Merge changes I8283a989,I64add89a into klp-dev

* changes:
  switch to use mat4
  vector and matrix classes for graphics use
This commit is contained in:
Mathias Agopian 2013-08-31 01:30:10 +00:00 committed by Android (Google) Code Review
commit 9b5534b0e5
16 changed files with 1715 additions and 37 deletions

179
include/ui/TMatHelpers.h Normal file
View File

@ -0,0 +1,179 @@
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TMAT_IMPLEMENTATION
#error "Don't include TMatHelpers.h directly. use ui/mat*.h instead"
#else
#undef TMAT_IMPLEMENTATION
#endif
#ifndef UI_TMAT_HELPERS_H
#define UI_TMAT_HELPERS_H
#include <stdint.h>
#include <sys/types.h>
#include <utils/Debug.h>
#include <utils/String8.h>
#define PURE __attribute__((pure))
namespace android {
// -------------------------------------------------------------------------------------
/*
* No user serviceable parts here.
*
* Don't use this file directly, instead include ui/mat*.h
*/
/*
* Matrix utilities
*/
namespace matrix {
inline int PURE transpose(int v) { return v; }
inline float PURE transpose(float v) { return v; }
inline double PURE transpose(double v) { return v; }
inline int PURE trace(int v) { return v; }
inline float PURE trace(float v) { return v; }
inline double PURE trace(double v) { return v; }
template<typename MATRIX>
MATRIX PURE inverse(const MATRIX& src) {
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX::COL_SIZE == MATRIX::ROW_SIZE );
typename MATRIX::value_type t;
const size_t N = MATRIX::col_size();
size_t swap;
MATRIX tmp(src);
MATRIX inverse(1);
for (size_t i=0 ; i<N ; i++) {
// look for largest element in column
swap = i;
for (size_t j=i+1 ; j<N ; j++) {
if (fabs(tmp[j][i]) > fabs(tmp[i][i])) {
swap = j;
}
}
if (swap != i) {
/* swap rows. */
for (size_t k=0 ; k<N ; k++) {
t = tmp[i][k];
tmp[i][k] = tmp[swap][k];
tmp[swap][k] = t;
t = inverse[i][k];
inverse[i][k] = inverse[swap][k];
inverse[swap][k] = t;
}
}
t = 1 / tmp[i][i];
for (size_t k=0 ; k<N ; k++) {
tmp[i][k] *= t;
inverse[i][k] *= t;
}
for (size_t j=0 ; j<N ; j++) {
if (j != i) {
t = tmp[j][i];
for (size_t k=0 ; k<N ; k++) {
tmp[j][k] -= tmp[i][k] * t;
inverse[j][k] -= inverse[i][k] * t;
}
}
}
}
return inverse;
}
template<typename MATRIX_R, typename MATRIX_A, typename MATRIX_B>
MATRIX_R PURE multiply(const MATRIX_A& lhs, const MATRIX_B& rhs) {
// pre-requisite:
// lhs : D columns, R rows
// rhs : C columns, D rows
// res : C columns, R rows
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX_A::ROW_SIZE == MATRIX_B::COL_SIZE );
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX_R::ROW_SIZE == MATRIX_B::ROW_SIZE );
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX_R::COL_SIZE == MATRIX_A::COL_SIZE );
MATRIX_R res(MATRIX_R::NO_INIT);
for (size_t r=0 ; r<MATRIX_R::row_size() ; r++) {
res[r] = lhs * rhs[r];
}
return res;
}
// transpose. this handles matrices of matrices
template <typename MATRIX>
MATRIX PURE transpose(const MATRIX& m) {
// for now we only handle square matrix transpose
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX::ROW_SIZE == MATRIX::COL_SIZE );
MATRIX result(MATRIX::NO_INIT);
for (size_t r=0 ; r<MATRIX::row_size() ; r++)
for (size_t c=0 ; c<MATRIX::col_size() ; c++)
result[c][r] = transpose(m[r][c]);
return result;
}
// trace. this handles matrices of matrices
template <typename MATRIX>
typename MATRIX::value_type PURE trace(const MATRIX& m) {
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX::ROW_SIZE == MATRIX::COL_SIZE );
typename MATRIX::value_type result(0);
for (size_t r=0 ; r<MATRIX::row_size() ; r++)
result += trace(m[r][r]);
return result;
}
// trace. this handles matrices of matrices
template <typename MATRIX>
typename MATRIX::col_type PURE diag(const MATRIX& m) {
COMPILE_TIME_ASSERT_FUNCTION_SCOPE( MATRIX::ROW_SIZE == MATRIX::COL_SIZE );
typename MATRIX::col_type result(MATRIX::col_type::NO_INIT);
for (size_t r=0 ; r<MATRIX::row_size() ; r++)
result[r] = m[r][r];
return result;
}
template <typename MATRIX>
String8 asString(const MATRIX& m) {
String8 s;
for (size_t c=0 ; c<MATRIX::col_size() ; c++) {
s.append("| ");
for (size_t r=0 ; r<MATRIX::row_size() ; r++) {
s.appendFormat("%7.2f ", m[r][c]);
}
s.append("|\n");
}
return s;
}
}; // namespace matrix
// -------------------------------------------------------------------------------------
}; // namespace android
#undef PURE
#endif /* UI_TMAT_HELPERS_H */

