Add stringType and requiredPermission to sensors, effectively adding permission checking for sensors

Change-Id: If0f3dbdb5d2e9378e1fed4614baee4e750d0c850
This commit is contained in:
Etienne Le Grand 2014-03-24 21:28:23 -07:00
parent ad98ad0493
commit c57a019e11
5 changed files with 234 additions and 51 deletions

View File

@ -281,6 +281,28 @@ float ASensor_getResolution(ASensor const* sensor);
*/ */
int ASensor_getMinDelay(ASensor const* sensor); int ASensor_getMinDelay(ASensor const* sensor);
/*
* Returns the maximum size of batches for this sensor. Batches will often be
* smaller, as the hardware fifo might be used for other sensors.
*/
int ASensor_getFifoMaxEventCount(ASensor const* sensor);
/*
* Returns the hardware batch fifo size reserved to this sensor.
*/
int ASensor_getFifoReservedEventCount(ASensor const* sensor);
/*
* Returns this sensor's string type.
*/
const char* ASensor_getStringType(ASensor const* sensor);
/*
* Returns the permission required to see or access this sensor, or the
* empty string if none is required.
*/
const char* ASensor_getRequiredPermission(ASensor const* sensor);
#ifdef __cplusplus #ifdef __cplusplus
}; };

View File

@ -69,6 +69,8 @@ public:
int32_t getVersion() const; int32_t getVersion() const;
int32_t getFifoReservedEventCount() const; int32_t getFifoReservedEventCount() const;
int32_t getFifoMaxEventCount() const; int32_t getFifoMaxEventCount() const;
const String8& getStringType() const;
const String8& getRequiredPermission() const;
// LightFlattenable protocol // LightFlattenable protocol
inline bool isFixedSize() const { return false; } inline bool isFixedSize() const { return false; }
@ -89,6 +91,10 @@ private:
int32_t mVersion; int32_t mVersion;
int32_t mFifoReservedEventCount; int32_t mFifoReservedEventCount;
int32_t mFifoMaxEventCount; int32_t mFifoMaxEventCount;
String8 mStringType;
String8 mRequiredPermission;
static void flattenString8(void*& buffer, size_t& size, const String8& string8);
static bool unflattenString8(void const*& buffer, size_t& size, String8& outputString8);
}; };
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------

