am a4f1eb3d: am 9430f9d3: Merge "KeyStore: Update the parameters of generating master keys." into gingerbread

Merge commit 'a4f1eb3d775533d9b28248022e0a5b4ec05fc2e4'

* commit 'a4f1eb3d775533d9b28248022e0a5b4ec05fc2e4':
  KeyStore: Update the parameters of generating master keys.
This commit is contained in:
Chia-chi Yeh 2010-10-01 17:08:30 -07:00 committed by Android Git Automerger
commit 58addfd94b
1 changed files with 71 additions and 24 deletions

View File

@ -143,15 +143,20 @@ static void send_message(uint8_t *message, int length)
send(the_socket, message, length, 0);
}
/* Here is the file format. Values are encrypted by AES CBC, and MD5 is used to
* compute their checksums. To make the files portable, the length is stored in
* network order. Note that the first four bytes are reserved for future use and
* are always set to zero in this implementation. */
/* Here is the file format. There are two parts in blob.value, the secret and
* the description. The secret is stored in ciphertext, and its original size
* can be found in blob.length. The description is stored after the secret in
* plaintext, and its size is specified in blob.info. The total size of the two
* parts must be no more than VALUE_SIZE bytes. The first three bytes of the
* file are reserved for future use and are always set to zero. Fields other
* than blob.info, blob.length, and blob.value are modified by encrypt_blob()
* and decrypt_blob(). Thus they should not be accessed from outside. */
static int the_entropy = -1;
static struct __attribute__((packed)) {
uint32_t reserved;
uint8_t reserved[3];
uint8_t info;
uint8_t vector[AES_BLOCK_SIZE];
uint8_t encrypted[0];
uint8_t digest[MD5_DIGEST_LENGTH];
@ -170,9 +175,13 @@ static int8_t encrypt_blob(char *name, AES_KEY *aes_key)
return SYSTEM_ERROR;
}
length = blob.length + blob.value - blob.encrypted;
length = blob.length + (blob.value - blob.encrypted);
length = (length + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE * AES_BLOCK_SIZE;
if (blob.info != 0) {
memmove(&blob.encrypted[length], &blob.value[blob.length], blob.info);
}
blob.length = htonl(blob.length);
MD5(blob.digested, length - (blob.digested - blob.encrypted), blob.digest);
@ -180,8 +189,8 @@ static int8_t encrypt_blob(char *name, AES_KEY *aes_key)
AES_cbc_encrypt(blob.encrypted, blob.encrypted, length, aes_key, vector,
AES_ENCRYPT);
blob.reserved = 0;
length += blob.encrypted - (uint8_t *)&blob;
memset(blob.reserved, 0, sizeof(blob.reserved));
length += (blob.encrypted - (uint8_t *)&blob) + blob.info;
fd = open(".tmp", O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
length -= write(fd, &blob, length);
@ -200,7 +209,7 @@ static int8_t decrypt_blob(char *name, AES_KEY *aes_key)
length = read(fd, &blob, sizeof(blob));
close(fd);
length -= blob.encrypted - (uint8_t *)&blob;
length -= (blob.encrypted - (uint8_t *)&blob) + blob.info;
if (length < blob.value - blob.encrypted || length % AES_BLOCK_SIZE != 0) {
return VALUE_CORRUPTED;
}
@ -215,8 +224,13 @@ static int8_t decrypt_blob(char *name, AES_KEY *aes_key)
length -= blob.value - blob.digested;
blob.length = ntohl(blob.length);
return (blob.length < 0 || blob.length > length) ? VALUE_CORRUPTED :
NO_ERROR;
if (blob.length < 0 || blob.length > length) {
return VALUE_CORRUPTED;
}
if (blob.info != 0) {
memmove(&blob.value[blob.length], &blob.value[length], blob.info);
}
return NO_ERROR;
}