348
include/ui/TVecHelpers.h Normal file
View File

@ -0,0 +1,348 @@
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TVEC_IMPLEMENTATION
#error "Don't include TVecHelpers.h directly. use ui/vec*.h instead"
#else
#undef TVEC_IMPLEMENTATION
#endif
#ifndef UI_TVEC_HELPERS_H
#define UI_TVEC_HELPERS_H
#include <stdint.h>
#include <sys/types.h>
#define PURE __attribute__((pure))
namespace android {
// -------------------------------------------------------------------------------------
/*
* No user serviceable parts here.
*
* Don't use this file directly, instead include ui/vec{2|3|4}.h
*/
/*
* This class casts itself into anything and assign itself from anything!
* Use with caution!
*/
template <typename TYPE>
struct Impersonator {
Impersonator& operator = (const TYPE& rhs) {
reinterpret_cast<TYPE&>(*this) = rhs;
return *this;
}
operator TYPE& () {
return reinterpret_cast<TYPE&>(*this);
}
operator TYPE const& () const {
return reinterpret_cast<TYPE const&>(*this);
}
};
/*
* TVecArithmeticOperators implements basic arithmetic and basic compound assignments
* operators on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecArithmeticOperators<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class BASE, typename T>
class TVecArithmeticOperators {
public:
/* compound assignment from a another vector of the same size but different
* element type.
*/
template <typename OTHER>
BASE<T>& operator += (const BASE<OTHER>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] += v[i];
}
return rhs;
}
template <typename OTHER>
BASE<T>& operator -= (const BASE<OTHER>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] -= v[i];
}
return rhs;
}
template <typename OTHER>
BASE<T>& operator *= (const BASE<OTHER>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] *= v[i];
}
return rhs;
}
template <typename OTHER>
BASE<T>& operator /= (const BASE<OTHER>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] /= v[i];
}
return rhs;
}
/* compound assignment from a another vector of the same type.
* These operators can be used for implicit conversion and handle operations
* like "vector *= scalar" by letting the compiler implicitly convert a scalar
* to a vector (assuming the BASE<T> allows it).
*/
BASE<T>& operator += (const BASE<T>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] += v[i];
}
return rhs;
}
BASE<T>& operator -= (const BASE<T>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] -= v[i];
}
return rhs;
}
BASE<T>& operator *= (const BASE<T>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] *= v[i];
}
return rhs;
}
BASE<T>& operator /= (const BASE<T>& v) {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
rhs[i] /= v[i];
}
return rhs;
}
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
/* The operators below handle operation between vectors of the same side
* but of a different element type.
*/
template<typename RT>
friend inline
BASE<T> PURE operator +(const BASE<T>& lv, const BASE<RT>& rv) {
return BASE<T>(lv) += rv;
}
template<typename RT>
friend inline
BASE<T> PURE operator -(const BASE<T>& lv, const BASE<RT>& rv) {
return BASE<T>(lv) -= rv;
}
template<typename RT>
friend inline
BASE<T> PURE operator *(const BASE<T>& lv, const BASE<RT>& rv) {
return BASE<T>(lv) *= rv;
}
template<typename RT>
friend inline
BASE<T> PURE operator /(const BASE<T>& lv, const BASE<RT>& rv) {
return BASE<T>(lv) /= rv;
}
/* The operators below (which are not templates once this class is instanced,
* i.e.: BASE<T> is known) can be used for implicit conversion on both sides.
* These handle operations like "vector * scalar" and "scalar * vector" by
* letting the compiler implicitly convert a scalar to a vector (assuming
* the BASE<T> allows it).
*/
friend inline
BASE<T> PURE operator +(const BASE<T>& lv, const BASE<T>& rv) {
return BASE<T>(lv) += rv;
}
friend inline
BASE<T> PURE operator -(const BASE<T>& lv, const BASE<T>& rv) {
return BASE<T>(lv) -= rv;
}
friend inline
BASE<T> PURE operator *(const BASE<T>& lv, const BASE<T>& rv) {
return BASE<T>(lv) *= rv;
}
friend inline
BASE<T> PURE operator /(const BASE<T>& lv, const BASE<T>& rv) {
return BASE<T>(lv) /= rv;
}
};
/*
* TVecUnaryOperators implements unary operators on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecUnaryOperators<BASE, T> BASE will automatically
* get all the functionality here.
*
* These operators are implemented as friend functions of TVecUnaryOperators<BASE, T>
*/
template <template<typename T> class BASE, typename T>
class TVecUnaryOperators {
public:
BASE<T>& operator ++ () {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
++rhs[i];
}
return rhs;
}
BASE<T>& operator -- () {
BASE<T>& rhs = static_cast<BASE<T>&>(*this);
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
--rhs[i];
}
return rhs;
}
BASE<T> operator - () const {
BASE<T> r(BASE<T>::NO_INIT);
BASE<T> const& rv(static_cast<BASE<T> const&>(*this));
for (size_t i=0 ; i<BASE<T>::size() ; i++) {
r[i] = -rv[i];
}
return r;
}
};
/*
* TVecComparisonOperators implements relational/comparison operators
* on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecComparisonOperators<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class BASE, typename T>
class TVecComparisonOperators {
public:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename RT>
friend inline
bool PURE operator ==(const BASE<T>& lv, const BASE<RT>& rv) {
for (size_t i = 0; i < BASE<T>::size(); i++)
if (lv[i] != rv[i])
return false;
return true;
}
template<typename RT>
friend inline
bool PURE operator !=(const BASE<T>& lv, const BASE<RT>& rv) {
return !operator ==(lv, rv);
}
template<typename RT>
friend inline
bool PURE operator >(const BASE<T>& lv, const BASE<RT>& rv) {
for (size_t i = 0; i < BASE<T>::size(); i++)
if (lv[i] <= rv[i])
return false;
return true;
}
template<typename RT>
friend inline
bool PURE operator <=(const BASE<T>& lv, const BASE<RT>& rv) {
return !(lv > rv);
}
template<typename RT>
friend inline
bool PURE operator <(const BASE<T>& lv, const BASE<RT>& rv) {
for (size_t i = 0; i < BASE<T>::size(); i++)
if (lv[i] >= rv[i])
return false;
return true;
}
template<typename RT>
friend inline
bool PURE operator >=(const BASE<T>& lv, const BASE<RT>& rv) {
return !(lv < rv);
}
};
/*
* TVecFunctions implements functions on a vector of type BASE<T>.
*
* BASE only needs to implement operator[] and size().
* By simply inheriting from TVecFunctions<BASE, T> BASE will automatically
* get all the functionality here.
*/
template <template<typename T> class BASE, typename T>
class TVecFunctions {
public:
/*
* NOTE: the functions below ARE NOT member methods. They are friend functions
* with they definition inlined with their declaration. This makes these
* template functions available to the compiler when (and only when) this class
* is instantiated, at which point they're only templated on the 2nd parameter
* (the first one, BASE<T> being known).
*/
template<typename RT>
friend inline
T PURE dot(const BASE<T>& lv, const BASE<RT>& rv) {
T r(0);
for (size_t i = 0; i < BASE<T>::size(); i++)
r += lv[i]*rv[i];
return r;
}
friend inline
T PURE length(const BASE<T>& lv) {
return sqrt( dot(lv, lv) );
}
template<typename RT>
friend inline
T PURE distance(const BASE<T>& lv, const BASE<RT>& rv) {
return length(rv - lv);
}
friend inline
BASE<T> PURE normalize(const BASE<T>& lv) {
return lv * (1 / length(lv));
}
};
#undef PURE
// -------------------------------------------------------------------------------------
}; // namespace android
#endif /* UI_TVEC_HELPERS_H */

