replicant-frameworks_native/cmds/flatland/Main.cpp

717 lines
18 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_ALWAYS
#include <gui/GraphicBufferAlloc.h>
#include <gui/Surface.h>
#include <gui/SurfaceControl.h>
#include <gui/GLConsumer.h>
#include <gui/Surface.h>
#include <ui/Fence.h>
#include <utils/Trace.h>
#include <EGL/egl.h>
#include <GLES2/gl2.h>
#include <math.h>
#include <getopt.h>
#include "Flatland.h"
#include "GLHelper.h"
using namespace ::android;
static uint32_t g_SleepBetweenSamplesMs = 0;
static bool g_PresentToWindow = false;
static size_t g_BenchmarkNameLen = 0;
struct BenchmarkDesc {
// The name of the test.
const char* name;
// The dimensions of the space in which window layers are specified.
uint32_t width;
uint32_t height;
// The screen heights at which to run the test.
uint32_t runHeights[MAX_TEST_RUNS];
// The list of window layers.
LayerDesc layers[MAX_NUM_LAYERS];
};
static const BenchmarkDesc benchmarks[] = {
{ "16:10 Single Static Window",
2560, 1600, { 800, 1600, 2400 },
{
{ // Window
0, staticGradient, opaque,
0, 50, 2560, 1454,
},
{ // Status bar
0, staticGradient, opaque,
0, 0, 2560, 50,
},
{ // Navigation bar
0, staticGradient, opaque,
0, 1504, 2560, 96,
},
},
},
{ "16:10 App -> Home Transition",
2560, 1600, { 800, 1600, 2400 },
{
{ // Wallpaper
0, staticGradient, opaque,
0, 50, 2560, 1454,
},
{ // Launcher
0, staticGradient, blend,
0, 50, 2560, 1454,
},
{ // Outgoing activity
0, staticGradient, blendShrink,
20, 70, 2520, 1414,
},
{ // Status bar
0, staticGradient, opaque,
0, 0, 2560, 50,
},
{ // Navigation bar
0, staticGradient, opaque,
0, 1504, 2560, 96,
},
},
},
{ "16:10 SurfaceView -> Home Transition",
2560, 1600, { 800, 1600, 2400 },
{
{ // Wallpaper
0, staticGradient, opaque,
0, 50, 2560, 1454,
},
{ // Launcher
0, staticGradient, blend,
0, 50, 2560, 1454,
},
{ // Outgoing SurfaceView
0, staticGradient, blendShrink,
20, 70, 2520, 1414,
},
{ // Outgoing activity
0, staticGradient, blendShrink,
20, 70, 2520, 1414,
},
{ // Status bar
0, staticGradient, opaque,
0, 0, 2560, 50,
},
{ // Navigation bar
0, staticGradient, opaque,
0, 1504, 2560, 96,
},
},
},
};
static const ShaderDesc shaders[] = {
{
name: "Blit",
vertexShader: {
"precision mediump float;",
"",
"attribute vec4 position;",
"attribute vec4 uv;",
"",
"varying vec4 texCoords;",
"",
"uniform mat4 objToNdc;",
"uniform mat4 uvToTex;",
"",
"void main() {",
" gl_Position = objToNdc * position;",
" texCoords = uvToTex * uv;",
"}",
},
fragmentShader: {
"#extension GL_OES_EGL_image_external : require",
"precision mediump float;",
"",
"varying vec4 texCoords;",
"",
"uniform samplerExternalOES blitSrc;",
"uniform vec4 modColor;",
"",
"void main() {",
" gl_FragColor = texture2D(blitSrc, texCoords.xy);",
" gl_FragColor *= modColor;",
"}",
},
},
{
name: "Gradient",
vertexShader: {
"precision mediump float;",
"",
"attribute vec4 position;",
"attribute vec4 uv;",
"",
"varying float interp;",
"",
"uniform mat4 objToNdc;",
"uniform mat4 uvToInterp;",
"",
"void main() {",