View File

@ -48,14 +48,90 @@ Sensor::Sensor(struct sensor_t const* hwSensor, int halVersion)
mResolution = hwSensor->resolution; mResolution = hwSensor->resolution;
mPower = hwSensor->power; mPower = hwSensor->power;
mMinDelay = hwSensor->minDelay; mMinDelay = hwSensor->minDelay;
// Set fifo event count zero for older devices which do not support batching. Fused // Set fifo event count zero for older devices which do not support batching. Fused
// sensors also have their fifo counts set to zero. // sensors also have their fifo counts set to zero.
if (halVersion >= SENSORS_DEVICE_API_VERSION_1_1) { if (halVersion >= SENSORS_DEVICE_API_VERSION_1_1) {
mFifoReservedEventCount = hwSensor->fifoReservedEventCount; mFifoReservedEventCount = hwSensor->fifoReservedEventCount;
mFifoMaxEventCount = hwSensor->fifoMaxEventCount; mFifoMaxEventCount = hwSensor->fifoMaxEventCount;
} else { }
mFifoReservedEventCount = 0;
mFifoMaxEventCount = 0; // Ensure existing sensors have correct string type and required
// permissions.
switch (mType) {
case SENSOR_TYPE_ACCELEROMETER:
mStringType = SENSOR_STRING_TYPE_ACCELEROMETER;
break;
case SENSOR_TYPE_AMBIENT_TEMPERATURE:
mStringType = SENSOR_STRING_TYPE_AMBIENT_TEMPERATURE;
break;
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
mStringType = SENSOR_STRING_TYPE_GAME_ROTATION_VECTOR;
break;
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
mStringType = SENSOR_STRING_TYPE_GEOMAGNETIC_ROTATION_VECTOR;
break;
case SENSOR_TYPE_GRAVITY:
mStringType = SENSOR_STRING_TYPE_GRAVITY;
break;
case SENSOR_TYPE_GYROSCOPE:
mStringType = SENSOR_STRING_TYPE_GYROSCOPE;
break;
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
mStringType = SENSOR_STRING_TYPE_GYROSCOPE_UNCALIBRATED;
break;
case SENSOR_TYPE_HEART_RATE:
mStringType = SENSOR_STRING_TYPE_HEART_RATE;
mRequiredPermission = SENSOR_PERMISSION_BODY_SENSORS;
break;
case SENSOR_TYPE_LIGHT:
mStringType = SENSOR_STRING_TYPE_LIGHT;
break;
case SENSOR_TYPE_LINEAR_ACCELERATION:
mStringType = SENSOR_STRING_TYPE_LINEAR_ACCELERATION;
break;
case SENSOR_TYPE_MAGNETIC_FIELD:
mStringType = SENSOR_STRING_TYPE_MAGNETIC_FIELD;
break;
case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
mStringType = SENSOR_STRING_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
break;
case SENSOR_TYPE_ORIENTATION:
mStringType = SENSOR_STRING_TYPE_ORIENTATION;
break;
case SENSOR_TYPE_PRESSURE:
mStringType = SENSOR_STRING_TYPE_PRESSURE;
break;
case SENSOR_TYPE_PROXIMITY:
mStringType = SENSOR_STRING_TYPE_PROXIMITY;
break;
case SENSOR_TYPE_RELATIVE_HUMIDITY:
mStringType = SENSOR_STRING_TYPE_RELATIVE_HUMIDITY;
break;
case SENSOR_TYPE_ROTATION_VECTOR:
mStringType = SENSOR_STRING_TYPE_ROTATION_VECTOR;
break;
case SENSOR_TYPE_SIGNIFICANT_MOTION:
mStringType = SENSOR_STRING_TYPE_SIGNIFICANT_MOTION;
break;
case SENSOR_TYPE_STEP_COUNTER:
mStringType = SENSOR_STRING_TYPE_STEP_COUNTER;
break;
case SENSOR_TYPE_STEP_DETECTOR:
mStringType = SENSOR_STRING_TYPE_STEP_DETECTOR;
break;
case SENSOR_TYPE_TEMPERATURE:
mStringType = SENSOR_STRING_TYPE_TEMPERATURE;
break;
default:
// Only pipe the stringType and requiredPermission for custom sensors.
if (halVersion >= SENSORS_DEVICE_API_VERSION_1_2 && hwSensor->stringType) {
mStringType = hwSensor->stringType;
}
if (halVersion >= SENSORS_DEVICE_API_VERSION_1_2 && hwSensor->requiredPermission) {
mRequiredPermission = hwSensor->requiredPermission;
}
break;
} }
} }
@ -115,6 +191,14 @@ int32_t Sensor::getFifoMaxEventCount() const {
return mFifoMaxEventCount; return mFifoMaxEventCount;
} }
const String8& Sensor::getStringType() const {
return mStringType;
}
const String8& Sensor::getRequiredPermission() const {
return mRequiredPermission;
}
size_t Sensor::getFlattenedSize() const size_t Sensor::getFlattenedSize() const
{ {
size_t fixedSize = size_t fixedSize =
@ -123,8 +207,10 @@ size_t Sensor::getFlattenedSize() const
sizeof(int32_t) * 3; sizeof(int32_t) * 3;
size_t variableSize = size_t variableSize =
sizeof(int32_t) + FlattenableUtils::align<4>(mName.length()) + sizeof(uint32_t) + FlattenableUtils::align<4>(mName.length()) +