473
include/ui/mat4.h Normal file
View File

@ -0,0 +1,473 @@
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef UI_MAT4_H
#define UI_MAT4_H
#include <stdint.h>
#include <sys/types.h>
#include <ui/vec4.h>
#include <utils/String8.h>
#define TMAT_IMPLEMENTATION
#include <ui/TMatHelpers.h>
#define PURE __attribute__((pure))
namespace android {
// -------------------------------------------------------------------------------------
template <typename T>
class tmat44 : public TVecUnaryOperators<tmat44, T>,
public TVecComparisonOperators<tmat44, T>
{
public:
enum no_init { NO_INIT };
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef size_t size_type;
typedef tvec4<T> col_type;
typedef tvec4<T> row_type;
// size of a column (i.e.: number of rows)
enum { COL_SIZE = col_type::SIZE };
static inline size_t col_size() { return COL_SIZE; }
// size of a row (i.e.: number of columns)
enum { ROW_SIZE = row_type::SIZE };
static inline size_t row_size() { return ROW_SIZE; }
static inline size_t size() { return row_size(); } // for TVec*<>
private:
/*
* <-- N columns -->
*
* a00 a10 a20 ... aN0 ^
* a01 a11 a21 ... aN1 |
* a02 a12 a22 ... aN2 M rows
* ... |
* a0M a1M a2M ... aNM v
*
* COL_SIZE = M
* ROW_SIZE = N
* m[0] = [a00 a01 a02 ... a01M]
*/
col_type mValue[ROW_SIZE];
public:
// array access
inline col_type const& operator [] (size_t i) const { return mValue[i]; }
inline col_type& operator [] (size_t i) { return mValue[i]; }
T const* asArray() const { return &mValue[0][0]; }
// -----------------------------------------------------------------------
// we don't provide copy-ctor and operator= on purpose
// because we want the compiler generated versions
/*
* constructors
*/
// leaves object uninitialized. use with caution.
explicit tmat44(no_init) { }
// initialize to identity
tmat44();
// initialize to Identity*scalar.
template<typename U>
explicit tmat44(U v);
// sets the diagonal to the passed vector
template <typename U>
explicit tmat44(const tvec4<U>& rhs);
// construct from another matrix of the same size
template <typename U>
explicit tmat44(const tmat44<U>& rhs);
// construct from 4 column vectors
template <typename A, typename B, typename C, typename D>
tmat44(const tvec4<A>& v0, const tvec4<B>& v1, const tvec4<C>& v2, const tvec4<D>& v3);
// construct from a C array
template <typename U>
explicit tmat44(U const* rawArray);
/*
* helpers
*/
static tmat44 ortho(T left, T right, T bottom, T top, T near, T far);
static tmat44 frustum(T left, T right, T bottom, T top, T near, T far);
template <typename A, typename B, typename C>
static tmat44 lookAt(const tvec3<A>& eye, const tvec3<B>& center, const tvec3<C>& up);
template <typename A>
static tmat44 translate(const tvec4<A>& t);
template <typename A>
static tmat44 scale(const tvec4<A>& s);
template <typename A, typename B>
static tmat44 rotate(A radian, const tvec3<B>& about);
/*
* Compound assignment arithmetic operators
*/
// add another matrix of the same size
template <typename U>
tmat44& operator += (const tmat44<U>& v);
// subtract another matrix of the same size
template <typename U>
tmat44& operator -= (const tmat44<U>& v);
// multiply by a scalar
template <typename U>
tmat44& operator *= (U v);
// divide by a scalar
template <typename U>
tmat44& operator /= (U v);
/*
* debugging
*/
String8 asString() const;
};
// ----------------------------------------------------------------------------------------
// Constructors
// ----------------------------------------------------------------------------------------
/*
* Since the matrix code could become pretty big quickly, we don't inline most
* operations.
*/
template <typename T>
tmat44<T>::tmat44() {
mValue[0] = col_type(1,0,0,0);
mValue[1] = col_type(0,1,0,0);
mValue[2] = col_type(0,0,1,0);
mValue[3] = col_type(0,0,0,1);
}
template <typename T>
template <typename U>
tmat44<T>::tmat44(U v) {
mValue[0] = col_type(v,0,0,0);
mValue[1] = col_type(0,v,0,0);
mValue[2] = col_type(0,0,v,0);
mValue[3] = col_type(0,0,0,v);
}
template<typename T>
template<typename U>
tmat44<T>::tmat44(const tvec4<U>& v) {
mValue[0] = col_type(v.x,0,0,0);
mValue[1] = col_type(0,v.y,0,0);
mValue[2] = col_type(0,0,v.z,0);
mValue[3] = col_type(0,0,0,v.w);
}
template <typename T>
template <typename U>
tmat44<T>::tmat44(const tmat44<U>& rhs) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] = rhs[r];
}
template <typename T>
template <typename A, typename B, typename C, typename D>
tmat44<T>::tmat44(const tvec4<A>& v0, const tvec4<B>& v1, const tvec4<C>& v2, const tvec4<D>& v3) {
mValue[0] = v0;
mValue[1] = v1;
mValue[2] = v2;
mValue[3] = v3;
}
template <typename T>
template <typename U>
tmat44<T>::tmat44(U const* rawArray) {
for (size_t r=0 ; r<row_size() ; r++)
for (size_t c=0 ; c<col_size() ; c++)
mValue[r][c] = *rawArray++;
}
// ----------------------------------------------------------------------------------------
// Helpers
// ----------------------------------------------------------------------------------------
template <typename T>
tmat44<T> tmat44<T>::ortho(T left, T right, T bottom, T top, T near, T far) {
tmat44<T> m;
m[0][0] = 2 / (right - left);
m[1][1] = 2 / (top - bottom);
m[2][2] = -2 / (far - near);
m[3][0] = -(right + left) / (right - left);
m[3][1] = -(top + bottom) / (top - bottom);
m[3][2] = -(far + near) / (far - near);
return m;
}
template <typename T>
tmat44<T> tmat44<T>::frustum(T left, T right, T bottom, T top, T near, T far) {
tmat44<T> m;
T A = (right + left) / (right - left);
T B = (top + bottom) / (top - bottom);
T C = (far + near) / (far - near);
T D = (2 * far * near) / (far - near);
m[0][0] = (2 * near) / (right - left);
m[1][1] = (2 * near) / (top - bottom);
m[2][0] = A;
m[2][1] = B;
m[2][2] = C;
m[2][3] =-1;
m[3][2] = D;
m[3][3] = 0;
return m;
}
template <typename T>
template <typename A, typename B, typename C>
tmat44<T> tmat44<T>::lookAt(const tvec3<A>& eye, const tvec3<B>& center, const tvec3<C>& up) {
tvec3<T> L(normalize(center - eye));
tvec3<T> S(normalize( cross(L, up) ));
