = mSensorModule->get_sensors_list(mSensorModule, &list);
result.appendFormat("halVersion %d\n", getHalDeviceVersion());
result.appendFormat("halVersion 0x%08x\n", getHalDeviceVersion());
result.appendFormat("%d h/w sensors:\n", int(count));
Mutex::Autolock _l(mLock);

View File

@ -214,7 +214,7 @@ Sensor SensorService::registerSensor(SensorInterface* s)
// add to our handle->SensorInterface mapping
mSensorMap.add(sensor.getHandle(), s);
// create an entry in the mLastEventSeen array
mLastEventSeen.add(sensor.getHandle(), event);
mLastEventSeen.add(sensor.getHandle(), NULL);
return sensor;
}
@ -240,13 +240,21 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
"can't dump SensorService from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
} else if (args.size() > 0) {
} else {
if (args.size() > 1) {
return INVALID_OPERATION;
}
Mutex::Autolock _l(mLock);
SensorDevice& dev(SensorDevice::getInstance());
if (args[0] == String16("restrict") && mCurrentOperatingMode == NORMAL) {
if (args.size() == 1 && args[0] == String16("restrict")) {
// If already in restricted mode. Ignore.
if (mCurrentOperatingMode == RESTRICTED) {
return status_t(NO_ERROR);
}
// If in any mode other than normal, ignore.
if (mCurrentOperatingMode != NORMAL) {
return INVALID_OPERATION;
}
mCurrentOperatingMode = RESTRICTED;
dev.disableAllSensors();
// Clear all pending flush connections for all active sensors. If one of the active
@ -255,132 +263,107 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
}
} else if (args[0] == String16("enable") && mCurrentOperatingMode == RESTRICTED) {
mCurrentOperatingMode = NORMAL;
dev.enableAllSensors();
}
return status_t(NO_ERROR);
} else {
Mutex::Autolock _l(mLock);
result.append("Sensor List:\n");
for (size_t i=0 ; i<mSensorList.size() ; i++) {
const Sensor& s(mSensorList[i]);
const sensors_event_t& e(mLastEventSeen.valueFor(s.getHandle()));
result.appendFormat(
"%-15s| %-10s| version=%d |%-20s| 0x%08x | \"%s\" | type=%d |",
s.getName().string(),
s.getVendor().string(),
s.getVersion(),
s.getStringType().string(),
s.getHandle(),
s.getRequiredPermission().string(),
s.getType());
return status_t(NO_ERROR);
} else if (args.size() == 1 && args[0] == String16("enable")) {
// If currently in restricted mode, reset back to NORMAL mode else ignore.
if (mCurrentOperatingMode == RESTRICTED) {
mCurrentOperatingMode = NORMAL;
dev.enableAllSensors();
}
return status_t(NO_ERROR);
} else {
// Default dump the sensor list and debugging information.
result.append("Sensor List:\n");
for (size_t i=0 ; i<mSensorList.size() ; i++) {
const Sensor& s(mSensorList[i]);
result.appendFormat(
"%-15s| %-10s| version=%d |%-20s| 0x%08x | \"%s\" | type=%d |",
s.getName().string(),
s.getVendor().string(),
s.getVersion(),
s.getStringType().string(),
s.getHandle(),
s.getRequiredPermission().string(),
s.getType());
const int reportingMode = s.getReportingMode();
if (reportingMode == AREPORTING_MODE_CONTINUOUS) {
result.append(" continuous | ");
} else if (reportingMode == AREPORTING_MODE_ON_CHANGE) {
result.append(" on-change | ");
} else if (reportingMode == AREPORTING_MODE_ONE_SHOT) {
result.append(" one-shot | ");
} else {
result.append(" special-trigger | ");
const int reportingMode = s.getReportingMode();
if (reportingMode == AREPORTING_MODE_CONTINUOUS) {
result.append(" continuous | ");
} else if (reportingMode == AREPORTING_MODE_ON_CHANGE) {
result.append(" on-change | ");
} else if (reportingMode == AREPORTING_MODE_ONE_SHOT) {
result.append(" one-shot | ");
} else {
result.append(" special-trigger | ");
}
if (s.getMaxDelay() > 0) {
result.appendFormat("minRate=%.2fHz | ", 1e6f / s.getMaxDelay());
} else {
result.appendFormat("maxDelay=%dus |", s.getMaxDelay());
}
if (s.getMinDelay() > 0) {
result.appendFormat("maxRate=%.2fHz | ", 1e6f / s.getMinDelay());
} else {
result.appendFormat("minDelay=%dus |", s.getMinDelay());
}
if (s.getFifoMaxEventCount() > 0) {
result.appendFormat("FifoMax=%d events | ",
s.getFifoMaxEventCount());
} else {
result.append("no batching | ");
}
if (s.isWakeUpSensor()) {
result.appendFormat("wakeUp | ");
} else {
result.appendFormat("non-wakeUp | ");
}
