mv libcpustats from frameworks/base to /native

OK to lose history

Change-Id: I563fec271e0bc240e4a09a8b9647c7439badd85b
This commit is contained in:
Glenn Kasten 2012-03-26 12:18:24 -07:00
parent 94ff71fd6a
commit 0b94dcd03d
6 changed files with 564 additions and 0 deletions

View File

@ -0,0 +1,75 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _CENTRAL_TENDENCY_STATISTICS_H
#define _CENTRAL_TENDENCY_STATISTICS_H
#include <math.h>
// Not multithread safe
class CentralTendencyStatistics {
public:
CentralTendencyStatistics() :
mMean(NAN), mMedian(NAN), mMinimum(INFINITY), mMaximum(-INFINITY), mN(0), mM2(0),
mVariance(NAN), mVarianceKnownForN(0), mStddev(NAN), mStddevKnownForN(0) { }
~CentralTendencyStatistics() { }
// add x to the set of samples
void sample(double x);
// return the arithmetic mean of all samples so far
double mean() const { return mMean; }
// return the minimum of all samples so far
double minimum() const { return mMinimum; }
// return the maximum of all samples so far
double maximum() const { return mMaximum; }
// return the variance of all samples so far
double variance() const;
// return the standard deviation of all samples so far
double stddev() const;
// return the number of samples added so far
unsigned n() const { return mN; }
// reset the set of samples to be empty
void reset();
private:
double mMean;
double mMedian;
double mMinimum;
double mMaximum;
unsigned mN; // number of samples so far
double mM2;
// cached variance, and n at time of caching
mutable double mVariance;
mutable unsigned mVarianceKnownForN;
// cached standard deviation, and n at time of caching
mutable double mStddev;
mutable unsigned mStddevKnownForN;
};
#endif // _CENTRAL_TENDENCY_STATISTICS_H

View File

@ -0,0 +1,6 @@
This is a static library of CPU usage statistics, originally written
for audio but most are not actually specific to audio.
Requirements to be here:
* should be related to CPU usage statistics
* should be portable to host; avoid Android OS dependencies without a conditional