tvec3<T> U(cross(S, L));
return tmat44<T>(
tvec4<T>( S, 0),
tvec4<T>( U, 0),
tvec4<T>(-L, 0),
tvec4<T>(-eye, 1));
}
template <typename T>
template <typename A>
tmat44<T> tmat44<T>::translate(const tvec4<A>& t) {
tmat44<T> r;
r[3] = t;
return r;
}
template <typename T>
template <typename A>
tmat44<T> tmat44<T>::scale(const tvec4<A>& s) {
tmat44<T> r;
r[0][0] = s[0];
r[1][1] = s[1];
r[2][2] = s[2];
r[3][3] = s[3];
return r;
}
template <typename T>
template <typename A, typename B>
tmat44<T> tmat44<T>::rotate(A radian, const tvec3<B>& about) {
tmat44<T> rotation;
T* r = const_cast<T*>(rotation.asArray());
T c = cos(radian);
T s = sin(radian);
if (about.x==1 && about.y==0 && about.z==0) {
r[5] = c; r[10]= c;
r[6] = s; r[9] = -s;
} else if (about.x==0 && about.y==1 && about.z==0) {
r[0] = c; r[10]= c;
r[8] = s; r[2] = -s;
} else if (about.x==0 && about.y==0 && about.z==1) {
r[0] = c; r[5] = c;
r[1] = s; r[4] = -s;
} else {
tvec3<B> nabout = normalize(about);
B x = nabout.x;
B y = nabout.y;
B z = nabout.z;
T nc = 1 - c;
T xy = x * y;
T yz = y * z;
T zx = z * x;
T xs = x * s;
T ys = y * s;
T zs = z * s;
r[ 0] = x*x*nc + c; r[ 4] = xy*nc - zs; r[ 8] = zx*nc + ys;
r[ 1] = xy*nc + zs; r[ 5] = y*y*nc + c; r[ 9] = yz*nc - xs;
r[ 2] = zx*nc - ys; r[ 6] = yz*nc + xs; r[10] = z*z*nc + c;
}
}
// ----------------------------------------------------------------------------------------
// Compound assignment arithmetic operators
// ----------------------------------------------------------------------------------------
template <typename T>
template <typename U>
tmat44<T>& tmat44<T>::operator += (const tmat44<U>& v) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] += v[r];
return *this;
}
template <typename T>
template <typename U>
tmat44<T>& tmat44<T>::operator -= (const tmat44<U>& v) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] -= v[r];
return *this;
}
template <typename T>
template <typename U>
tmat44<T>& tmat44<T>::operator *= (U v) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] *= v;
return *this;
}
template <typename T>
template <typename U>
tmat44<T>& tmat44<T>::operator /= (U v) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] /= v;
return *this;
}
// ----------------------------------------------------------------------------------------
// Arithmetic operators outside of class
// ----------------------------------------------------------------------------------------
/* We use non-friend functions here to prevent the compiler from using
* implicit conversions, for instance of a scalar to a vector. The result would
* not be what the caller expects.
*
* Also note that the order of the arguments in the inner loop is important since
* it determines the output type (only relevant when T != U).
*/
// matrix + matrix, result is a matrix of the same type than the lhs matrix
template <typename T, typename U>
tmat44<T> PURE operator +(const tmat44<T>& lhs, const tmat44<U>& rhs) {
tmat44<T> result(tmat44<T>::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = lhs[r] + rhs[r];
return result;
}
// matrix - matrix, result is a matrix of the same type than the lhs matrix
template <typename T, typename U>
tmat44<T> PURE operator -(const tmat44<T>& lhs, const tmat44<U>& rhs) {
tmat44<T> result(tmat44<T>::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = lhs[r] - rhs[r];
return result;
}
// matrix * vector, result is a vector of the same type than the input vector
template <typename T, typename U>
typename tmat44<U>::col_type PURE operator *(const tmat44<T>& lv, const tvec4<U>& rv) {
typename tmat44<U>::col_type result;
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result += rv[r]*lv[r];
return result;
}
// vector * matrix, result is a vector of the same type than the input vector
template <typename T, typename U>
typename tmat44<U>::row_type PURE operator *(const tvec4<U>& rv, const tmat44<T>& lv) {
typename tmat44<U>::row_type result(tmat44<U>::row_type::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = dot(rv, lv[r]);
return result;
}
// matrix * scalar, result is a matrix of the same type than the input matrix
template <typename T, typename U>
tmat44<T> PURE operator *(const tmat44<T>& lv, U rv) {
tmat44<T> result(tmat44<T>::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = lv[r]*rv;
return result;
}
// scalar * matrix, result is a matrix of the same type than the input matrix
template <typename T, typename U>
tmat44<T> PURE operator *(U rv, const tmat44<T>& lv) {
tmat44<T> result(tmat44<T>::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = lv[r]*rv;
return result;
}
// matrix * matrix, result is a matrix of the same type than the lhs matrix
template <typename T, typename U>
tmat44<T> PURE operator *(const tmat44<T>& lhs, const tmat44<U>& rhs) {
return matrix::multiply< tmat44<T> >(lhs, rhs);
}
// ----------------------------------------------------------------------------------------
// Functions
// ----------------------------------------------------------------------------------------
// inverse a matrix
template <typename T>
tmat44<T> PURE inverse(const tmat44<T>& m) {
return matrix::inverse(m);
}
template <typename T>
tmat44<T> PURE transpose(const tmat44<T>& m) {
return matrix::transpose(m);
}
template <typename T>
T PURE trace(const tmat44<T>& m) {
return matrix::trace(m);
}
template <typename T>
tvec4<T> PURE diag(const tmat44<T>& m) {
return matrix::diag(m);
}
// ----------------------------------------------------------------------------------------
// Debugging
// ----------------------------------------------------------------------------------------
template <typename T>
String8 tmat44<T>::asString() const {
return matrix::asString(*this);
}
// ----------------------------------------------------------------------------------------
typedef tmat44<float> mat4;
// ----------------------------------------------------------------------------------------
}; // namespace android
#undef PURE
#endif /* UI_MAT4_H */