/* Here are the actions. Each of them is a function without arguments. All
@ -266,6 +280,7 @@ static int8_t insert()
char name[NAME_MAX];
int n = sprintf(name, "%u_", uid);
encode_key(&name[n], params[0].value, params[0].length);
blob.info = 0;
blob.length = params[1].length;
memcpy(blob.value, params[1].value, params[1].length);
return encrypt_blob(name, &encryption_key);
@ -336,56 +351,88 @@ static int8_t reset()
#define MASTER_KEY_FILE ".masterkey"
#define MASTER_KEY_SIZE 16
#define SALT_SIZE 16
static void generate_key(uint8_t *key, uint8_t *password, int length)
static void set_key(uint8_t *key, uint8_t *password, int length, uint8_t *salt)
{
PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, (uint8_t *)"keystore",
sizeof("keystore"), 1024, MASTER_KEY_SIZE, key);
if (salt) {
PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, salt, SALT_SIZE,
8192, MASTER_KEY_SIZE, key);
} else {
PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, (uint8_t *)"keystore",
sizeof("keystore"), 1024, MASTER_KEY_SIZE, key);
}
}
/* Here is the history. To improve the security, the parameters to generate the
* master key has been changed. To make a seamless transition, we update the
* file using the same password when the user unlock it for the first time. If
* any thing goes wrong during the transition, the new file will not overwrite
* the old one. This avoids permanent damages of the existing data. */
static int8_t password()
{
uint8_t key[MASTER_KEY_SIZE];
AES_KEY aes_key;
int n;
int8_t response = SYSTEM_ERROR;
if (state == UNINITIALIZED) {
blob.length = MASTER_KEY_SIZE;
if (read(the_entropy, blob.value, MASTER_KEY_SIZE) != MASTER_KEY_SIZE) {
return SYSTEM_ERROR;
}
} else {
generate_key(key, params[0].value, params[0].length);
int fd = open(MASTER_KEY_FILE, O_RDONLY);
uint8_t *salt = NULL;
if (fd != -1) {
int length = read(fd, &blob, sizeof(blob));
close(fd);
if (length > SALT_SIZE && blob.info == SALT_SIZE) {
salt = (uint8_t *)&blob + length - SALT_SIZE;
}
}
set_key(key, params[0].value, params[0].length, salt);
AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key);
n = decrypt_blob(MASTER_KEY_FILE, &aes_key);
if (n == SYSTEM_ERROR) {
response = decrypt_blob(MASTER_KEY_FILE, &aes_key);
if (response == SYSTEM_ERROR) {
return SYSTEM_ERROR;
}
if (n != NO_ERROR || blob.length != MASTER_KEY_SIZE) {
if (response != NO_ERROR || blob.length != MASTER_KEY_SIZE) {
if (retry <= 0) {
reset();
return UNINITIALIZED;
}
return WRONG_PASSWORD + --retry;
}
if (!salt && params[1].length == -1) {
params[1] = params[0];
}
}
if (params[1].length == -1) {
memcpy(key, blob.value, MASTER_KEY_SIZE);
} else {
generate_key(key, params[1].value, params[1].length);
uint8_t *salt = &blob.value[MASTER_KEY_SIZE];
if (read(the_entropy, salt, SALT_SIZE) != SALT_SIZE) {
return SYSTEM_ERROR;
}
set_key(key, params[1].value, params[1].length, salt);
AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key);
memcpy(key, blob.value, MASTER_KEY_SIZE);
n = encrypt_blob(MASTER_KEY_FILE, &aes_key);
blob.info = SALT_SIZE;
blob.length = MASTER_KEY_SIZE;
response = encrypt_blob(MASTER_KEY_FILE, &aes_key);
}
if (n == NO_ERROR) {
if (response == NO_ERROR) {
AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &encryption_key);
AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &decryption_key);
state = NO_ERROR;
retry = MAX_RETRY;
}
return n;
return response;
}
static int8_t lock()