" gl_Position = objToNdc * position;",
" interp = (uvToInterp * uv).x;",
"}",
},
fragmentShader: {
"precision mediump float;",
"",
"varying float interp;",
"",
"uniform vec4 color0;",
"uniform vec4 color1;",
"",
"uniform sampler2D ditherKernel;",
"uniform float invDitherKernelSize;",
"uniform float invDitherKernelSizeSq;",
"",
"void main() {",
" float dither = texture2D(ditherKernel,",
" gl_FragCoord.xy * invDitherKernelSize).a;",
" dither *= invDitherKernelSizeSq;",
" vec4 color = mix(color0, color1, clamp(interp, 0.0, 1.0));",
" gl_FragColor = color + vec4(dither, dither, dither, 0.0);",
"}",
},
},
};
class Layer {
public:
Layer() :
mFirstFrame(true),
mGLHelper(NULL),
mSurface(EGL_NO_SURFACE) {
}
bool setUp(const LayerDesc& desc, GLHelper* helper) {
bool result;
mDesc = desc;
mGLHelper = helper;
result = mGLHelper->createSurfaceTexture(mDesc.width, mDesc.height,
&mGLConsumer, &mSurface, &mTexName);
if (!result) {
return false;
}
mRenderer = desc.rendererFactory();
result = mRenderer->setUp(helper);
if (!result) {
return false;
}
mComposer = desc.composerFactory();
result = mComposer->setUp(desc, helper);
if (!result) {
return false;
}
return true;
}
void tearDown() {
if (mComposer != NULL) {
mComposer->tearDown();
delete mComposer;
mComposer = NULL;
}
if (mRenderer != NULL) {
mRenderer->tearDown();
delete mRenderer;
mRenderer = NULL;
}
if (mSurface != EGL_NO_SURFACE) {
mGLHelper->destroySurface(&mSurface);
mGLConsumer->abandon();
}
mGLHelper = NULL;
mGLConsumer.clear();
}
bool render() {
return mRenderer->render(mSurface);
}
bool prepareComposition() {
status_t err;
err = mGLConsumer->updateTexImage();
if (err < 0) {
fprintf(stderr, "GLConsumer::updateTexImage error: %d\n", err);
return false;
}
return true;
}
bool compose() {
return mComposer->compose(mTexName, mGLConsumer);
}
private:
bool mFirstFrame;
LayerDesc mDesc;
GLHelper* mGLHelper;
GLuint mTexName;
sp<GLConsumer> mGLConsumer;
EGLSurface mSurface;
Renderer* mRenderer;
Composer* mComposer;
};
class BenchmarkRunner {
public:
BenchmarkRunner(const BenchmarkDesc& desc, size_t instance) :
mDesc(desc),
mInstance(instance),
mNumLayers(countLayers(desc)),
mGLHelper(NULL),
mSurface(EGL_NO_SURFACE),
mWindowSurface(EGL_NO_SURFACE) {
}
bool setUp() {
ATRACE_CALL();
bool result;
EGLint resulte;
float scaleFactor = float(mDesc.runHeights[mInstance]) /
float(mDesc.height);
uint32_t w = uint32_t(scaleFactor * float(mDesc.width));
uint32_t h = mDesc.runHeights[mInstance];
mGLHelper = new GLHelper();
result = mGLHelper->setUp(shaders, NELEMS(shaders));
if (!result) {
return false;
}
GLuint texName;
result = mGLHelper->createSurfaceTexture(w, h, &mGLConsumer, &mSurface,
&texName);
if (!result) {
return false;
}
for (size_t i = 0; i < mNumLayers; i++) {
// Scale the layer to match the current screen size.
LayerDesc ld = mDesc.layers[i];
ld.x = int32_t(scaleFactor * float(ld.x));
ld.y = int32_t(scaleFactor * float(ld.y));
ld.width = uint32_t(scaleFactor * float(ld.width));
ld.height = uint32_t(scaleFactor * float(ld.height));
// Set up the layer.