85
include/ui/vec2.h Normal file
View File

@ -0,0 +1,85 @@
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef UI_VEC2_H
#define UI_VEC2_H
#include <stdint.h>
#include <sys/types.h>
#define TVEC_IMPLEMENTATION
#include <ui/TVecHelpers.h>
namespace android {
// -------------------------------------------------------------------------------------
template <typename T>
class tvec2 : public TVecArithmeticOperators<tvec2, T>,
public TVecUnaryOperators<tvec2, T>,
public TVecComparisonOperators<tvec2, T>,
public TVecFunctions<tvec2, T>
{
public:
enum no_init { NO_INIT };
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef size_t size_type;
union {
struct { T x, y; };
struct { T s, t; };
struct { T r, g; };
};
enum { SIZE = 2 };
inline static size_type size() { return SIZE; }
// array access
inline T const& operator [] (size_t i) const { return (&x)[i]; }
inline T& operator [] (size_t i) { return (&x)[i]; }
// -----------------------------------------------------------------------
// we don't provide copy-ctor and operator= on purpose
// because we want the compiler generated versions
// constructors
// leaves object uninitialized. use with caution.
explicit tvec2(no_init) { }
// default constructor
tvec2() : x(0), y(0) { }
// handles implicit conversion to a tvec4. must not be explicit.
template<typename A>
tvec2(A v) : x(v), y(v) { }
template<typename A, typename B>
tvec2(A x, B y) : x(x), y(y) { }
template<typename A>
explicit tvec2(const tvec2<A>& v) : x(v.x), y(v.y) { }
};
// ----------------------------------------------------------------------------------------
typedef tvec2<float> vec2;
// ----------------------------------------------------------------------------------------
}; // namespace android
#endif /* UI_VEC4_H */

106
include/ui/vec3.h Normal file
View File

@ -0,0 +1,106 @@
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef UI_VEC3_H
#define UI_VEC3_H
#include <stdint.h>
#include <sys/types.h>
#include <ui/vec2.h>
namespace android {
// -------------------------------------------------------------------------------------
template <typename T>
class tvec3 : public TVecArithmeticOperators<tvec3, T>,
public TVecUnaryOperators<tvec3, T>,
public TVecComparisonOperators<tvec3, T>,
public TVecFunctions<tvec3, T>
{
public:
enum no_init { NO_INIT };
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef size_t size_type;
union {
struct { T x, y, z; };
struct { T s, t, p; };
struct { T r, g, b; };
Impersonator< tvec2<T> > xy;
Impersonator< tvec2<T> > st;
Impersonator< tvec2<T> > rg;
};
enum { SIZE = 3 };
inline static size_type size() { return SIZE; }
// array access
inline T const& operator [] (size_t i) const { return (&x)[i]; }
inline T& operator [] (size_t i) { return (&x)[i]; }
// -----------------------------------------------------------------------
// we don't provide copy-ctor and operator= on purpose
// because we want the compiler generated versions
// constructors
// leaves object uninitialized. use with caution.
explicit tvec3(no_init) { }
// default constructor
tvec3() : x(0), y(0), z(0) { }
// handles implicit conversion to a tvec4. must not be explicit.
template<typename A>
tvec3(A v) : x(v), y(v), z(v) { }
template<typename A, typename B, typename C>
tvec3(A x, B y, C z) : x(x), y(y), z(z) { }
template<typename A, typename B>
tvec3(const tvec2<A>& v, B z) : x(v.x), y(v.y), z(z) { }
template<typename A>
explicit tvec3(const tvec3<A>& v) : x(v.x), y(v.y), z(v.z) { }
template<typename A, typename B>
tvec3(const Impersonator< tvec2<A> >& v, B z)
: x(((const tvec2<A>&)v).x),
y(((const tvec2<A>&)v).y),
z(z) { }
// cross product works only on vectors of size 3
template <typename RT>
friend inline
tvec3 __attribute__((pure)) cross(const tvec3& u, const tvec3<RT>& v) {
return tvec3(
u.y*v.z - u.z*v.y,
u.z*v.x - u.x*v.z,
u.x*v.y - u.y*v.x);
}
};
// ----------------------------------------------------------------------------------------
typedef tvec3<float> vec3;
// ----------------------------------------------------------------------------------------
}; // namespace android
#endif /* UI_VEC4_H */

110
include/ui/vec4.h Normal file
View File

@ -0,0 +1,110 @@
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef UI_VEC4_H
#define UI_VEC4_H
#include <stdint.h>
#include <sys/types.h>
#include <ui/vec3.h>
namespace android {
// -------------------------------------------------------------------------------------
template <typename T>
class tvec4 : public TVecArithmeticOperators<tvec4, T>,
public TVecUnaryOperators<tvec4, T>,
public TVecComparisonOperators<tvec4, T>,
public TVecFunctions<tvec4, T>
{
public:
enum no_init { NO_INIT };
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef size_t size_type;
union {
struct { T x, y, z, w; };
struct { T s, t, p, q; };
struct { T r, g, b, a; };
Impersonator< tvec2<T> > xy;
Impersonator< tvec2<T> > st;
Impersonator< tvec2<T> > rg;
Impersonator< tvec3<T> > xyz;
Impersonator< tvec3<T> > stp;
Impersonator< tvec3<T> > rgb;
};
enum { SIZE = 4 };
inline static size_type size() { return SIZE; }
// array access
inline T const& operator [] (size_t i) const { return (&x)[i]; }
inline T& operator [] (size_t i) { return (&x)[i]; }
// -----------------------------------------------------------------------
// we don't provide copy-ctor and operator= on purpose
// because we want the compiler generated versions
// constructors
// leaves object uninitialized. use with caution.
explicit tvec4(no_init) { }
// default constructor
tvec4() : x(0), y(0), z(0), w(0) { }
// handles implicit conversion to a tvec4. must not be explicit.
template<typename A>
tvec4(A v) : x(v), y(v), z(v), w(v) { }
template<typename A, typename B, typename C, typename D>
tvec4(A x, B y, C z, D w) : x(x), y(y), z(z), w(w) { }
template<typename A, typename B, typename C>
tvec4(const tvec2<A>& v, B z, C w) : x(v.x), y(v.y), z(z), w(w) { }
template<typename A, typename B>
tvec4(const tvec3<A>& v, B w) : x(v.x), y(v.y), z(v.z), w(w) { }
template<typename A>
explicit tvec4(const tvec4<A>& v) : x(v.x), y(v.y), z(v.z), w(v.w) { }
template<typename A, typename B>
tvec4(const Impersonator< tvec3<A> >& v, B w)
: x(((const tvec3<A>&)v).x),
y(((const tvec3<A>&)v).y),
z(((const tvec3<A>&)v).z),
w(w) { }
template<typename A, typename B, typename C>
tvec4(const Impersonator< tvec2<A> >& v, B z, C w)
: x(((const tvec2<A>&)v).x),
y(((const tvec2<A>&)v).y),
z(z),
w(w) { }
};
// ----------------------------------------------------------------------------------------
typedef tvec4<float> vec4;
// ----------------------------------------------------------------------------------------
}; // namespace android
#endif /* UI_VEC4_H */