View File

@ -0,0 +1,139 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _THREAD_CPU_USAGE_H
#define _THREAD_CPU_USAGE_H
#include <fcntl.h>
#include <pthread.h>
namespace android {
// Track CPU usage for the current thread.
// Units are in per-thread CPU ns, as reported by
// clock_gettime(CLOCK_THREAD_CPUTIME_ID). Simple usage: for cyclic
// threads where you want to measure the execution time of the whole
// cycle, just call sampleAndEnable() at the start of each cycle.
// For acyclic threads, or for cyclic threads where you want to measure/track
// only part of each cycle, call enable(), disable(), and/or setEnabled()
// to demarcate the region(s) of interest, and then call sample() periodically.
// This class is not thread-safe for concurrent calls from multiple threads;
// the methods of this class may only be called by the current thread
// which constructed the object.
class ThreadCpuUsage
{
public:
ThreadCpuUsage() :
mIsEnabled(false),
mWasEverEnabled(false),
mAccumulator(0),
// mPreviousTs
// mMonotonicTs
mMonotonicKnown(false)
{
(void) pthread_once(&sOnceControl, &init);
for (int i = 0; i < sKernelMax; ++i) {
mCurrentkHz[i] = (uint32_t) ~0; // unknown
}
}
~ThreadCpuUsage() { }
// Return whether currently tracking CPU usage by current thread
bool isEnabled() const { return mIsEnabled; }
// Enable tracking of CPU usage by current thread;
// any CPU used from this point forward will be tracked.
// Returns the previous enabled status.
bool enable() { return setEnabled(true); }
// Disable tracking of CPU usage by current thread;
// any CPU used from this point forward will be ignored.
// Returns the previous enabled status.
bool disable() { return setEnabled(false); }
// Set the enabled status and return the previous enabled status.
// This method is intended to be used for safe nested enable/disabling.
bool setEnabled(bool isEnabled);
// Add a sample point, and also enable tracking if needed.
// If tracking has never been enabled, then this call enables tracking but
// does _not_ add a sample -- it is not possible to add a sample the
// first time because there is no previous point to subtract from.
// Otherwise, if tracking is enabled,
// then adds a sample for tracked CPU ns since the previous
// sample, or since the first call to sampleAndEnable(), enable(), or
// setEnabled(true). If there was a previous sample but tracking is
// now disabled, then adds a sample for the tracked CPU ns accumulated
// up until the most recent disable(), resets this accumulator, and then
// enables tracking. Calling this method rather than enable() followed
// by sample() avoids a race condition for the first sample.
// Returns true if the sample 'ns' is valid, or false if invalid.
// Note that 'ns' is an output parameter passed by reference.
// The caller does not need to initialize this variable.
// The units are CPU nanoseconds consumed by current thread.
bool sampleAndEnable(double& ns);
// Add a sample point, but do not
// change the tracking enabled status. If tracking has either never been
// enabled, or has never been enabled since the last sample, then log a warning
// and don't add sample. Otherwise, adds a sample for tracked CPU ns since
// the previous sample or since the first call to sampleAndEnable(),
// enable(), or setEnabled(true) if no previous sample.
// Returns true if the sample is valid, or false if invalid.
// Note that 'ns' is an output parameter passed by reference.
// The caller does not need to initialize this variable.
// The units are CPU nanoseconds consumed by current thread.
bool sample(double& ns);
// Return the elapsed delta wall clock ns since initial enable or reset,
// as reported by clock_gettime(CLOCK_MONOTONIC).
long long elapsed() const;
// Reset elapsed wall clock. Has no effect on tracking or accumulator.
void resetElapsed();
// Return current clock frequency for specified CPU, in kHz.
// You can get your CPU number using sched_getcpu(2). Note that, unless CPU affinity
// has been configured appropriately, the CPU number can change.
// Also note that, unless the CPU governor has been configured appropriately,
// the CPU frequency can change. And even if the CPU frequency is locked down
// to a particular value, that the frequency might still be adjusted
// to prevent thermal overload. Therefore you should poll for your thread's
// current CPU number and clock frequency periodically.
uint32_t getCpukHz(int cpuNum);
private:
bool mIsEnabled; // whether tracking is currently enabled
bool mWasEverEnabled; // whether tracking was ever enabled
long long mAccumulator; // accumulated thread CPU time since last sample, in ns
struct timespec mPreviousTs; // most recent thread CPU time, valid only if mIsEnabled is true
struct timespec mMonotonicTs; // most recent monotonic time
bool mMonotonicKnown; // whether mMonotonicTs has been set
static const int MAX_CPU = 8;
static int sScalingFds[MAX_CPU];// file descriptor per CPU for reading scaling_cur_freq
uint32_t mCurrentkHz[MAX_CPU]; // current CPU frequency in kHz, not static to avoid a race
static pthread_once_t sOnceControl;
static int sKernelMax; // like MAX_CPU, but determined at runtime == cpu/kernel_max + 1
static void init();
};
} // namespace android
#endif // _THREAD_CPU_USAGE_H

11
libs/cpustats/Android.mk Normal file
View File

@ -0,0 +1,11 @@
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_SRC_FILES := \
CentralTendencyStatistics.cpp \
ThreadCpuUsage.cpp
LOCAL_MODULE := libcpustats
include $(BUILD_STATIC_LIBRARY)

View File

@ -0,0 +1,81 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <cpustats/CentralTendencyStatistics.h>
void CentralTendencyStatistics::sample(double x)
{
// update min and max
if (x < mMinimum)
mMinimum = x;
if (x > mMaximum)
mMaximum = x;
// Knuth
if (mN == 0) {
mMean = 0;
}
++mN;
double delta = x - mMean;
mMean += delta / mN;
mM2 += delta * (x - mMean);
}
void CentralTendencyStatistics::reset()
{
mMean = NAN;
mMedian = NAN;
mMinimum = INFINITY;
mMaximum = -INFINITY;
mN = 0;
mM2 = 0;
mVariance = NAN;
mVarianceKnownForN = 0;
mStddev = NAN;
mStddevKnownForN = 0;
}
double CentralTendencyStatistics::variance() const
{
double variance;
if (mVarianceKnownForN != mN) {
if (mN > 1) {
// double variance_n = M2/n;
variance = mM2 / (mN - 1);
} else {
variance = NAN;
}
mVariance = variance;
mVarianceKnownForN = mN;
} else {
variance = mVariance;
}
return variance;
}
double CentralTendencyStatistics::stddev() const
{
double stddev;
if (mStddevKnownForN != mN) {
stddev = sqrt(variance());
mStddev = stddev;
mStddevKnownForN = mN;
} else {
stddev = mStddev;
}
return stddev;
}