result = mLayers[i].setUp(ld, mGLHelper);
if (!result) {
return false;
}
}
if (g_PresentToWindow) {
result = mGLHelper->createWindowSurface(w, h, &mSurfaceControl,
&mWindowSurface);
if (!result) {
return false;
}
result = doFrame(mWindowSurface);
if (!result) {
return false;
}
}
return true;
}
void tearDown() {
ATRACE_CALL();
for (size_t i = 0; i < mNumLayers; i++) {
mLayers[i].tearDown();
}
if (mGLHelper != NULL) {
if (mWindowSurface != EGL_NO_SURFACE) {
mGLHelper->destroySurface(&mWindowSurface);
}
mGLHelper->destroySurface(&mSurface);
mGLConsumer->abandon();
mGLConsumer.clear();
mSurfaceControl.clear();
mGLHelper->tearDown();
delete mGLHelper;
mGLHelper = NULL;
}
}
nsecs_t run(uint32_t warmUpFrames, uint32_t totalFrames) {
ATRACE_CALL();
bool result;
status_t err;
resetColorGenerator();
// Do the warm-up frames.
for (uint32_t i = 0; i < warmUpFrames; i++) {
result = doFrame(mSurface);
if (!result) {
return -1;
}
}
// Grab the fence for the start timestamp.
sp<Fence> startFence = mGLConsumer->getCurrentFence();
// the timed frames.
for (uint32_t i = warmUpFrames; i < totalFrames; i++) {
result = doFrame(mSurface);
if (!result) {
return -1;
}
}
// Grab the fence for the end timestamp.
sp<Fence> endFence = mGLConsumer->getCurrentFence();
// Keep doing frames until the end fence has signaled.
while (endFence->wait(0) == -ETIME) {
result = doFrame(mSurface);
if (!result) {
return -1;
}
}
// Compute the time delta.
nsecs_t startTime = startFence->getSignalTime();
nsecs_t endTime = endFence->getSignalTime();
return endTime - startTime;
}
private:
bool doFrame(EGLSurface surface) {
bool result;
status_t err;
for (size_t i = 0; i < mNumLayers; i++) {
result = mLayers[i].render();
if (!result) {
return false;
}
}
for (size_t i = 0; i < mNumLayers; i++) {
result = mLayers[i].prepareComposition();
if (!result) {
return false;
}
}
result = mGLHelper->makeCurrent(surface);
if (!result) {
return false;
}
glClearColor(1.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT);
for (size_t i = 0; i < mNumLayers; i++) {
result = mLayers[i].compose();
if (!result) {
return false;
}
}
result = mGLHelper->swapBuffers(surface);
if (!result) {
return false;
}
err = mGLConsumer->updateTexImage();
if (err < 0) {
fprintf(stderr, "GLConsumer::updateTexImage error: %d\n", err);
return false;
}
return true;
}
static size_t countLayers(const BenchmarkDesc& desc) {
size_t i;
for (i = 0; i < MAX_NUM_LAYERS; i++) {
if (desc.layers[i].rendererFactory == NULL) {
break;
}
}
return i;
}
const BenchmarkDesc& mDesc;
const size_t mInstance;
const size_t mNumLayers;
GLHelper* mGLHelper;
// The surface into which layers are composited
sp<GLConsumer> mGLConsumer;
EGLSurface mSurface;
// Used for displaying the surface to a window.
EGLSurface mWindowSurface;
sp<SurfaceControl> mSurfaceControl;
Layer mLayers[MAX_NUM_LAYERS];
};
static int cmpDouble(const double* lhs, const double* rhs) {
if (*lhs < *rhs) {
return -1;
} else if (*rhs < *lhs) {
return 1;
}
return 0;
}
// Run a single benchmark and print the result.
static bool runTest(const BenchmarkDesc b, size_t run) {
bool success = true;
double prevResult = 0.0, result = 0.0;
Vector<double> samples;
uint32_t runHeight = b.runHeights[run];
uint32_t runWidth = b.width * runHeight / b.height;
printf(" %-*s | %4d x %4d | ", g_BenchmarkNameLen, b.name,
runWidth, runHeight);
fflush(stdout);
BenchmarkRunner r(b, run);
if (!r.setUp()) {
fprintf(stderr, "error initializing runner.\n");
return false;
}
// The slowest 1/outlierFraction sample results are ignored as potential
// outliers.