View File

@ -4,9 +4,12 @@ include $(CLEAR_VARS)
# Build the unit tests.
test_src_files := \
Region_test.cpp
Region_test.cpp \
vec_test.cpp \
mat_test.cpp
shared_libraries := \
libutils \
libui
static_libraries := \

139
libs/ui/tests/mat_test.cpp Normal file
View File

@ -0,0 +1,139 @@
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "RegionTest"
#include <stdlib.h>
#include <ui/Region.h>
#include <ui/Rect.h>
#include <gtest/gtest.h>
#include <ui/mat4.h>
namespace android {
class MatTest : public testing::Test {
protected:
};
TEST_F(MatTest, Basics) {
mat4 m0;
EXPECT_EQ(sizeof(mat4), sizeof(float)*16);
}
TEST_F(MatTest, ComparisonOps) {
mat4 m0;
mat4 m1(2);
EXPECT_TRUE(m0 == m0);
EXPECT_TRUE(m0 != m1);
EXPECT_FALSE(m0 != m0);
EXPECT_FALSE(m0 == m1);
}
TEST_F(MatTest, Constructors) {
mat4 m0;
ASSERT_EQ(m0[0].x, 1);
ASSERT_EQ(m0[0].y, 0);
ASSERT_EQ(m0[0].z, 0);
ASSERT_EQ(m0[0].w, 0);
ASSERT_EQ(m0[1].x, 0);
ASSERT_EQ(m0[1].y, 1);
ASSERT_EQ(m0[1].z, 0);
ASSERT_EQ(m0[1].w, 0);
ASSERT_EQ(m0[2].x, 0);
ASSERT_EQ(m0[2].y, 0);
ASSERT_EQ(m0[2].z, 1);
ASSERT_EQ(m0[2].w, 0);
ASSERT_EQ(m0[3].x, 0);
ASSERT_EQ(m0[3].y, 0);
ASSERT_EQ(m0[3].z, 0);
ASSERT_EQ(m0[3].w, 1);
mat4 m1(2);
mat4 m2(vec4(2));
mat4 m3(m2);
EXPECT_EQ(m1, m2);
EXPECT_EQ(m2, m3);
EXPECT_EQ(m3, m1);
mat4 m4(vec4(1), vec4(2), vec4(3), vec4(4));
}
TEST_F(MatTest, ArithmeticOps) {
mat4 m0;
mat4 m1(2);
mat4 m2(vec4(2));
m1 += m2;
EXPECT_EQ(mat4(4), m1);
m2 -= m1;
EXPECT_EQ(mat4(-2), m2);
m1 *= 2;
EXPECT_EQ(mat4(8), m1);
m1 /= 2;
EXPECT_EQ(mat4(4), m1);
m0 = -m0;
EXPECT_EQ(mat4(-1), m0);
}
TEST_F(MatTest, UnaryOps) {
const mat4 identity;
mat4 m0;
++m0;
EXPECT_EQ(mat4( vec4(2,1,1,1), vec4(1,2,1,1), vec4(1,1,2,1), vec4(1,1,1,2) ), m0);
EXPECT_EQ(mat4( -vec4(2,1,1,1), -vec4(1,2,1,1), -vec4(1,1,2,1), -vec4(1,1,1,2) ), -m0);
--m0;
EXPECT_EQ(identity, m0);
}
TEST_F(MatTest, MiscOps) {
const mat4 identity;
mat4 m0;
EXPECT_EQ(4, trace(m0));
mat4 m1(vec4(1,2,3,4), vec4(5,6,7,8), vec4(9,10,11,12), vec4(13,14,15,16));
mat4 m2(vec4(1,5,9,13), vec4(2,6,10,14), vec4(3,7,11,15), vec4(4,8,12,16));
EXPECT_EQ(m1, transpose(m2));
EXPECT_EQ(m2, transpose(m1));
EXPECT_EQ(vec4(1,6,11,16), diag(m1));
EXPECT_EQ(identity, inverse(identity));
mat4 m3(vec4(4,3,0,0), vec4(3,2,0,0), vec4(0,0,1,0), vec4(0,0,0,1));
mat4 m3i(inverse(m3));
EXPECT_FLOAT_EQ(-2, m3i[0][0]);
EXPECT_FLOAT_EQ( 3, m3i[0][1]);
EXPECT_FLOAT_EQ( 3, m3i[1][0]);
EXPECT_FLOAT_EQ(-4, m3i[1][1]);
mat4 m3ii(inverse(m3i));
EXPECT_FLOAT_EQ(m3[0][0], m3ii[0][0]);
EXPECT_FLOAT_EQ(m3[0][1], m3ii[0][1]);
EXPECT_FLOAT_EQ(m3[1][0], m3ii[1][0]);
EXPECT_FLOAT_EQ(m3[1][1], m3ii[1][1]);
EXPECT_EQ(m1, m1*identity);
}
}; // namespace android