const CircularBuffer* buf = mLastEventSeen.valueFor(s.getHandle());
if (buf != NULL && s.getRequiredPermission().isEmpty()) {
buf->printBuffer(result);
} else {
result.append("last=<> \n");
}
result.append("\n");
}
SensorFusion::getInstance().dump(result);
SensorDevice::getInstance().dump(result);
result.append("Active sensors:\n");
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
int handle = mActiveSensors.keyAt(i);
result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
getSensorName(handle).string(),
handle,
mActiveSensors.valueAt(i)->getNumConnections());
}
if (s.getMaxDelay() > 0) {
result.appendFormat("minRate=%.2fHz | ", 1e6f / s.getMaxDelay());
} else {
result.appendFormat("maxDelay=%dus |", s.getMaxDelay());
result.appendFormat("Socket Buffer size = %d events\n",
mSocketBufferSize/sizeof(sensors_event_t));
result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" : "not held");
result.appendFormat("Mode :");
switch(mCurrentOperatingMode) {
case NORMAL:
result.appendFormat(" NORMAL\n");
break;
case RESTRICTED:
result.appendFormat(" RESTRICTED\n");
break;
case DATA_INJECTION:
result.appendFormat(" DATA_INJECTION\n");
}
result.appendFormat("%zd active connections\n", mActiveConnections.size());
if (s.getMinDelay() > 0) {
result.appendFormat("maxRate=%.2fHz | ", 1e6f / s.getMinDelay());
} else {
result.appendFormat("minDelay=%dus |", s.getMinDelay());
}
if (s.getFifoMaxEventCount() > 0) {
result.appendFormat("FifoMax=%d events | ",
s.getFifoMaxEventCount());
} else {
result.append("no batching | ");
}
if (s.isWakeUpSensor()) {
result.appendFormat("wakeUp | ");
} else {
result.appendFormat("non-wakeUp | ");
}
switch (s.getType()) {
case SENSOR_TYPE_ROTATION_VECTOR:
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
result.appendFormat(
"last=<%5.1f,%5.1f,%5.1f,%5.1f,%5.1f, %" PRId64 ">\n",
e.data[0], e.data[1], e.data[2], e.data[3], e.data[4], e.timestamp);
break;
case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
result.appendFormat(
"last=<%5.1f,%5.1f,%5.1f,%5.1f,%5.1f,%5.1f, %" PRId64 ">\n",
e.data[0], e.data[1], e.data[2], e.data[3], e.data[4], e.data[5],
e.timestamp);
break;
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
result.appendFormat(
"last=<%5.1f,%5.1f,%5.1f,%5.1f, %" PRId64 ">\n",
e.data[0], e.data[1], e.data[2], e.data[3], e.timestamp);
break;
case SENSOR_TYPE_SIGNIFICANT_MOTION:
case SENSOR_TYPE_STEP_DETECTOR:
result.appendFormat( "last=<%f %" PRId64 ">\n", e.data[0], e.timestamp);
break;
case SENSOR_TYPE_STEP_COUNTER:
result.appendFormat( "last=<%" PRIu64 ", %" PRId64 ">\n", e.u64.step_counter,
e.timestamp);
break;
default:
// default to 3 values
result.appendFormat(
"last=<%5.1f,%5.1f,%5.1f, %" PRId64 ">\n",
e.data[0], e.data[1], e.data[2], e.timestamp);
break;
}
result.append("\n");
}
SensorFusion::getInstance().dump(result);
SensorDevice::getInstance().dump(result);
result.append("Active sensors:\n");
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
int handle = mActiveSensors.keyAt(i);
result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
getSensorName(handle).string(),
handle,
mActiveSensors.valueAt(i)->getNumConnections());
}
result.appendFormat("Socket Buffer size = %d events\n",
mSocketBufferSize/sizeof(sensors_event_t));
result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" : "not held");
result.appendFormat("Mode :");
switch(mCurrentOperatingMode) {
case NORMAL:
result.appendFormat(" NORMAL\n");
break;
case RESTRICTED:
result.appendFormat(" RESTRICTED\n");
break;
case DATA_INJECTION:
result.appendFormat(" DATA_INJECTION\n");
}
result.appendFormat("%zd active connections\n", mActiveConnections.size());
for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
result.appendFormat("Connection Number: %zu \n", i);
connection->dump(result);
for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
result.appendFormat("Connection Number: %zu \n", i);
connection->dump(result);
}
}
}
}
@ -610,19 +593,15 @@ bool SensorService::SensorEventAckReceiver::threadLoop() {
void SensorService::recordLastValueLocked(
const sensors_event_t* buffer, size_t count) {
const sensors_event_t* last = NULL;
for (size_t i = 0; i < count; i++) {