const uint32_t outlierFraction = 16;
const double threshold = .0025;
uint32_t warmUpFrames = 1;
uint32_t totalFrames = 5;
// Find the number of frames needed to run for over 100ms.
double runTime = 0.0;
while (true) {
runTime = double(r.run(warmUpFrames, totalFrames));
if (runTime < 50e6) {
warmUpFrames *= 2;
totalFrames *= 2;
} else {
break;
}
}
if (totalFrames - warmUpFrames > 16) {
// The test runs too fast to get a stable result. Skip it.
printf(" fast");
goto done;
} else if (totalFrames == 5 && runTime > 200e6) {
// The test runs too slow to be very useful. Skip it.
printf(" slow");
goto done;
}
do {
size_t newSamples = samples.size();
if (newSamples == 0) {
newSamples = 4*outlierFraction;
}
if (newSamples > 512) {
printf("varies");
goto done;
}
for (size_t i = 0; i < newSamples; i++) {
double sample = double(r.run(warmUpFrames, totalFrames));
if (g_SleepBetweenSamplesMs > 0) {
usleep(g_SleepBetweenSamplesMs * 1000);
}
if (sample < 0.0) {
success = false;
goto done;
}
samples.add(sample);
}
samples.sort(cmpDouble);
prevResult = result;
size_t elem = (samples.size() * (outlierFraction-1) / outlierFraction);
result = (samples[elem-1] + samples[elem]) * 0.5;
} while (fabs(result - prevResult) > threshold * result);
printf("%6.3f", result / double(totalFrames - warmUpFrames) / 1e6);
done:
printf("\n");
fflush(stdout);
r.tearDown();
return success;
}
static void printResultsTableHeader() {
const char* scenario = "Scenario";
size_t len = strlen(scenario);
size_t leftPad = (g_BenchmarkNameLen - len) / 2;
size_t rightPad = g_BenchmarkNameLen - len - leftPad;
printf(" %*s%s%*s | Resolution | Time (ms)\n", leftPad, "",
"Scenario", rightPad, "");
}
// Run ALL the benchmarks!
static bool runTests() {
printResultsTableHeader();
for (size_t i = 0; i < NELEMS(benchmarks); i++) {
const BenchmarkDesc& b = benchmarks[i];
for (size_t j = 0; j < MAX_TEST_RUNS && b.runHeights[j]; j++) {
if (!runTest(b, j)) {
return false;
}
}
}
return true;
}
// Return the length longest benchmark name.
static size_t maxBenchmarkNameLen() {
size_t maxLen = 0;
for (size_t i = 0; i < NELEMS(benchmarks); i++) {
const BenchmarkDesc& b = benchmarks[i];
size_t len = strlen(b.name);
if (len > maxLen) {
maxLen = len;
}
}
return maxLen;
}
// Print the command usage help to stderr.
static void showHelp(const char *cmd) {
fprintf(stderr, "usage: %s [options]\n", cmd);
fprintf(stderr, "options include:\n"
" -s N sleep for N ms between samples\n"
" -d display the test frame to a window\n"
" --help print this helpful message and exit\n"
);
}
int main(int argc, char** argv) {
if (argc == 2 && 0 == strcmp(argv[1], "--help")) {
showHelp(argv[0]);
exit(0);
}
for (;;) {
int ret;
int option_index = 0;
static struct option long_options[] = {
{"help", no_argument, 0, 0 },
{ 0, 0, 0, 0 }
};
ret = getopt_long(argc, argv, "ds:",
long_options, &option_index);
if (ret < 0) {
break;
}
switch(ret) {
case 'd':
g_PresentToWindow = true;
break;
case 's':
g_SleepBetweenSamplesMs = atoi(optarg);
break;
case 0:
if (strcmp(long_options[option_index].name, "help")) {
showHelp(argv[0]);
exit(0);
}
break;
default:
showHelp(argv[0]);
exit(2);
}
}
g_BenchmarkNameLen = maxBenchmarkNameLen();
printf(" cmdline:");
for (int i = 0; i < argc; i++) {
printf(" %s", argv[i]);
}
printf("\n");
if (!runTests()) {
fprintf(stderr, "exiting due to error.\n");
return 1;
}
}