256
libs/ui/tests/vec_test.cpp Normal file
View File

@ -0,0 +1,256 @@
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "RegionTest"
#include <stdlib.h>
#include <ui/Region.h>
#include <ui/Rect.h>
#include <gtest/gtest.h>
#include <ui/vec4.h>
namespace android {
class VecTest : public testing::Test {
protected:
};
TEST_F(VecTest, Basics) {
vec4 v4;
vec3& v3(v4.xyz);
EXPECT_EQ(sizeof(vec4), sizeof(float)*4);
EXPECT_EQ(sizeof(vec3), sizeof(float)*3);
EXPECT_EQ(sizeof(vec2), sizeof(float)*2);
EXPECT_EQ((void*)&v3, (void*)&v4);
}
TEST_F(VecTest, Constructors) {
vec4 v0;
EXPECT_EQ(v0.x, 0);
EXPECT_EQ(v0.y, 0);
EXPECT_EQ(v0.z, 0);
EXPECT_EQ(v0.w, 0);
vec4 v1(1);
EXPECT_EQ(v1.x, 1);
EXPECT_EQ(v1.y, 1);
EXPECT_EQ(v1.z, 1);
EXPECT_EQ(v1.w, 1);
vec4 v2(1,2,3,4);
EXPECT_EQ(v2.x, 1);
EXPECT_EQ(v2.y, 2);
EXPECT_EQ(v2.z, 3);
EXPECT_EQ(v2.w, 4);
vec4 v3(v2);
EXPECT_EQ(v3.x, 1);
EXPECT_EQ(v3.y, 2);
EXPECT_EQ(v3.z, 3);
EXPECT_EQ(v3.w, 4);
vec4 v4(v3.xyz, 42);
EXPECT_EQ(v4.x, 1);
EXPECT_EQ(v4.y, 2);
EXPECT_EQ(v4.z, 3);
EXPECT_EQ(v4.w, 42);
vec4 v5(vec3(v2.xy, 42), 24);
EXPECT_EQ(v5.x, 1);
EXPECT_EQ(v5.y, 2);
EXPECT_EQ(v5.z, 42);
EXPECT_EQ(v5.w, 24);
tvec4<double> vd(2);
EXPECT_EQ(vd.x, 2);
EXPECT_EQ(vd.y, 2);
EXPECT_EQ(vd.z, 2);
EXPECT_EQ(vd.w, 2);
}
TEST_F(VecTest, Access) {
vec4 v0(1,2,3,4);
v0.x = 10;
v0.y = 20;
v0.z = 30;
v0.w = 40;
EXPECT_EQ(v0.x, 10);
EXPECT_EQ(v0.y, 20);
EXPECT_EQ(v0.z, 30);
EXPECT_EQ(v0.w, 40);
v0[0] = 100;
v0[1] = 200;
v0[2] = 300;
v0[3] = 400;
EXPECT_EQ(v0.x, 100);
EXPECT_EQ(v0.y, 200);
EXPECT_EQ(v0.z, 300);
EXPECT_EQ(v0.w, 400);
v0.xyz = vec3(1,2,3);
EXPECT_EQ(v0.x, 1);
EXPECT_EQ(v0.y, 2);
EXPECT_EQ(v0.z, 3);
EXPECT_EQ(v0.w, 400);
}
TEST_F(VecTest, UnaryOps) {
vec4 v0(1,2,3,4);
v0 += 1;
EXPECT_EQ(v0.x, 2);
EXPECT_EQ(v0.y, 3);
EXPECT_EQ(v0.z, 4);
EXPECT_EQ(v0.w, 5);
v0 -= 1;
EXPECT_EQ(v0.x, 1);
EXPECT_EQ(v0.y, 2);
EXPECT_EQ(v0.z, 3);
EXPECT_EQ(v0.w, 4);
v0 *= 2;
EXPECT_EQ(v0.x, 2);
EXPECT_EQ(v0.y, 4);
EXPECT_EQ(v0.z, 6);
EXPECT_EQ(v0.w, 8);
v0 /= 2;
EXPECT_EQ(v0.x, 1);
EXPECT_EQ(v0.y, 2);
EXPECT_EQ(v0.z, 3);
EXPECT_EQ(v0.w, 4);
vec4 v1(10, 20, 30, 40);
v0 += v1;
EXPECT_EQ(v0.x, 11);
EXPECT_EQ(v0.y, 22);
EXPECT_EQ(v0.z, 33);
EXPECT_EQ(v0.w, 44);
v0 -= v1;
EXPECT_EQ(v0.x, 1);
EXPECT_EQ(v0.y, 2);
EXPECT_EQ(v0.z, 3);
EXPECT_EQ(v0.w, 4);
v0 *= v1;
EXPECT_EQ(v0.x, 10);
EXPECT_EQ(v0.y, 40);
EXPECT_EQ(v0.z, 90);
EXPECT_EQ(v0.w, 160);
v0 /= v1;
EXPECT_EQ(v0.x, 1);
EXPECT_EQ(v0.y, 2);
EXPECT_EQ(v0.z, 3);
EXPECT_EQ(v0.w, 4);
++v0;
EXPECT_EQ(v0.x, 2);
EXPECT_EQ(v0.y, 3);
EXPECT_EQ(v0.z, 4);
EXPECT_EQ(v0.w, 5);
++++v0;
EXPECT_EQ(v0.x, 4);
EXPECT_EQ(v0.y, 5);
EXPECT_EQ(v0.z, 6);
EXPECT_EQ(v0.w, 7);
--v1;
EXPECT_EQ(v1.x, 9);
EXPECT_EQ(v1.y, 19);
EXPECT_EQ(v1.z, 29);
EXPECT_EQ(v1.w, 39);
v1 = -v1;
EXPECT_EQ(v1.x, -9);
EXPECT_EQ(v1.y, -19);
EXPECT_EQ(v1.z, -29);
EXPECT_EQ(v1.w, -39);
tvec4<double> dv(1,2,3,4);
v1 += dv;
EXPECT_EQ(v1.x, -8);
EXPECT_EQ(v1.y, -17);
EXPECT_EQ(v1.z, -26);
EXPECT_EQ(v1.w, -35);
}
TEST_F(VecTest, ComparisonOps) {
vec4 v0(1,2,3,4);
vec4 v1(10,20,30,40);
EXPECT_TRUE(v0 == v0);
EXPECT_TRUE(v0 != v1);
EXPECT_FALSE(v0 != v0);
EXPECT_FALSE(v0 == v1);
}
TEST_F(VecTest, ArithmeticOps) {
vec4 v0(1,2,3,4);
vec4 v1(10,20,30,40);
vec4 v2(v0 + v1);
EXPECT_EQ(v2.x, 11);
EXPECT_EQ(v2.y, 22);
EXPECT_EQ(v2.z, 33);
EXPECT_EQ(v2.w, 44);
v0 = v1 * 2;
EXPECT_EQ(v0.x, 20);
EXPECT_EQ(v0.y, 40);
EXPECT_EQ(v0.z, 60);
EXPECT_EQ(v0.w, 80);
v0 = 2 * v1;
EXPECT_EQ(v0.x, 20);
EXPECT_EQ(v0.y, 40);
EXPECT_EQ(v0.z, 60);
EXPECT_EQ(v0.w, 80);
tvec4<double> vd(2);
v0 = v1 * vd;
EXPECT_EQ(v0.x, 20);
EXPECT_EQ(v0.y, 40);
EXPECT_EQ(v0.z, 60);
EXPECT_EQ(v0.w, 80);
}
TEST_F(VecTest, ArithmeticFunc) {
vec3 east(1, 0, 0);
vec3 north(0, 1, 0);
vec3 up( cross(east, north) );
EXPECT_EQ(up, vec3(0,0,1));
EXPECT_EQ(dot(east, north), 0);
EXPECT_EQ(length(east), 1);
EXPECT_EQ(distance(east, north), sqrtf(2));
vec3 v0(1,2,3);
vec3 vn(normalize(v0));
EXPECT_FLOAT_EQ(1, length(vn));
EXPECT_FLOAT_EQ(length(v0), dot(v0, vn));
tvec3<double> vd(east);
EXPECT_EQ(length(vd), 1);
}
}; // namespace android