sizeof(int32_t) + FlattenableUtils::align<4>(mVendor.length()); sizeof(uint32_t) + FlattenableUtils::align<4>(mVendor.length()) +
sizeof(uint32_t) + FlattenableUtils::align<4>(mStringType.length()) +
sizeof(uint32_t) + FlattenableUtils::align<4>(mRequiredPermission.length());
return fixedSize + variableSize; return fixedSize + variableSize;
} }
@ -134,14 +220,8 @@ status_t Sensor::flatten(void* buffer, size_t size) const {
return NO_MEMORY; return NO_MEMORY;
} }
FlattenableUtils::write(buffer, size, mName.length()); flattenString8(buffer, size, mName);
memcpy(static_cast<char*>(buffer), mName.string(), mName.length()); flattenString8(buffer, size, mVendor);
FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(mName.length()));
FlattenableUtils::write(buffer, size, mVendor.length());
memcpy(static_cast<char*>(buffer), mVendor.string(), mVendor.length());
FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(mVendor.length()));
FlattenableUtils::write(buffer, size, mVersion); FlattenableUtils::write(buffer, size, mVersion);
FlattenableUtils::write(buffer, size, mHandle); FlattenableUtils::write(buffer, size, mHandle);
FlattenableUtils::write(buffer, size, mType); FlattenableUtils::write(buffer, size, mType);
@ -152,38 +232,23 @@ status_t Sensor::flatten(void* buffer, size_t size) const {
FlattenableUtils::write(buffer, size, mMinDelay); FlattenableUtils::write(buffer, size, mMinDelay);
FlattenableUtils::write(buffer, size, mFifoReservedEventCount); FlattenableUtils::write(buffer, size, mFifoReservedEventCount);
FlattenableUtils::write(buffer, size, mFifoMaxEventCount); FlattenableUtils::write(buffer, size, mFifoMaxEventCount);
flattenString8(buffer, size, mStringType);
flattenString8(buffer, size, mRequiredPermission);
return NO_ERROR; return NO_ERROR;
} }
status_t Sensor::unflatten(void const* buffer, size_t size) { status_t Sensor::unflatten(void const* buffer, size_t size) {
size_t len; if (!unflattenString8(buffer, size, mName)) {
if (size < sizeof(size_t)) {
return NO_MEMORY; return NO_MEMORY;
} }
FlattenableUtils::read(buffer, size, len); if (!unflattenString8(buffer, size, mVendor)) {
if (size < len) {
return NO_MEMORY; return NO_MEMORY;
} }
mName.setTo(static_cast<char const*>(buffer), len);
FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len));
if (size < sizeof(size_t)) {
return NO_MEMORY;
}
FlattenableUtils::read(buffer, size, len);
if (size < len) {
return NO_MEMORY;
}
mVendor.setTo(static_cast<char const*>(buffer), len);
FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len));
size_t fixedSize = size_t fixedSize =
sizeof(int32_t) * 3 + sizeof(int32_t) * 3 +
sizeof(float) * 4 + sizeof(float) * 4 +
sizeof(int32_t) * 3; sizeof(int32_t) * 3;
if (size < fixedSize) { if (size < fixedSize) {
return NO_MEMORY; return NO_MEMORY;
} }
@ -198,8 +263,37 @@ status_t Sensor::unflatten(void const* buffer, size_t size) {
FlattenableUtils::read(buffer, size, mMinDelay); FlattenableUtils::read(buffer, size, mMinDelay);
FlattenableUtils::read(buffer, size, mFifoReservedEventCount); FlattenableUtils::read(buffer, size, mFifoReservedEventCount);
FlattenableUtils::read(buffer, size, mFifoMaxEventCount); FlattenableUtils::read(buffer, size, mFifoMaxEventCount);
if (!unflattenString8(buffer, size, mStringType)) {
return NO_MEMORY;
}
if (!unflattenString8(buffer, size, mRequiredPermission)) {
return NO_MEMORY;
}
return NO_ERROR; return NO_ERROR;
} }
void Sensor::flattenString8(void*& buffer, size_t& size,
const String8& string8) {
uint32_t len = string8.length();
FlattenableUtils::write(buffer, size, len);
memcpy(static_cast<char*>(buffer), string8.string(), len);
FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len));
}
bool Sensor::unflattenString8(void const*& buffer, size_t& size, String8& outputString8) {
uint32_t len;
if (size < sizeof(len)) {
return false;
}
FlattenableUtils::read(buffer, size, len);
if (size < len) {
return false;
}
outputString8.setTo(static_cast<char const*>(buffer), len);
FlattenableUtils::advance(buffer, size, FlattenableUtils::align<4>(len));
return true;
}
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
}; // namespace android }; // namespace android