const sensors_event_t* event = &buffer[i];
if (event->type != SENSOR_TYPE_META_DATA) {
if (last && event->sensor != last->sensor) {
mLastEventSeen.editValueFor(last->sensor) = *last;
if (buffer[i].type != SENSOR_TYPE_META_DATA) {
CircularBuffer* &circular_buf = mLastEventSeen.editValueFor(buffer[i].sensor);
if (circular_buf == NULL) {
circular_buf = new CircularBuffer(buffer[i].type);
}
last = event;
circular_buf->addEvent(buffer[i]);
}
}
if (last) {
mLastEventSeen.editValueFor(last->sensor) = *last;
}
}
void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count)
@ -839,14 +818,24 @@ status_t SensorService::enable(const sp<SensorEventConnection>& connection,
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
// NOTE: The wake_up flag of this event may get set to
// WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
sensors_event_t& event(mLastEventSeen.editValueFor(handle));
if (event.version == sizeof(sensors_event_t)) {
if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
setWakeLockAcquiredLocked(true);
}
connection->sendEvents(&event, 1, NULL);
if (!connection->needsWakeLock() && mWakeLockAcquired) {
checkWakeLockStateLocked();
CircularBuffer *circular_buf = mLastEventSeen.valueFor(handle);
if (circular_buf) {
sensors_event_t event;
memset(&event, 0, sizeof(event));
// It is unlikely that this buffer is empty as the sensor is already active.
// One possible corner case may be two applications activating an on-change
// sensor at the same time.
if(circular_buf->populateLastEvent(&event)) {
event.sensor = handle;
if (event.version == sizeof(sensors_event_t)) {
if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
setWakeLockAcquiredLocked(true);
}
connection->sendEvents(&event, 1, NULL);
if (!connection->needsWakeLock() && mWakeLockAcquired) {
checkWakeLockStateLocked();
}
}
}
}
}
@ -1108,6 +1097,29 @@ bool SensorService::isWhiteListedPackage(const String8& packageName) {
return (packageName.find(".cts.") != -1);
}
int SensorService::getNumEventsForSensorType(int sensor_event_type) {
switch (sensor_event_type) {
case SENSOR_TYPE_ROTATION_VECTOR:
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
return 5;
case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
return 6;
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
return 4;
case SENSOR_TYPE_SIGNIFICANT_MOTION:
case SENSOR_TYPE_STEP_DETECTOR:
case SENSOR_TYPE_STEP_COUNTER:
return 1;
default:
return 3;
}
}
// ---------------------------------------------------------------------------
SensorService::SensorRecord::SensorRecord(
const sp<SensorEventConnection>& connection)
@ -1168,6 +1180,85 @@ void SensorService::SensorRecord::clearAllPendingFlushConnections() {
mPendingFlushConnections.clear();
}
// --------------------------------------------------------------------------
SensorService::CircularBuffer::CircularBuffer(int sensor_event_type) {
mNextInd = 0;
mTrimmedSensorEventArr = new TrimmedSensorEvent *[CIRCULAR_BUF_SIZE];
mSensorType = sensor_event_type;
const int numData = SensorService::getNumEventsForSensorType(mSensorType);
for (int i = 0; i < CIRCULAR_BUF_SIZE; ++i) {
mTrimmedSensorEventArr[i] = new TrimmedSensorEvent(numData, mSensorType);
}
}
void SensorService::CircularBuffer::addEvent(const sensors_event_t& sensor_event) {
TrimmedSensorEvent *curr_event = mTrimmedSensorEventArr[mNextInd];
curr_event->mTimestamp = sensor_event.timestamp;
if (mSensorType == SENSOR_TYPE_STEP_COUNTER) {
curr_event->mStepCounter = sensor_event.u64.step_counter;
} else {
memcpy(curr_event->mData, sensor_event.data,
sizeof(float) * SensorService::getNumEventsForSensorType(mSensorType));
}
time_t rawtime = time(NULL);
struct tm * timeinfo = localtime(&rawtime);
curr_event->mHour = timeinfo->tm_hour;
curr_event->mMin = timeinfo->tm_min;
curr_event->mSec = timeinfo->tm_sec;
mNextInd = (mNextInd + 1) % CIRCULAR_BUF_SIZE;
}
void SensorService::CircularBuffer::printBuffer(String8& result) const {
const int numData = SensorService::getNumEventsForSensorType(mSensorType);
int i = mNextInd, eventNum = 1;
result.appendFormat("last %d events = < ", CIRCULAR_BUF_SIZE);
do {
if (mTrimmedSensorEventArr[i]->mTimestamp == -1) {
// Sentinel, ignore.