View File

@ -0,0 +1,252 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ThreadCpuUsage"
//#define LOG_NDEBUG 0
#include <errno.h>
#include <stdlib.h>
#include <time.h>
#include <utils/Debug.h>
#include <utils/Log.h>
#include <cpustats/ThreadCpuUsage.h>
namespace android {
bool ThreadCpuUsage::setEnabled(bool isEnabled)
{
bool wasEnabled = mIsEnabled;
// only do something if there is a change
if (isEnabled != wasEnabled) {
ALOGV("setEnabled(%d)", isEnabled);
int rc;
// enabling
if (isEnabled) {
rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &mPreviousTs);
if (rc) {
ALOGE("clock_gettime(CLOCK_THREAD_CPUTIME_ID) errno=%d", errno);
isEnabled = false;
} else {
mWasEverEnabled = true;
// record wall clock time at first enable
if (!mMonotonicKnown) {
rc = clock_gettime(CLOCK_MONOTONIC, &mMonotonicTs);
if (rc) {
ALOGE("clock_gettime(CLOCK_MONOTONIC) errno=%d", errno);
} else {
mMonotonicKnown = true;
}
}
}
// disabling
} else {
struct timespec ts;
rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
if (rc) {
ALOGE("clock_gettime(CLOCK_THREAD_CPUTIME_ID) errno=%d", errno);
} else {
long long delta = (ts.tv_sec - mPreviousTs.tv_sec) * 1000000000LL +
(ts.tv_nsec - mPreviousTs.tv_nsec);
mAccumulator += delta;
#if 0
mPreviousTs = ts;
#endif
}
}
mIsEnabled = isEnabled;
}
return wasEnabled;
}
bool ThreadCpuUsage::sampleAndEnable(double& ns)
{
bool ret;
bool wasEverEnabled = mWasEverEnabled;
if (enable()) {
// already enabled, so add a new sample relative to previous
return sample(ns);
} else if (wasEverEnabled) {
// was disabled, but add sample for accumulated time while enabled
ns = (double) mAccumulator;
mAccumulator = 0;
ALOGV("sampleAndEnable %.0f", ns);
return true;
} else {
// first time called
ns = 0.0;
ALOGV("sampleAndEnable false");
return false;
}
}
bool ThreadCpuUsage::sample(double &ns)
{
if (mWasEverEnabled) {
if (mIsEnabled) {
struct timespec ts;
int rc;
rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
if (rc) {
ALOGE("clock_gettime(CLOCK_THREAD_CPUTIME_ID) errno=%d", errno);
ns = 0.0;
return false;
} else {
long long delta = (ts.tv_sec - mPreviousTs.tv_sec) * 1000000000LL +
(ts.tv_nsec - mPreviousTs.tv_nsec);
mAccumulator += delta;
mPreviousTs = ts;
}
} else {
mWasEverEnabled = false;
}
ns = (double) mAccumulator;
ALOGV("sample %.0f", ns);
mAccumulator = 0;
return true;
} else {
ALOGW("Can't add sample because measurements have never been enabled");
ns = 0.0;
return false;
}
}
long long ThreadCpuUsage::elapsed() const
{
long long elapsed;
if (mMonotonicKnown) {
struct timespec ts;
int rc;
rc = clock_gettime(CLOCK_MONOTONIC, &ts);
if (rc) {
ALOGE("clock_gettime(CLOCK_MONOTONIC) errno=%d", errno);
elapsed = 0;
} else {