View File

@ -33,9 +33,7 @@ Description::Description() :
mOpaque = true;
mTextureEnabled = false;
const GLfloat m[16] = {1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 };
memset(mColor, 0, sizeof(mColor));
memcpy(mProjectionMatrix, m, sizeof(mProjectionMatrix));
}
Description::~Description() {
@ -78,8 +76,8 @@ void Description::setColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf
mUniformsDirty = true;
}
void Description::setProjectionMatrix(GLfloat const* mtx) {
memcpy(mProjectionMatrix, mtx, sizeof(mProjectionMatrix));
void Description::setProjectionMatrix(const mat4& mtx) {
mProjectionMatrix = mtx;
mUniformsDirty = true;
}

View File

@ -49,7 +49,7 @@ class Description {
// color used when texturing is disabled
GLclampf mColor[4];
// projection matrix
GLfloat mProjectionMatrix[16];
mat4 mProjectionMatrix;
public:
Description();
@ -61,7 +61,7 @@ public:
void setTexture(const Texture& texture);
void disableTexture();
void setColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha);
void setProjectionMatrix(GLfloat const* mtx);
void setProjectionMatrix(const mat4& mtx);
private:
bool mUniformsDirty;

View File

@ -160,7 +160,7 @@ void GLES11RenderEngine::setupLayerTexturing(const Texture& texture) {
glTexParameterx(target, GL_TEXTURE_MAG_FILTER, filter);
glTexParameterx(target, GL_TEXTURE_MIN_FILTER, filter);
glMatrixMode(GL_TEXTURE);
glLoadMatrixf(texture.getMatrix());
glLoadMatrixf(texture.getMatrix().asArray());
glMatrixMode(GL_MODELVIEW);
glDisable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_EXTERNAL_OES);

View File

@ -76,25 +76,9 @@ size_t GLES20RenderEngine::getMaxViewportDims() const {
void GLES20RenderEngine::setViewportAndProjection(
size_t vpw, size_t vph, size_t w, size_t h, bool yswap) {
struct ortho {
inline void operator() (GLfloat *m,
GLfloat left, GLfloat right, GLfloat bottom, GLfloat top,
GLfloat near, GLfloat far) const {
memset(m, 0, 16*sizeof(GLfloat));
m[ 0] = 2.0f / (right - left);
m[ 5] = 2.0f / (top - bottom);
m[10] =-2.0f / (far - near);
m[15] = 1.0f;
m[12] = -(right + left) / (right - left);
m[13] = -(top + bottom) / (top - bottom);
m[14] = -(far + near) / (far - near);
}
} ortho;
GLfloat m[16];
if (yswap) ortho(m, 0, w, h, 0, 0, 1);
else ortho(m, 0, w, 0, h, 0, 1);
mat4 m;
if (yswap) m = mat4::ortho(0, w, h, 0, 0, 1);
else m = mat4::ortho(0, w, 0, h, 0, 1);
glViewport(0, 0, vpw, vph);
mState.setProjectionMatrix(m);

View File

@ -129,7 +129,7 @@ void Program::setUniforms(const Description& desc) {
if (mSamplerLoc >= 0) {
glUniform1i(mSamplerLoc, 0);
glUniformMatrix4fv(mTextureMatrixLoc, 1, GL_FALSE, desc.mTexture.getMatrix());
glUniformMatrix4fv(mTextureMatrixLoc, 1, GL_FALSE, desc.mTexture.getMatrix().asArray());
}
if (mAlphaPlaneLoc >= 0) {
glUniform1f(mAlphaPlaneLoc, desc.mPlaneAlpha);
@ -138,7 +138,7 @@ void Program::setUniforms(const Description& desc) {
glUniform4fv(mColorLoc, 1, desc.mColor);
}
// these uniforms are always present
glUniformMatrix4fv(mProjectionMatrixLoc, 1, GL_FALSE, desc.mProjectionMatrix);
glUniformMatrix4fv(mProjectionMatrixLoc, 1, GL_FALSE, desc.mProjectionMatrix.asArray());
}
} /* namespace android */

View File

@ -23,15 +23,11 @@ namespace android {
Texture::Texture() :
mTextureName(0), mTextureTarget(TEXTURE_2D),
mWidth(0), mHeight(0), mFiltering(false) {
const float m[16] = {1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 };
memcpy(mTextureMatrix, m, sizeof(mTextureMatrix));
}
Texture::Texture(Target textureTarget, uint32_t textureName) :
mTextureName(textureName), mTextureTarget(textureTarget),
mWidth(0), mHeight(0), mFiltering(false) {
const float m[16] = {1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1 };
memcpy(mTextureMatrix, m, sizeof(mTextureMatrix));
}
void Texture::init(Target textureTarget, uint32_t textureName) {
@ -44,7 +40,7 @@ Texture::~Texture() {
void Texture::setMatrix(float const* matrix) {
memcpy(mTextureMatrix, matrix, sizeof(mTextureMatrix));
mTextureMatrix = mat4(matrix);
}
void Texture::setFiltering(bool enabled) {
@ -64,7 +60,7 @@ uint32_t Texture::getTextureTarget() const {
return mTextureTarget;
}
float const* Texture::getMatrix() const {
const mat4& Texture::getMatrix() const {
return mTextureMatrix;
}

View File

@ -15,6 +15,7 @@
*/
#include <stdint.h>
#include <ui/mat4.h>
#ifndef SF_RENDER_ENGINE_TEXTURE_H
#define SF_RENDER_ENGINE_TEXTURE_H
@ -27,7 +28,7 @@ class Texture {
size_t mWidth;
size_t mHeight;
bool mFiltering;
float mTextureMatrix[16];
mat4 mTextureMatrix;
public:
enum Target { TEXTURE_2D = 0x0DE1, TEXTURE_EXTERNAL = 0x8D65 };
@ -45,7 +46,7 @@ public:
uint32_t getTextureName() const;
uint32_t getTextureTarget() const;
float const* getMatrix() const;
const mat4& getMatrix() const;
bool getFiltering() const;
size_t getWidth() const;
size_t getHeight() const;