i = (i + 1) % CIRCULAR_BUF_SIZE;
continue;
}
result.appendFormat("%d) ", eventNum++);
if (mSensorType == SENSOR_TYPE_STEP_COUNTER) {
result.appendFormat("%llu,", mTrimmedSensorEventArr[i]->mStepCounter);
} else {
for (int j = 0; j < numData; ++j) {
result.appendFormat("%5.1f,", mTrimmedSensorEventArr[i]->mData[j]);
}
}
result.appendFormat("%lld %02d:%02d:%02d ", mTrimmedSensorEventArr[i]->mTimestamp,
mTrimmedSensorEventArr[i]->mHour, mTrimmedSensorEventArr[i]->mMin,
mTrimmedSensorEventArr[i]->mSec);
i = (i + 1) % CIRCULAR_BUF_SIZE;
} while (i != mNextInd);
result.appendFormat(">\n");
}
bool SensorService::CircularBuffer::populateLastEvent(sensors_event_t *event) {
int lastEventInd = (mNextInd - 1 + CIRCULAR_BUF_SIZE) % CIRCULAR_BUF_SIZE;
// Check if the buffer is empty.
if (mTrimmedSensorEventArr[lastEventInd]->mTimestamp == -1) {
return false;
}
event->version = sizeof(sensors_event_t);
event->type = mSensorType;
event->timestamp = mTrimmedSensorEventArr[lastEventInd]->mTimestamp;
if (mSensorType == SENSOR_TYPE_STEP_COUNTER) {
event->u64.step_counter = mTrimmedSensorEventArr[lastEventInd]->mStepCounter;
} else {
memcpy(event->data, mTrimmedSensorEventArr[lastEventInd]->mData,
sizeof(float) * SensorService::getNumEventsForSensorType(mSensorType));
}
return true;
}
SensorService::CircularBuffer::~CircularBuffer() {
for (int i = 0; i < CIRCULAR_BUF_SIZE; ++i) {
delete mTrimmedSensorEventArr[i];
}
delete [] mTrimmedSensorEventArr;
}
// ---------------------------------------------------------------------------
SensorService::SensorEventConnection::SensorEventConnection(

View File

@ -53,6 +53,8 @@
// For older HALs which don't support batching, use a smaller socket buffer size.
#define SOCKET_BUFFER_SIZE_NON_BATCHED 4 * 1024
#define CIRCULAR_BUF_SIZE 10
struct sensors_poll_device_t;
struct sensors_module_t;
@ -258,6 +260,53 @@ class SensorService :
SensorEventAckReceiver(const sp<SensorService>& service): mService(service) {}
};
// sensor_event_t with only the data and the timestamp.
struct TrimmedSensorEvent {
union {
float *mData;
uint64_t mStepCounter;
};
// Timestamp from the sensor_event.
int64_t mTimestamp;
// HH:MM:SS local time at which this sensor event is read at SensorService. Useful
// for debugging.
int32_t mHour, mMin, mSec;
TrimmedSensorEvent(int numData, int sensorType) {
mTimestamp = -1;
if (sensorType == SENSOR_TYPE_STEP_COUNTER) {
mStepCounter = 0;
} else {
mData = new float[numData];
for (int i = 0; i < numData; ++i) {
mData[i] = -1.0;
}
}
mHour = mMin = mSec = 0;
}
~TrimmedSensorEvent() {
delete [] mData;
}
};
// A circular buffer of TrimmedSensorEvents. The size of this buffer is typically 10. The
// last N events generated from the sensor are stored in this buffer. The buffer is NOT
// cleared when the sensor unregisters and as a result one may see very old data in the
// dumpsys output but this is WAI.
class CircularBuffer {
int mNextInd;
int mSensorType;
TrimmedSensorEvent ** mTrimmedSensorEventArr;
public:
CircularBuffer(int sensor_event_type);
void addEvent(const sensors_event_t& sensor_event);
void printBuffer(String8& buffer) const;
bool populateLastEvent(sensors_event_t *event);
~CircularBuffer();
};
static int getNumEventsForSensorType(int sensor_event_type);
String8 getSensorName(int handle) const;
bool isVirtualSensor(int handle) const;
Sensor getSensorFromHandle(int handle) const;
@ -336,7 +385,7 @@ class SensorService :
Mode mCurrentOperatingMode;
// The size of this vector is constant, only the items are mutable
KeyedVector<int32_t, sensors_event_t> mLastEventSeen;
KeyedVector<int32_t, CircularBuffer *> mLastEventSeen;
public:
void cleanupConnection(SensorEventConnection* connection);