// mMonotonicTs is updated only at first enable and resetStatistics
elapsed = (ts.tv_sec - mMonotonicTs.tv_sec) * 1000000000LL +
(ts.tv_nsec - mMonotonicTs.tv_nsec);
}
} else {
ALOGW("Can't compute elapsed time because measurements have never been enabled");
elapsed = 0;
}
ALOGV("elapsed %lld", elapsed);
return elapsed;
}
void ThreadCpuUsage::resetElapsed()
{
ALOGV("resetElapsed");
if (mMonotonicKnown) {
int rc;
rc = clock_gettime(CLOCK_MONOTONIC, &mMonotonicTs);
if (rc) {
ALOGE("clock_gettime(CLOCK_MONOTONIC) errno=%d", errno);
mMonotonicKnown = false;
}
}
}
/*static*/
int ThreadCpuUsage::sScalingFds[ThreadCpuUsage::MAX_CPU];
pthread_once_t ThreadCpuUsage::sOnceControl = PTHREAD_ONCE_INIT;
int ThreadCpuUsage::sKernelMax;
/*static*/
void ThreadCpuUsage::init()
{
// read the number of CPUs
sKernelMax = 1;
int fd = open("/sys/devices/system/cpu/kernel_max", O_RDONLY);
if (fd >= 0) {
#define KERNEL_MAX_SIZE 12
char kernelMax[KERNEL_MAX_SIZE];
ssize_t actual = read(fd, kernelMax, sizeof(kernelMax));
if (actual >= 2 && kernelMax[actual-1] == '\n') {
sKernelMax = atoi(kernelMax);
if (sKernelMax >= MAX_CPU - 1) {
ALOGW("kernel_max %d but MAX_CPU %d", sKernelMax, MAX_CPU);
sKernelMax = MAX_CPU;
} else if (sKernelMax < 0) {
ALOGW("kernel_max invalid %d", sKernelMax);
sKernelMax = 1;
} else {
++sKernelMax;
ALOGV("number of CPUs %d", sKernelMax);
}
} else {
ALOGW("Can't read number of CPUs");
}
(void) close(fd);
} else {
ALOGW("Can't open number of CPUs");
}
// open fd to each frequency per CPU
#define FREQ_SIZE 64
char freq_path[FREQ_SIZE];
#define FREQ_DIGIT 27
COMPILE_TIME_ASSERT_FUNCTION_SCOPE(MAX_CPU <= 10);
strlcpy(freq_path, "/sys/devices/system/cpu/cpu?/cpufreq/scaling_cur_freq", sizeof(freq_path));
int i;
for (i = 0; i < MAX_CPU; ++i) {
sScalingFds[i] = -1;
}
for (i = 0; i < sKernelMax; ++i) {
freq_path[FREQ_DIGIT] = i + '0';
fd = open(freq_path, O_RDONLY);
if (fd >= 0) {
// keep this fd until process exit
sScalingFds[i] = fd;
} else {
ALOGW("Can't open CPU %d", i);
}
}
}
uint32_t ThreadCpuUsage::getCpukHz(int cpuNum)
{
if (cpuNum < 0 || cpuNum >= MAX_CPU) {
ALOGW("getCpukHz called with invalid CPU %d", cpuNum);
return 0;
}
int fd = sScalingFds[cpuNum];
if (fd < 0) {
ALOGW("getCpukHz called for unopened CPU %d", cpuNum);
return 0;
}
#define KHZ_SIZE 12
char kHz[KHZ_SIZE]; // kHz base 10
ssize_t actual = pread(fd, kHz, sizeof(kHz), (off_t) 0);
uint32_t ret;
if (actual >= 2 && kHz[actual-1] == '\n') {
ret = atoi(kHz);
} else {
ret = 0;
}
if (ret != mCurrentkHz[cpuNum]) {
if (ret > 0) {
ALOGV("CPU %d frequency %u kHz", cpuNum, ret);
} else {
ALOGW("Can't read CPU %d frequency", cpuNum);
}
mCurrentkHz[cpuNum] = ret;
}
return ret;
}
} // namespace android