View File

@ -205,7 +205,7 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
String8 result; String8 result;
if (!PermissionCache::checkCallingPermission(sDump)) { if (!PermissionCache::checkCallingPermission(sDump)) {
result.appendFormat("Permission Denial: " result.appendFormat("Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n", "can't dump SensorService from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid()); IPCThreadState::self()->getCallingUid());
} else { } else {
@ -215,10 +215,12 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
const Sensor& s(mSensorList[i]); const Sensor& s(mSensorList[i]);
const sensors_event_t& e(mLastEventSeen.valueFor(s.getHandle())); const sensors_event_t& e(mLastEventSeen.valueFor(s.getHandle()));
result.appendFormat( result.appendFormat(
"%-48s| %-32s | 0x%08x | ", "%-48s| %-32s| %-48s| 0x%08x | \"%s\"\n\t",
s.getName().string(), s.getName().string(),
s.getVendor().string(), s.getVendor().string(),
s.getHandle()); s.getStringType().string(),
s.getHandle(),
s.getRequiredPermission().string());
if (s.getMinDelay() > 0) { if (s.getMinDelay() > 0) {
result.appendFormat( result.appendFormat(
@ -229,7 +231,8 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
: "one-shot | "); : "one-shot | ");
} }
if (s.getFifoMaxEventCount() > 0) { if (s.getFifoMaxEventCount() > 0) {
result.appendFormat("getFifoMaxEventCount=%d events | ", s.getFifoMaxEventCount()); result.appendFormat("FifoMax=%d events | ",
s.getFifoMaxEventCount());
} else { } else {
result.append("no batching support | "); result.append("no batching support | ");
} }
@ -490,10 +493,23 @@ Vector<Sensor> SensorService::getSensorList()
{ {
char value[PROPERTY_VALUE_MAX]; char value[PROPERTY_VALUE_MAX];
property_get("debug.sensors", value, "0"); property_get("debug.sensors", value, "0");
if (atoi(value)) { const Vector<Sensor>& initialSensorList = (atoi(value)) ?
return mUserSensorListDebug; mUserSensorListDebug : mUserSensorList;
Vector<Sensor> accessibleSensorList;
for (size_t i = 0; i < initialSensorList.size(); i++) {
Sensor sensor = initialSensorList[i];
if (canAccessSensor(sensor)) {
accessibleSensorList.add(sensor);
} else {
String8 infoMessage;
infoMessage.appendFormat(
"Skipped sensor %s because it requires permission %s",
sensor.getName().string(),
sensor.getRequiredPermission().string());
ALOGI(infoMessage.string());
} }
return mUserSensorList; }
return accessibleSensorList;
} }
sp<ISensorEventConnection> SensorService::createSensorEventConnection() sp<ISensorEventConnection> SensorService::createSensorEventConnection()
@ -539,6 +555,10 @@ void SensorService::cleanupConnection(SensorEventConnection* c)
BatteryService::cleanup(c->getUid()); BatteryService::cleanup(c->getUid());
} }
Sensor SensorService::getSensorFromHandle(int handle) const {
return mSensorMap.valueFor(handle)->getSensor();
}
status_t SensorService::enable(const sp<SensorEventConnection>& connection, status_t SensorService::enable(const sp<SensorEventConnection>& connection,
int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags) int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags)
{ {
@ -549,6 +569,11 @@ status_t SensorService::enable(const sp<SensorEventConnection>& connection,
if (sensor == NULL) { if (sensor == NULL) {
return BAD_VALUE; return BAD_VALUE;
} }
if (!verifyCanAccessSensor(sensor->getSensor(), "Tried enabling")) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock); Mutex::Autolock _l(mLock);
SensorRecord* rec = mActiveSensors.valueFor(handle); SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec == 0) { if (rec == 0) {
@ -670,6 +695,10 @@ status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection
if (!sensor) if (!sensor)
return BAD_VALUE; return BAD_VALUE;
if (!verifyCanAccessSensor(sensor->getSensor(), "Tried configuring")) {
return BAD_VALUE;
}
if (ns < 0) if (ns < 0)
return BAD_VALUE; return BAD_VALUE;
@ -688,12 +717,39 @@ status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
if (sensor == NULL) { if (sensor == NULL) {
return BAD_VALUE; return BAD_VALUE;
} }
if (!verifyCanAccessSensor(sensor->getSensor(), "Tried flushing")) {
return BAD_VALUE;
}
if (sensor->getSensor().getType() == SENSOR_TYPE_SIGNIFICANT_MOTION) { if (sensor->getSensor().getType() == SENSOR_TYPE_SIGNIFICANT_MOTION) {
ALOGE("flush called on Significant Motion sensor"); ALOGE("flush called on Significant Motion sensor");
return INVALID_OPERATION; return INVALID_OPERATION;
} }
return sensor->flush(connection.get(), handle); return sensor->flush(connection.get(), handle);
} }
bool SensorService::canAccessSensor(const Sensor& sensor) {
String16 permissionString(sensor.getRequiredPermission());
return permissionString.size() == 0 ||
PermissionCache::checkCallingPermission(permissionString);
}
bool SensorService::verifyCanAccessSensor(const Sensor& sensor, const char* operation) {
if (canAccessSensor(sensor)) {
return true;
} else {
String8 errorMessage;
errorMessage.appendFormat(
"%s a sensor (%s) without holding its required permission: %s",
operation,
sensor.getName().string(),
sensor.getRequiredPermission().string());
return false;
}
}
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------
SensorService::SensorRecord::SensorRecord( SensorService::SensorRecord::SensorRecord(
@ -761,6 +817,9 @@ void SensorService::SensorEventConnection::dump(String8& result) {
bool SensorService::SensorEventConnection::addSensor(int32_t handle) { bool SensorService::SensorEventConnection::addSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock); Mutex::Autolock _l(mConnectionLock);
if (!verifyCanAccessSensor(mService->getSensorFromHandle(handle), "Tried adding")) {
return false;
}
if (mSensorInfo.indexOfKey(handle) < 0) { if (mSensorInfo.indexOfKey(handle) < 0) {
mSensorInfo.add(handle, FlushInfo()); mSensorInfo.add(handle, FlushInfo());
return true; return true;

View File

@ -131,6 +131,7 @@ class SensorService :
String8 getSensorName(int handle) const; String8 getSensorName(int handle) const;
bool isVirtualSensor(int handle) const; bool isVirtualSensor(int handle) const;
Sensor getSensorFromHandle(int handle) const;
void recordLastValue(const sensors_event_t* buffer, size_t count); void recordLastValue(const sensors_event_t* buffer, size_t count);
static void sortEventBuffer(sensors_event_t* buffer, size_t count); static void sortEventBuffer(sensors_event_t* buffer, size_t count);
Sensor registerSensor(SensorInterface* sensor); Sensor registerSensor(SensorInterface* sensor);
@ -141,7 +142,8 @@ class SensorService :
const sp<SensorEventConnection>& connection, int handle); const sp<SensorEventConnection>& connection, int handle);
void cleanupAutoDisabledSensor(const sp<SensorEventConnection>& connection, void cleanupAutoDisabledSensor(const sp<SensorEventConnection>& connection,
sensors_event_t const* buffer, const int count); sensors_event_t const* buffer, const int count);
static bool canAccessSensor(const Sensor& sensor);
static bool verifyCanAccessSensor(const Sensor& sensor, const char* operation);
// constants // constants
Vector<Sensor> mSensorList; Vector<Sensor> mSensorList;
Vector<Sensor> mUserSensorListDebug; Vector<Sensor> mUserSensorListDebug;